文档库 最新最全的文档下载
当前位置:文档库 › 导数定义,求导公式,切线

导数定义,求导公式,切线

导数定义,求导公式,切线
导数定义,求导公式,切线

【本讲教育信息】

一. 教学内容:

导数定义;求导公式;切线

二. 重点、难点:

1. 定义:

2. 初导函数的导数公式

(1)∴

(2)∴

(3)∴

(4)∴

(5)∴(且)

(6)∴

3. 导数运算

(1)

(2)

(3)

【典型例题】

[例1] 利用导数的定义求函数的导数,并求该函数在处的导数值。

解:∵

∴因此,从而

[例2] 已知f(x)在x=a处可导,且,求下列极限:

(1)(2)

解:(1)

(2)

[例3] 求下列函数的导数。

(1)

解:

(2)

解:

(3)

解:

(4)

解:

(5)

解:

(6)

解:

[例4] 已知函数满足(1);(2),求。

解:

[例5] 求曲线在点P(2,4)处的切线方程。

解:P(2,4)在上,,时,

[例6] 曲线在点A处切线的斜率为15,求切线方程。

解:设切点A()∴

∴∴:∴

[例7] 过点P(2,0)且与曲线相切的直线方程。

解:P不在曲线上,设切点A()

∴:∴

[例8] 求曲线与交点处两条切线的夹角正切值。

解:交点(1,1)

[例9] 求过P(2,-2)与曲线相切的切线方程。

解:设切点A()

:∴

∴∴:

或:

[例10] 求曲线C1:,曲线C2:的公切线(均相切的直线)解:公切线与C1、C2切于A()B()

为同一条直线

∴两公切线:,

[例11] 已知,且且

且,求。

解:

∴∴

∴(3)∴(4)

∴∴

【模拟试题】

1. 在导数的定义中,自变量x的增量()

A. 大于0

B. 小于0

C. 等于0

D. 不等于0

2. 在曲线的图象上取一点(1,2)及邻近一点(),则为()

A. B. C. D.

3. 一直线运动的物体,从时间t到时,物体的位移为,那么为()

A. 从时间t到时,物体的平均速度

B. 时间t时该物体的瞬时速度

C. 当时间为时该物体的速度

D. 从时间t到时位移的平均变化率

4. 已知一物体的运动方程是(其中位移单位:m,时间单位:s),那么该物体在3s时的瞬时速度是()

A. 5m/s

B. 6m/s

C. 7m/s

D. 8m/s

5. 函数的导数是()

A. 5+2x

B. 5-4x

C. 5-2x

D. 5+4x

6. 已知,若,则的值等于()

A. B. C. D.

7. 若,则()

A. B. C. D.

8. 抛物线上点M()的切线的倾斜角是()

A. 30°

B. 45°

C. 60°

D. 90°

9.(05年浙江)函数的图象与直线y=x相切,则a=()

A. B. C. D. 1

10. 若,则等于。

11. 抛物线在点P(2,1)处的切线方程是。

12. 已知曲线,则过点P(2,4)的切线方程是。

13. 垂直于直线,且与曲线相切的直线的方程是。

14.(1)一球沿某一斜面自由滚下,测得滚下的垂直距离h(单位:m)与时间t(单位:s)之间的函数关系为,求时,此球在垂直方向的瞬时速度。

(2)质点P在半径为10cm,圆心在原点的圆上逆时针做匀角速运动,角速度为1rad/s,设该圆与x轴正半轴的交点A为起始点,求时刻t时,点P在y轴上射影点M的速度。15. 已知两曲线和都经过点P(1,2),且在点P处有公切线,试求a,b,c的值。

16. 已知曲线,及该曲线上的一点A(2,),(1)用导数的定义求点A处的切线的斜率;(2)求点A处的切线方程。

17.(1)求曲线在点(1,1)处的切线方程;(2)运动物体在曲线

上运动,求物体在t=3s时的速度。(位移单位:m,时间单位:s)

18. 设函数,点P()()在曲线上,求曲线上的点P处的切线与x轴、y轴的正半轴所围成的三角形面积的表达式(用x0表示)

【试题答案】

1. D

2. C

3. B

4. A

5. C

6. B

7. D

8. B

9. B 10. 1.5

11. 12. 13.

