文档库 最新最全的文档下载
当前位置:文档库 › 实验一 二分搜索算法

实验一 二分搜索算法

实验一  二分搜索算法
实验一  二分搜索算法

实验一二分搜索算法

E08620311-方凯-08计算机(3)班

一.实验目的:

1、理解分治算法的概念和基本要素;

2、理解递归的概念;

3、掌握设计有效算法的分治策略;

4、通过二分搜索技术学习分治策略设计技巧;

二.实验内容及要求:

1.使用二分搜索算法查找任意N个有序数列中的指定元素。

2.通过上机实验进行算法实现。

3.保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告。

4.至少使用两种方法进行编程。

二.实验原理:

二分搜索算法也称为折半查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。

【基本思想】将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x 作比较,如果x=a[n/2]则找到x,算法终止。如果xa[n/2],则我们只要在数组a的右半部继续搜索x。

二分搜索法的应用极其广泛,而且它的思想易于理解。第一个二分搜索算法早在1946年就出现了,但是第一个完全正确的二分搜索算法直到1962年才出现。Bentley在他的著作《Writing Correct Programs》中写道,90%的计算机专家不能在2小时内写出完全正确的二分搜索算法。问题的关键在于准确地制定各次查找范围的边界以及终止条件的确定,正确地归纳奇偶数的各种情况,其实整理后可以发现它的具体算法是很直观的。

方法一:直接查找;

方法二:递归查找;

方法三:迭代查找;

四.程序代码:

方法1:直接查找

int BinarySearch(int a[],int x,int n){

int left=0;int right=n-1;

while(left<=right){

int middle=(left+right)/2;

if(x==a[middle])return middle;

if(x>a[middle])left=middle+1;

else right=middle-1;

}

return-1;

}

方法2:递归查找

int BinarySearchDG(int a[],int x,int left,int right){

int middle=(left+right)/2;

if(left<=right){

if(x==a[middle])return middle;

if(x>a[middle])return BinarySearchDG(a,x,middle+1,right);

else return BinarySearchDG(a,x,left,middle-1);

}

return-1;

}

五.结果运行与分析:

for(int i=0;i<100;i++){

a[i]=2*i-1;

}

我的数组是1,3,5,7,9……195,197

所以57在数组的位置是29位,都没错。

当我搜索56时,没有该数据,2个也都给出了答案。

六.心得与体会:

1、能用C语言实现基本的算法。能从不同方面考虑代码的质量问题,比如用循环一直2分查找或者使用条件+递归2分查找。

2、在我眼中,2分查找方法是很简单而且效率相对很高的算法,简单易懂,容易入手,为以后写更复杂的算法打下基础。

禁忌搜索算法浅析

禁忌搜索算法浅析 摘要:本文介绍了禁忌搜索算法的基本思想、算法流程及其实现的伪代码。禁忌搜索算法(Tabu Search或Taboo Search,简称TS算法)是一种全局性邻域搜索算法,可以有效地解决组合优化问题,引导算法跳出局部最优解,转向全局最优解的功能。 关键词:禁忌搜索算法;组合优化;近似算法;邻域搜索 1禁忌搜索算法概述 禁忌搜索算法(Tabu Search)是由美国科罗拉多州大学的Fred Glover教授在1986年左右提出来的,是一个用来跳出局部最优的搜寻方法。在解决最优问题上,一般区分为两种方式:一种是传统的方法,另一种方法则是一些启发式搜索算法。使用传统的方法,我们必须对每一个问题都去设计一套算法,相当不方便,缺乏广泛性,优点在于我们可以证明算法的正确性,我们可以保证找到的答案是最优的;而对于启发式算法,针对不同的问题,我们可以套用同一个架构来寻找答案,在这个过程中,我们只需要设计评价函数以及如何找到下一个可能解的函数等,所以启发式算法的广泛性比较高,但相对在准确度上就不一定能够达到最优,但是在实际问题中启发式算法那有着更广泛的应用。 禁忌搜索是一种亚启发式随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向。 TS是人工智能的一种体现,是局部领域搜索的一种扩展。禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中涉及邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu 1ength)、候选解(candidate)、藐视准则(candidate)等影响禁忌搜索算法性能的关键因素。迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。 2禁忌搜索算法的基本思想 禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索,TS的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。 禁忌搜索是对局部邻域搜索的一种扩展,是一种全局逐步寻求最优算法。局部邻域搜索是基于贪婪思想持续地在当前解的邻域中进行搜索,虽然算法通用易实现,且容易理解,但搜索性能完全依赖于邻域结构和初解,尤其会陷入局部极小而无法保证全局优化型。 禁忌搜索算法中充分体现了集中和扩散两个策略,它的集中策略体现在局部搜索,即从一点出发,在这点的邻域内寻求更好的解,以达到局部最优解而结束,为了跳出局部最优解,扩散策略通过禁忌表的功能来实现。禁忌表中记下已经到达的某些信息,算法通过对禁