14. 解:(1)=8米/秒,即球在垂直方向的瞬时速度为8米/秒。

(2)∵经过t时,点P在y轴上射影长为s=10sin1t=10sint

∴点P在y轴上射影点M的速度为

15. 解:因为点P(1,2)在曲线上,∴

函数和的导数分别为和,且在点

P处有公切线,∴,得,又由,得

16. 解:(1)∵

∴点A处的切线的斜率为

(2)点A处的切线方程,化简得

17. 解:(1)∵

∴,即曲线在点(1,1)处的切线斜率

因此曲线在(1,1)处的切线方程为y=1

(2)∵

∴,即运动物体在t=3s时的速度为18. 解:当时,,

∴曲线在点P()处的切线方程为:

∴切线与x轴、y轴正半轴的交点坐标分别为,

故所求三角面积的表达式为:

用导数求切线方程的四种类型84657

题型一:利用导数去切线斜率 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为 解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,. 类型二:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例2 求过曲线32y x x =-上的点(11)-,的切线方程. 类型三:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法来求解. 例3 求过点(20),且与曲线1y x =相切的直线方程. 题型二:利用导数判断函数单调性 总结求解函数f(x)单调区间的步骤: 练习:判断下列函数的单调性,并求出单调区间。 (1)确定函数f(x)的定义域; (2)求f(x)的导数f'(x); (3)解不等式 f'(x)>0 ,解集在定义域内的部分为 增区间; (4)解不等式 f'(x)<0 ,解集在定义域内的部分为 减区间. 例1.:已知导函数 的下列信息: 注意: x x x f x x x f x x x x f ln 2 1 )()3(7 62)()2(),0(,sin )()1(223-=+-=∈-=π图像的大致形状。 试画出或当或当当)(0)(,1,40)(,1,40)(,41x f x f x x x f x x x f x ='==<'<>>'<<3211 11(1)2231(11)y x y x x =-+-=-+-练习:、在,处的切线方程 、在,处的切线方程1(01)x y xe =+-3、曲线在,处的切线方程sin 20x y x e x =++=5、曲线在处的切线方程

导数的概念及运算

导数的概念及运算 一、选择题 1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=( ) A.0 B.1 C.2 D.3 解析∵y=e ax-ln(x+1),∴y′=a e ax- 1 x+1 ,∴当x=0时,y′=a-1.∵ 曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D 2.若f(x)=2xf′(1)+x2,则f′(0)等于( ) A.2 B.0 C.-2 D.-4 解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2, ∴f′(0)=2f′(1)=-4. 答案 D 3.(2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C. 答案 C 4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为( ) A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则 y′|x=x 0= 1 x ,切线方程为y-ln x0= 1 x (x-x0),因为切线过点(0,0),所

以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1 e . 答案 C 5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则 g ′(3)=( ) A.-1 B.0 C.2 D.4 解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-1 3,∴f ′(3)=- 1 3 ,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×? ???? -13=0. 答案 B 二、填空题 6.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数, f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析 f ′(x )=a ? ? ???ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a , 又f ′(1)=3,所以a =3. 答案 3 7.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1 x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0

导数的概念和几何意义.doc

题号 ■ ? — 总分 得分 评卷人 得分 绝密★启用前 导数的概念和几何意义 注意事项: 1. 答题前填写好自己的姓名、班级、考号等信息 2. 请将答案正确填写在答题卡上 第I 卷(选择题) 1. 曲线y=2sinx 在点P ( n , 0)处的切线方程为( ) A. y = -2x + 2〃 B. y = 0 C. y — -2x - 2/r D. y = 2x + 2/r 【答案】A 【解析】 试题分析:因为,y=2sinx,所以,y' = 2cosx,曲线y=2sinx 在点P ( n , 0)处的切 线斜率为-2,由直线方程的点斜式,整理得,曲线y 二2sinx 在点P ( n , 0)处的切线 方程为),二一2工+ 2几,选A 。 考点:导数的几何意义 点评:简单题,曲线切线的斜率,等于在切点的导函数值。 2. 若蓦函数),二 /(】)的图像经过点A (:S ),则它在A 点处的切线方程是( ) A. 4x + 4y+ 1 = 0 B. 4x-4y + l = 0 C. 2x-y = 0 D. 2x+ y = 0 【答案】B 【解析】 试题分析:设/(x ) = f ,把人(一,一)代入,得一=一,得。=一,所以j 、(x ) = E=£, 4 4 广(:)=1 ,所以所求的切线方程为y — ! = * — !即4x — 4y +1 = 0 , 选B. 考点:羸函数、曲线的切线. 3. 函数f (x ) = e x cosx 的图像在点(0,/(0))处的切线的倾斜角为() 考试范围:导数的概念和几何意义;考试时间: 100分钟;命题人:张磊