各种查找算法性能分析

项目名称:各种查找算法的性能测试 项目成员: 组编号: 完成时间: 目录 前言 (2) 正文 (2) 第一章简介 (2) 1.1顺序查找问题描述 (2) 1.2二分查找问题描述 (2) 第二章算法定义 (2) 2.1顺序查找算法定义 (2) 2.2二分查找算法定义 (3) 第三章测试结果(Testing Results) (5) 3.1 实验结果表 (5) 3.2 散点图记录 (5) 第四章分析和讨论 (6) 4.1顺序查找分析 (6) 4.2二分查找分析 (6) 附录:源代码(基于C语言的) (7) 声明 (13)

前言 查找问题就是在给定的集合(或者是多重集,它允许多个元素具有相同的值)中找寻一个给定的值,我们称之为查找键。 对于查找问题来说,没有一种算法在任何情况下是都是最优的。有些算法速度比其他算法快,但是需要较多的存储空间;有些算法速度非常快,但仅适用于有序数组。查找问题没有稳定性的问题,但会发生其他的问题(动态查找表)。 在数据结构课程中,我们已经学过了几种查找算法,比较有代表性的有顺序查找(蛮力查找),二分查找(采用分治技术),哈希查找(理论上来讲是最好的查找方法)。 第一章:简介(Introduction) 1.1顺序查找问题描述: 顺序查找从表中最后一个记录开始,逐个进行记录的关键字和给定值的比较,若某个记录的关键字和给定值比较相等,则查找成功,找到所查记录;反之,若直至第一个记录,其关键字和给定值比较都不等,则表明表中没有所查记录,查找不成功。 1.2二分查找问题描述: (1)分析掌握折半查找算法思想,在此基础上,设计出递归算法和循环结构两种实现方法的折半查找函数。 (2)编写程序实现:在保存于数组a[i]有序数据元素中查找数据元素k是否存在。数元素k要包含两种情况:一种是数据元素k包含在数组中;另一种是数据元素k不包含在数组中 (3)数组中数据元素的有序化既可以初始赋值时实现,也可以设计一个排序函数实现。(4)根据两种方法的实际运行时间,进行两种方法时间效率的分析对比。 第二章:算法定义(Algorithm Specification) 2.1顺序查找 从表的一端向另一端逐个进行记录的关键字和给定值(要查找的元素)的比较,若某个记录的关键字和给定值比较相等,则查找成功,找到所查找记录;反之,若直至第一个记录,其关键

各种查找算法的性能比较测试(顺序查找、二分查找)

算法设计与分析各种查找算法的性能测试

目录 摘要 (3) 第一章:简介(Introduction) (4) 1.1 算法背景 (4) 第二章:算法定义(Algorithm Specification) (4) 2.1 数据结构 (4) 2.2顺序查找法的伪代码 (5) 2.3 二分查找(递归)法的伪代码 (5) 2.4 二分查找(非递归)法的伪代码 (6) 第三章:测试结果(Testing Results) (8) 3.1 测试案例表 (8) 3.2 散点图 (9) 第四章:分析和讨论 (11) 4.1 顺序查找 (11) 4.1.1 基本原理 (11) 4.2.2 时间复杂度分析 (11) 4.2.3优缺点 (11) 4.2.4该进的方法 (12) 4.2 二分查找(递归与非递归) (12) 4.2.1 基本原理 (12) 4.2.2 时间复杂度分析 (13) 4.2.3优缺点 (13) 4.2.4 改进的方法 (13) 附录:源代码(基于C语言的) (15) 声明 ................................................................................................................ 错误!未定义书签。