(C) (l,e) (D) (0,2) 7[ 3兀 A 、一 B N 0 C N — D 、1 4 4 【答案】A 【解析】 试题分析:由广⑴= / (cosx — sin X ),则在点(0,/(0))处的切线的斜率k =广 (0) = 1, TT 故倾斜角为一.选A. 4 考点:1.利用导数求切线的斜率;2.直线斜率与倾斜角的关系 4. 曲线y = b 在点(2,疽)处的切线与坐标轴所围三角形的面积为( ) 2 A. * B. 2e 2 C. 4e 2 D.— 2 【答案】D 【解析】 试题分析:?.,点(2,疽)在曲线上,..?切线的斜率k = y x _2 = e x x _2 = e 2 , ..?切线的方程为y —疽=疽(工—2),即e 2 x-y-e 2 =0, 两坐标轴的交点坐标为 (0,-乃,(1,0), 考点:1.利用导数求切线方程;2.三角形面积公式. 5.曲线= e v 在点A 处的切线与直线x —y + 3 = 0平行,则点月的坐标为( ) (A) (-l,e _,) (B) (0,1) 【答案】B 【解析】 试题分析:直线x —y + 3 =。的斜率为1,所以切线的斜率为1, B|J k = y , = e x ^=} 解得%0=0,此时y = e° = \ ,即点A 的坐标为(0,1). 考点:导数的几何意义. 6.设|1】|线),=史在点(3,2)处的切线与直线” + y + l = 0垂直,则。等于( ) %-1 A. 2 B. — C. — D. — 2 2 2 【答案】D 【解析】 试题分析:由y = - => y'= ~~ = ------ 曲线y =三口 在点(3,2)处 , A-1 . (X-1)- (X-1)- ? X-1

导数公式

导数公式默写 1.平均变化率:一般地,函数()f x 在区间[]12,x x 上的平均变化率为: 2、导数的定义:设函数()y f x =在区间()a,b 上有定义,0x ∈()a,b ,若x ?无限趋近于____时,比值 00()()f x x f x y x x +?-?=??无限趋近于一个______A ,则称()f x 在0x x =处可导,并称该______为函数()f x 在0x x =处的导数,记作0'()f x . 3.导数的几何意义:)(x f 在0x x =处的导数________就是)(x f 在0x x =处的___________. 4、用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:___________________________. 5.几个常见函数的导数公式: (1)()kx b '+= (,k b 为常数); (2)='C (C 为常数);(3)()x '= ; (4)2()x '= ;(5)3()x '= ; (6)1()x '= ; (7)'= . 6.基本初等函数的求导公式: (8))('a x =___________(a 为常数); (9)()x a '= (0>a ,且1≠a ) (10)(log )a x '= (0>a ,且1≠a );(11)()x e '= (12)=' )(ln x (13)=')(sin x ; (14)=')(cos x . 7、函数的和、差、积、商的求导法则: 法则1: []='±)()(x g x f 法则2:[]=')(x Cf (C 为常数) 法则3:[]=')()(x g x f 法则4:='?? ????)()(x g x f (0)(≠x g ) 8、复合函数的导数公式

(完整word版)导数的概念、导数公式与应用

导数的概念及运算 知识点一:函数的平均变化率 (1)概念: 函数中,如果自变量在处有增量,那么函数值y也相应的有增量△ y=f(x 0+△x)-f(x ),其比值叫做函数从到+△x的平均变化率,即。 若,,则平均变化率可表示为,称为函数从 到的平均变化率。 注意: ①事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; ②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。 ③是自变量在处的改变量,;而是函数值的改变量,可以是0。函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。 (2)平均变化率的几何意义 函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。 如图所示,函数的平均变化率的几何意义是:直线AB的斜率。 事实上,。 作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x以增量,函数y相应有增量。若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。 即:(或) 注意: ①增量可以是正数,也可以是负数; ②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。 2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。 注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在 处的函数值,反映函数在附近的变化情况。 3.导数几何意义: (1)曲线的切线 曲线上一点P(x 0,y )及其附近一点Q(x +△x,y +△y),经过点P、Q作曲线的割线PQ, 其倾斜角为当点Q(x 0+△x,y +△y)沿曲线无限接近于点P(x ,y ), 即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。 若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。 即:。

用导数求切线方程的四种类型

用导数求切线方程的四种类型 浙江 曾安雄 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线 方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =- 解:由2 ()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为 (1)3(1)y x --=--,即32y x =-+,因而选B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --= 解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴. 由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用?法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0?=,得1b =-,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.

北师大文科数学高考总复习练习:导数的概念及运算 含答案

第三章导数及其应用 第1讲导数的概念及运算 基础巩固题组 (建议用时:40分钟) 一、选择题 1.设y=x2e x,则y′= () A.x2e x+2x B.2x e x C.(2x+x2)e x D.(x+x2)e x 解析y′=2x e x+x2e x=(2x+x2)e x. 答案 C 2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于 () A.-e B.-1 C.1 D.e 解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x , ∴f′(1)=2f′(1)+1,则f′(1)=-1. 答案 B 3.曲线y=sin x+e x在点(0,1)处的切线方程是 () A.x-3y+3=0 B.x-2y+2=0 C.2x-y+1=0 D.3x-y+1=0 解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0. 答案 C 4.(2017·成都诊断)已知曲线y=ln x的切线过原点,则此切线的斜率为

() A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则y′|x =x0=1 x0 ,切线方程为y-ln x0=1 x0(x-x0),因为切线过点(0,0),所以-ln x0 =-1,解得x0=e,故此切线的斜率为1 e. 答案 C 5.(2017·昆明诊断)设曲线y=1+cos x sin x在点? ? ? ? ? π 2,1处的切线与直线x-ay+1=0 平行,则实数a等于 () A.-1 B.1 2 C.-2 D.2 解析∵y′=-1-cos x sin2x ,∴=-1. 由条件知1 a =-1,∴a=-1. 答案 A 二、填空题 6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________. 解析因为y′=2ax-1 x ,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线 平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2. 答案1 2 7.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x) 在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.

(完整版)用导数求切线方程教案

用导数求切线方程 一、教学目标: (1)知识与技能: 理解导数的几何意义. 能够应用导数公式及运算法则进行求导运算. (2)过程与方法: 掌握基本初等函数的导数公式及运算法则求简单函数的导数. (3)情感态度与价值观: 通过导数的几何意义的探索过程,掌握计算简单函数的导数,培养学生主动探索、勇于发现之间的联系的精神,渗透由特殊到一般的思想方法. 二、重点、难点 重点:能用导数的几何意义求切线方程. 难点:用导数求切线方程. 三、学情分析 学生在前面已学习导数的概念,能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,本节课进一步研究和学习导数的几何意义与切线方程之间的联系。根据学生好动、观察能力强的特点,让他们采用小组合作、讨论的形式归纳本节课的知识,突出本节课的重点、难点。 四、教学过程: 【知识回顾】 1. 导数的概念 函数()y f x =在0x x =处的导数是 _____________________.

2. 导数的几何意义 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(00x f x 处的切线的斜率,即________=k . 3. 基本初等函数的导数公式: 1)若()f x c =(c 为常数),则()________'=x f ; 2)若()f x x α=,则()________'=x f ; 3)若()sin f x x =,则()________'=x f ; 4)若()cos f x x =,则()________'=x f ; 5)若()x f x a =,则()________'=x f ; 6)若()x f x e =,则()________'=x f ; 7)若()log x a f x =,则()________'=x f ; 8)若()ln f x x =,则()________'=x f . 4. 导数的运算法则 1)()()[]_______________'=±x g x f 2)()()[]_________________'=?x g x f 3)()_______________________')(=?? ????x g x f 4)()'________cf x =???? 【新课引入】 1. 用导数求切线方程的四种常见的类型及解法: 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =-- B.32y x =-+ C.43y x =-+ D.45y x =- 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --=

苏教版 导数的概念及运算

导数的概念及运算 一、填空题 1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析 由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案 e 2.设y =x 2e x ,则y ′=________. 解析 y ′=2x e x +x 2e x =()2x +x 2 e x . 答案 (2x +x 2)e x 3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于________. 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -1 4.(2015·苏北四市模拟)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 解析 由y ′=2ax ,又点(1,a )在曲线y =ax 2上,依题意得k =y ′|x =1=2a =2,解得a =1. 答案 1 5.(2015·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________. 解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y =-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),? ?? ?? 23,23,故围 成的三角形的面积为12×1×23=1 3. 答案 13 6.(2015·长春质量检测)若函数f (x )=ln x x ,则f ′(2)=________. 解析 ∵f ′(x )=1-ln x x 2,∴f ′(2)=1-ln 2 4.