摘要 在计算机许多应用领域中,查找操作都是十分重要的研究技术。查找效率的好坏直接影响应用软件的性能,而查找算法又分静态查找和动态查找。 我们设置待查找表的元素为整数,用不同的测试数据做测试比较,长度取固定的三种,对象由随机数生成,无需人工干预来选择或者输入数据。比较的指标为关键字的查找次数。经过比较可以看到,当规模不断增加时,各种算法之间的差别是很大的。这三种查找方法中,顺序查找是一次从序列开始从头到尾逐个检查,是最简单的查找方法,但比较次数最多,虽说二分查找的效率比顺序查找高,但二分查找只适用于有序表,且限于顺序存储结构。 关键字:顺序查找、二分查找(递归与非递归)

实验一 二分搜索算法

实验一二分搜索算法 E08620311-方凯-08计算机(3)班 一.实验目的: 1、理解分治算法的概念和基本要素; 2、理解递归的概念; 3、掌握设计有效算法的分治策略; 4、通过二分搜索技术学习分治策略设计技巧; 二.实验内容及要求: 1.使用二分搜索算法查找任意N个有序数列中的指定元素。 2.通过上机实验进行算法实现。 3.保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告。 4.至少使用两种方法进行编程。 二.实验原理: 二分搜索算法也称为折半查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。 【基本思想】将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x 作比较,如果x=a[n/2]则找到x,算法终止。如果xa[n/2],则我们只要在数组a的右半部继续搜索x。 二分搜索法的应用极其广泛,而且它的思想易于理解。第一个二分搜索算法早在1946年就出现了,但是第一个完全正确的二分搜索算法直到1962年才出现。Bentley在他的著作《Writing Correct Programs》中写道,90%的计算机专家不能在2小时内写出完全正确的二分搜索算法。问题的关键在于准确地制定各次查找范围的边界以及终止条件的确定,正确地归纳奇偶数的各种情况,其实整理后可以发现它的具体算法是很直观的。 方法一:直接查找; 方法二:递归查找; 方法三:迭代查找;

四.程序代码: 方法1:直接查找 int BinarySearch(int a[],int x,int n){ int left=0;int right=n-1; while(left<=right){ int middle=(left+right)/2; if(x==a[middle])return middle; if(x>a[middle])left=middle+1; else right=middle-1; } return-1; } 方法2:递归查找 int BinarySearchDG(int a[],int x,int left,int right){ int middle=(left+right)/2; if(left<=right){ if(x==a[middle])return middle; if(x>a[middle])return BinarySearchDG(a,x,middle+1,right); else return BinarySearchDG(a,x,left,middle-1); } return-1; }

斐波那契法 一维搜索方法

短后的区间不大于区间[0,10]的5% 。 解:由题意=δ5%,由斐波那契数列δ1 ≥n F ,则n=7, 00=a ,100=b 1t =0b )(0076a b F F --=2180 , 21 130)(00760'1=-+=a b F F a t , 将1t 和'1t 代入函数,比较大小有)()('11t f t f < 则有001==a a ,21801'2==t t ,21130'11==t b ,21 50)(116512=--=a b F F b t , 将2t 和'2t 代入函数,比较大小有)()('22t f t f < , 则有012==a a ,21502'3==t t ,2180'22==t b ,21 30)(225423=--=a b F F b t , 将3t 和'3t 代入函数,比较大小有)()('33t f t f >, 则有213033==t a ,2150'34==t t ,218023==b b ,21 60)(33433'4=-+=a b F F a t , 将4t 和'4t 代入函数,比较大小有)()('44t f t f >, 则有215044==t a ,2160'45==t t ,218034==b b ,21 70)(44324'5=-+=a b F F a t , 将5t 和'5t 代入函数,比较大小有)()('55t f t f >, 则有216055= =t a ,2170'56==t t ,218045==b b , 则令105 351)21602180()01.05.0(2160))((55215'6=-?++=-++=a b F F a t ε, 将6t 和'6t 代入函数,比较大小有)()('66t f t f <, 则216056==a a ,105351'66==t b ,区间为:?? ????105351,2160 所以选择6t 为极小点,=)(6t f 89.6)2170( -=f 。