导数的概念及其几何意义教案

§2 导数的概念及其几何意义 第四课时 导数的几何意义习题课 一、教学目标:会利用导数的几何意义求曲线上某点处的切线方程。 二、教学重点:曲线上一点处的切线斜率的求法 教学难点:理解导数的几何意义 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导数的几何意义:函数)(x f y =在x 0处的导数就是曲线)(x f y =在点(x 0,)(0x f )处的切线的斜率。 (二)、探究新课 例1、在曲线34x y =上求一点P 使得曲线在该点处的切线满足下列条件: (1)平行于直线y =x +1; (2)垂直于直线2x -16y +1=0; (3)倾斜角为135°。 解:设点坐标为(0x ,0y ),则 202002020202020) (48)()(484)(4x x x x x x x x x x x x x x x x x y ?+?--=??+?-?-=?-?+=?? ∴当Δx 趋于0时,30 400088)(x x x x f -=-='。 (1)∵切线与直线y =x +1平行。 ∴1)(0='x f ,即1830 =-x , ∴20-=x ,10=y 。 即P (―2,1)。 (2)∵切线与直线2x -16y +1=0垂直, ∴1)16 2(·)(0-=--'x f ,即181·830-=-x ,

∴10=x ,40=y 。 即P (―1,4)。 (3)∵切线倾斜角为135°, ∴1135tan )(00-=='x f ,即1830 -=- x , ∴20=x ,10=y 。 即P (2,1)。 例2、求曲线1)(3+==x x f y 过(1,1)点的切线的斜率。 解:设过(1,1)点的切线与13+=x y 相切与点)1,(300+x x P ,则 2020320203030)(33)()(33)1(1)(x x x x x x x x x x x x x x x y ?+?+=??+?+?=?+-+?+=?? 当Δx 趋于0时, 2003)(x x f =', 由导数的几何意义可知,曲线在点P 处的切线的斜率为203x k = ① 又过(1,1)点的切线的斜率1 11030--+=x x k ② ∴由①②得:130302 -=x x x 解得:00=x 或230=x ,∴0=k 或427=k , ∴曲线13+=x y 过(1,1)点的切线的斜率为0或427。 例3、如图,它表示跳水运动中高度随时间变化的函数 2() 4.9 6.510h x x x =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况. 解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上述三个时刻附近的变化情况. (1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴,所以,在0t t =附近曲线 比较平坦,几乎没有升降. (2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近

导数之一:导数求导与切线方程

本章节知识提要 考试要求1.导数概念及其几何意义(1)了解导数概念的实际背景; (2)理解导数的几何 意义. 2.导数的运算 (1)能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y = x 1,y =x 的导数; (2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数. 3.导数在研究函数中的应用 (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次); (2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 4.生活中的优化问题:会利用导数解决某些实际问题. 5.定积分与微积分基本定理 (1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念; (2)了解微积分基本定理的含义 导数(1):求导与切线 ?知识点梳理? 1. 求导公式与求导法则:

0'=C ; 1)'(-=n n nx x ; x x cos )'(sin =; x sin )'(cos -= x x 1)'(ln = ; x x e e =)'( a a a x x ln )'(= 2. 法则1 )(.))'(('=x f c x cf 法则2 '''[()()]()()f x g x f x g x ±=±. 法则3 [()()]'()()()f x g x f x g x f x g x '= +, [()]'(cf x cf x '= 法则4:'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ??-=≠ ??? 3.利用导数求曲线的切线方程:函数()y f x =在点0x 的导数的几何意义就是曲线()y f x =在点00(,)p x y 处的切线的斜率,也就是说,曲线()y f x =在点00(,)p x y 处的切线斜率是0()f x ',切线的方程为000()()y y f x x x '-=- 曲线f (x )在A (m,n )处的切线方程求法: ①求函数f (x )的导数f ′(x ). ②求值:f ′(m )得过A 点的切线的斜率 ③由点斜式写出切线方程:y –n = f ′(m )(x-m) ?精选例题? 例1.求下列函数的导函数 1. x x f =)( 2.2)(e x f = 3.y=2x+3 4.x x f = )( 5.y=x 2+3x-3 6. 1y x = 7. x x x f ln 2)(= 8. 32)sin()(x x x f += 9. x x x x f 2ln )(+= 例2:.求函数12+=x y 在-1,0,1处导数。 例3:已知曲线313y x =上一点P (2,38 ),求点P 处的切线的斜率及切线方程?

导数定义

【本讲教育信息】一. 教学内容: 导数定义;求导公式;切线 二. 重点、难点: 1. 定义: 初导函数的导数公式2. )∴(1)∴(2 ∴(3 ) )(4∴且()(5 ∴) (6 )∴3. 导数运算)(1 2)(3)( 【典型例题】 利用导数的定义求函数1] 处的导数值。[的导数,例并求该函数在 ∵解:从而,因此∴ 处可导,且x=a x2] 例,求下列极限:已知f()在[ (1)2() )解:(1 )(2

3] 求下列函数的导数。[例)(1解: ∴)2(解: )(3解: (4)解: 5)(解:6)(解: ,求)。;(满足(4] 例[已知函数1)2 解: 求曲线在点P(2例5] ,4)处的切线方程。[时,4 )在解:P上,(,2,∴ 在点A曲线处切线的斜率为15,求切线方程。[例6] ∴)解:设切点A (:∴∴∴ )且与曲线相切的直线方程。2,0[例7] 过点P(A()解:P不在曲线上,设切 点:∴ ∴∴:

[例8] 交点处两条切线的夹角正切值。求曲线与 1),解:交点(1∴ )与曲线2,-相切的切线方程。9] 求过P(2[ 例)(设切点解:A ∴: :∴∴.:或 :的公切线(均相切的直线)10] C求曲线:C[例曲线,12 (A、C解:切于公切线与)BC()21 ∴ ∴为同一条直线或 两公切线:∴, 且,已知且[例11] 。,求且解:∴ ∴∴∴)((∴3)4 ∴∴ 【模拟试题】 的增量() 1. 在导数的定义中,自变量x 0D. 不等于0 C. 等于0 小于 A. 大于0 B. )及邻近一点(,的图象上取一点(2. 1在曲线2),则为()

C. A. B. D. ,那么为(t一直线运动的物体,从时间时,物体的位移为到)3. 到时,物体的平均速度从时间t A. t时该物体的瞬时速度时间B. C. 当时间为时该物体的速度时位移的平均变化率到t从时间 D. 已知一物体的运动方程是(其中位移单位:m,时间单位:s4. ),那么该物体在3s时的瞬时速度是() D. 8m/sA. 5m/s B. 6m/s C. 7m/s 函数的导数是()5. D. 5+4xC. 5-2x A. 5+2x B. 5-4x ,若,则已知的值等于() 6. B. D. A. C. (,则7. 若) D. A. B. C. ()的切线的倾斜角是()抛物线上点M8. ° D. 90° C. 60° A. 30° B. 45年浙江)函数的图象与直线y=x 相切,则a=(9.(05) C. B. A. D. 1,则等于10. 若。 在点P(211. 抛物线,1)处的切线方程是。 已知曲线,则过点P(2,12. 4)的切线方程是。 ,且与曲线相切的直线的方程是垂直于直线。13. 14.(1)一球沿某一斜面自由滚下,测得滚下的垂直距离h(单位:m)与时间t(单位:,求时,此球在垂直方向的瞬时速度。)之间的函数关系为s (2)质点P在半径为10cm,圆心在原点的圆上逆时针做匀角速运动,角速度为1rad/s,设该圆与x轴正半轴的交点A为起始点,求时刻t时,点P在y轴上射影点M的速度。 和都经过点P(1,215. ),且在点已知两曲线P处有公切c的值。线,试求a,b,,(2已知曲线,及该曲线上的一点A),(1)用导数的定义求点A处16.