禁忌搜索算法评述(一)

禁忌搜索算法评述(一) 摘要:工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。 关键词:禁忌搜索算法;优化;禁忌表;启发式;智能算法 1引言 工程领域内存在大量的优化问题,对于优化算法的研究一直是计算机领域内的一个热点问题。优化算法主要分为启发式算法和智能随机算法。启发式算法依赖对问题性质的认识,属于局部优化算法。智能随机算法不依赖问题的性质,按一定规则搜索解空间,直到搜索到近似优解或最优解,属于全局优化算法,其代表有遗传算法、模拟退火算法、粒子群算法、禁忌搜索算法等。禁忌搜索算法(TabuSearch,TS)最早是由Glover在1986年提出,它的实质是对局部邻域搜索的一种拓展。TS算法通过模拟人类智能的记忆机制,采用禁忌策略限制搜索过程陷入局部最优来避免迂回搜索。同时引入特赦(破禁)准则来释放一些被禁忌的优良状态,以保证搜索过程的有效性和多样性。TS算法是一种具有不同于遗传和模拟退火等算法特点的智能随机算法,可以克服搜索过程易于早熟收敛的缺陷而达到全局优化1]。 迄今为止,TS算法已经广泛应用于组合优化、机器学习、生产调度、函数优化、电路设计、路由优化、投资分析和神经网络等领域,并显示出极好的研究前景2~9,11~15]。目前关于TS 的研究主要分为对TS算法过程和关键步骤的改进,用TS改进已有优化算法和应用TS相关算法求解工程优化问题三个方面。 禁忌搜索提出了一种基于智能记忆的框架,在实际实现过程中可以根据问题的性质做有针对性的设计,本文在给出禁忌搜索基本流程的基础上,对如何设计算法中的关键步骤进行了有益的总结和分析。 2禁忌搜索算法的基本流程 TS算法一般流程描述1]: (1)设定算法参数,产生初始解x,置空禁忌表。 (2)判断是否满足终止条件?若是,则结束,并输出结果;否则,继续以下步骤。 (3)利用当前解x的邻域结构产生邻域解,并从中确定若干候选解。 (4)对候选解判断是否满足藐视准则?若成立,则用满足藐视准则的最佳状态y替代x成为新的当前解,并用y对应的禁忌对象替换最早进入禁忌表的禁忌对象,同时用y替换“bestsofar”状态,然后转步骤(6);否则,继续以下步骤。 (5)判断候选解对应的各对象的禁忌情况,选择候选解集中非禁忌对象对应的最佳状态为新的当前解,同时用与之对应的禁忌对象替换最早进入禁忌表的禁忌对象。 (6)转步骤(2)。 算法可用图1所示的流程图更为直观的描述。 3禁忌搜索算法中的关键设计 3.1编码及初始解的构造 禁忌搜索算法首先要对待求解的问题进行抽象,分析问题解的形式以形成编码。禁忌搜索的过程就是在解的编码空间里找出代表最优解或近似优解的编码串。编码串的设计方式有多种策略,主要根据待解问题的特征而定。二进制编码将问题的解用一个二进制串来表示2],十进制编码将问题的解用一个十进制串来表示3],实数编码将问题的解用一个实数来表示4],在某些组合优化问题中,还经常使用混合编码5]、0-1矩阵编码等。 禁忌搜索对初始解的依赖较大,好的初始解往往会提高最终的优化效果。初始解的构造可以