导数的概念与计算练习题带答案

导数的概念与计算练习 题带答案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点 P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C .ln 22 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()sin f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x =等 于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1) 1 ()2ln f x ax x x =-- (2) 2 ()1x e f x ax = + (3)21()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

导数的概念及其几何意义

导数的概念及其几何意义 一.教学内容解析 (一)内容结构图 1.章内容结构图 2.单元内容结构图 (二)教学内容解析 1.本章内容解析 本章内容——导数及其应用是众多知识的交汇,是研究函数性质,解决不等式、数列、几何等相关问题的重要工具. 为了描述现实世界中的运动变化现象,在数学中引入了函数.在对函数的深入研究中,数学家创立了微积分,这是具有划时代意义的伟大创造,被誉为数学史上的里程碑.微积分的创立与处理四类科学问题直接相关:一是已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度,反之,已知物体的加速度作为时间的函数,求速度与路程;二是求曲线的切线;三是求函数的最大值与最小值;四是求长度、面积、体积和重心等. 导数是微积分的核心内容之一,是现代数学的基本概念,蕴含着微积分的基本思想;它定量地刻画了函数的局部变化,是研究函数增减、变化快慢、最大(小)值等性质的基本方法 .因而也是解决诸如增长率、

膨胀率、效率、密度、加速度等实际问题的基本工具. 2.本单元内容解析 在本单元——导数的概念及其意义中,学生将通过实际情境,经历用平均变化率和瞬时变化率刻画实例的过程,感受数学的极限思想,抽象生成导数的概念,并通过函数图像直观感受导数的几何意义,感受“以直代曲”的极限思想.能够用导数的概念解释生活中的现象,体会用导数的知识研究函数的思想方法.通过具体实例感受导数在研究函数和解决实际问题中的作用,体会导数的意义. 本单元设计了三个分讲,共计4课时,分别是章引言与两个变化率问题(2课时),导数的概念及其几何意义(1课时),导数的应用及导函数(1课时). 3. 课时内容解析 本课时内容选自人教社A 版《选修2-2》第一章导数及其应用中第一单元导数的概念及其意义中的单元分讲2——导数的概念及其几何意义,用时1课时. 本课时内容是在学生已经学习了分讲1——章引言和两个变化率问题,即:已经研究了物理学中的平均速度和瞬时速度,几何学中的割线斜率和切线斜率的基础上,通过数学抽象,生成导数的概念及其表达.从“数”的角度理解导数概念的本质就是瞬时变化率.从“形”的角度,类比分讲1中曲线2 ()f x x =在点(0,0)处的切线的斜率就是函数2 ()f x x =在0x =处的导数的几何意义,抽象生成一般曲线()y f x =在0x x =处的导数的几何意义. 通过信息技术,直观感受“以直代曲”的极限思想,感受“数”与“形”的相辅相成.由质疑“切线的原始定义”为出发点,类比分讲1中曲线2 ()f x x =在点(0,0)处的切线定义,抽象生成一般曲线()y f x =在点00(,())x f x 处的切线定义. 体会微积分的重要思想——用运动变化的观点解决问题.课时中的两个生活实例,意在引导学生用导数的概念解决 “原油的瞬时变化率”问题,用导数的几何意义解决运动员“高台跳水”不同时刻的变化情况,感受数学源于生活,用于生活的价值.培养学生用数学的眼光观察世界,用数学的思维思考世界,用数学的语言表达世界,提升分析问题、解决问题的能力,提升数学抽象和直观想象的数学核心素养. 基于以上分析,确定本课时的教学重点:抽象生成导数的概念,直观感受导数的几何意义,体会“以直代曲”的极限思想. 二.教学目标设置 (一)本章教学目标

导数定义及公式

导数: 1.若f(x)=c,则f‘(x)= 2. 若f(x)=x n(n∈Q?),则f‘(x)= 3. 若f(x)=sin x,则f‘(x)= 4.若f(x)=cos x,则f‘(x)= 5. 若f(x)= a x,则f‘(x)= 6. 若f(x)= e x,则f‘(x)= 7. 若f(x)= log a x,则f‘(x)= 8. 若f(x)= ln x,则f‘(x)= 9.【f(x)±g(x)】′= 10.【f(x).g(x)】′= 11.【f(x) g(x) 】′= 12.【cf(x)】′= 13. y=f(u),u=g(x),则y=f(g(x)); y x′= sin2x= (e?x)′=

##导数:一般地,函数y=f (x )在x=x 0处的瞬时变化率是 Δy Δx ?x→0lim = f (x 0+?x )?f(x 0)?x ?x→0lim ,称函数y=f (x )在x=x 0处的导数,记作: f ‘(x )或y ‘|x =x 0。即 f ‘(x 0)= Δy Δx ?x→0lim = f (x 0+?x )?f(x 0)?x ?x→0lim 。 ##函数y=f (x )在点x 0处的导数的几何意义,就是曲线y=f (x )在点P (x 0,f (x 0))处的切线斜率,也就是说曲线y=f (x )在点P (x 0,f (x 0))处的切线斜率是f ‘(x 0)。相应地,过p 点的切线方程为: y-f (x 0)=f ‘(x 0)(x-x 0) ##导函数:如果函数y=f (x )在开区间(a ,b )每一点都可导,就说函数f (x )在开区间(a ,b )可导。若函数f (x )在开区间 (a ,b )可导,则f (x )在(a ,b )每一点的导数构成一个新函数,把这一新函数叫做f (x )在开区间(a ,b )的导函数(简称导数)记作f ‘(x )或y ‘或y ‘x 。 即f ‘(x )=y ‘=Δy Δx ?x→0lim = f (x+?x )?f(x)?x ?x→0lim

导数的概念、几何意义及其运算

导数的概念、几何意义及其运算 常见基本初等函数的导数公式和常用导数运算公式 : +-∈==N n nx x C C n n ,)(;)(01''为常数; ;sin )(cos ;cos )(sin ''x x x x -== a a a e e x x x x ln )(;)(''==; e x x x x a a log 1 )(log ;1)(ln ''== 法则1: )()()]()([' ''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u += 法则3: )0)(() ()()()()(])()([2' ''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾: 1.导数的定义:函数)(x f y =在0x 处的瞬时变化率 x x f x x f x y o x x ?-?+=??→?→?)()(lim lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/ x f 或0/x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈, 都对应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/ y ,即)(/ x f =/ y = x x f x x f x ?-?+→?) ()(lim 0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数 )(x f y =在0x 处的导数0 /x x y =,就是导函数)(/ x f 在0x 处的函数值,即0 / x x y == )(0/x f 。 2. 由导数的定义求函数)(x f y =的导数的一般方法是: (1).求函数的改变量 )()(f x f x x f -?+=?; (2).求平均变化率 x x f x x f x ?-?+= ??)()(f ; (3).取极限,得导数/ y =x x ??→?f lim 0。 3.导数的几何意义:函数)(x f y =在0x 处的导数是曲线)(x f y =上点()(,00x f x )处的切线的斜率。 基础练习: 1.曲线324y x x =-+在点(13), 处的切线的倾斜角为( ) A .30° B .45° C .60° D .120° 2.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B . 1 2 C .1 2 - D .1 -

导数的概念教案

【教学课题】:§2.1 导数的概念(第一课时) 【教学目的】:能使学生深刻理解在一点处导数的概念,能准确表达其定义;明确其实际背 景并给出物理、几何解释;能够从定义出发求某些函数在一点处的导数;明确 一点处的导数与单侧导数、可导与连续的关系。 【教学重点】:在一点处导数的定义。 【教学难点】:在一点处导数的几种等价定义及其应用。 【教学方法】:系统讲授,问题教学,多媒体的利用等。 【教学过程】: 一) 导数的思想的历史回顾 导数的概念和其它的数学概念一样是源于人类的实践。导数的思想最初是由法国数学家费马(Fermat )为研究极值问题而引入的,但导数作为微积分的最主要的概念,却是英国数学家牛顿(Newton )和德国数学家莱布尼兹(Leibniz )在研究力学与几何学的过程中建立起来的。 二)两个来自物理学与几何学的问题的解决 问题1 (以变速直线运动的瞬时速度的问题的解决为背景)已知:自由落体运动方程为:21()2 s t gt =,[0,]t T ∈,求:落体在0t 时刻(0[0,]t T ∈)的瞬时速度。 问题解决:设t 为0t 的邻近时刻,则落体在时间段0[,]t t (或0[,]t t )上的平均速度为 00 ()()s t s t v t t -= - 若0t t →时平均速度的极限存在,则极限 000 ()()lim t t s t s t v t t →-=- 为质点在时刻0t 的瞬时速度。 问题2 (以曲线在某一点处切线的斜率的问题的解决为背景)已知:曲线)(x f y =上点00(,)M x y ,求:M 点处切线的斜率。 下面给出切线的一般定义;设曲线C 及曲线C 上的一点M ,如图,在M 外C 上另外取一点N ,作割线MN ,当N 沿着C 趋近点M 时,如果割线MN 绕点M 旋转而趋于极

相关文档
相关文档 最新文档