搜索算法效率比较

数据结构课程设计报告 搜索算法效率比较的设计 专业 计算机科学与技术 学生姓名 Xxxxx 班级 Xxxx 学 号 Xxxx 指导教师 Xxx 完成日期 2016年6月16日

目录 1.设计题目 (3) 2.设计目的及要求 (3) 2.1.目的 (3) 2.2.要求 (3) 3.设计内容 (3) 4.设计分析 (4) 4.1.空间复杂度 (5) 4.2非递归线性搜索设计 (5) 4.3递归线性搜索 (5) 4.4二叉搜索设计 (6) 5.设计实践 (7) 5.1非递归线性搜索模块设计 (7) 5.2递归线性搜索模块设计 (7) 5.3二叉搜索模块设计 (7) 5.4.主程序模块设计 (8) 6测试方法 (10) 7.程序运行效果 (11) 8.设计心得 (12)

搜索算法效率比较的设计 1.设计题目 给定一个已排序的由N个整数组成的数列{0,1,2,3,……,N-1},在该队列中查找指定整数,并观察不同算法的运行时间。考虑两类算法:一个是线性搜索,从某个方向依次扫描数列中各个元素;另一个是二叉搜索法。要完成的任务是:分别用递归和非递归实现线性搜索;分析最坏情况下,两个线性搜索算法和二叉搜索算法的复杂度;测量并比较这三个方法在N=100,500,1000,2000,4000,6000,8000,10000时的性能。 2.设计目的及要求 2.1.目的 (1)需要同学达到熟练掌握C语言的基本知识和技能; (2)基本掌握面向对象程序设计的基本思路和方法; (3)能够利用所学的基本知识和技能,解决简单的程序设计问题;2.2.要求 学生必须仔细阅读数据结构,认真主动完成课设的要求,有问题及时主动通过各种方式与教师联系沟通;要发挥自主学习的能力,充分利用时间,安排好课设的时间计划,并在课设过程中不断检测自己计划完成情况;独立思考,课程设计中各任务的设计和调试哦要求独立完成,遇到问题可以讨论,可以通过同学间相互讨论而解决。 3.设计内容 任何程序基本上都是要用特定的算法来实现的。算法性能的好坏,直接决定了所实现程序性能的优劣。此次对有关算法设计的基本知识作了简单的介绍。针对静态查找问题,以搜索算法的不同实现,并对非递归线性搜索算法、递归线性搜索算法和二叉搜索算法这三种方法进行了比较和分析。 算法是为求解一个问题需要遵循的、被清楚地指定的简单指令的集合。解决一个问题,可能存在一种以上的算法,当这些算法都能正确解决问题时,算法需要的资源量将成为衡量算法优良度的重要度量,列如算法所需的时间、空间等。算法是对问题求解过程的一种描述,是为解决一个问题或一类问题给出的一个正确的,有限长的操作序列。 由于查找一个数的过程,无论运用哪种算法对于电脑来说速度都是非常快的,都爱1ms之内,无法用计时函数测试出来。所以为了能够直观准确地表示出各个算法间的差异,此程序用了循环查找的方法,具体的思想是:先随机生成3000

算法设计与分析复习题目及答案 (3)

分治法 1、二分搜索算法是利用(分治策略)实现的算法。 9. 实现循环赛日程表利用的算法是(分治策略) 27、Strassen矩阵乘法是利用(分治策略)实现的算法。 34.实现合并排序利用的算法是(分治策略)。 实现大整数的乘法是利用的算法(分治策略)。 17.实现棋盘覆盖算法利用的算法是(分治法)。 29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。 不可以使用分治法求解的是(0/1背包问题)。 动态规划 下列不是动态规划算法基本步骤的是(构造最优解) 下列是动态规划算法基本要素的是(子问题重叠性质)。 下列算法中通常以自底向上的方式求解最优解的是(动态规划法) 备忘录方法是那种算法的变形。(动态规划法) 最长公共子序列算法利用的算法是(动态规划法)。 矩阵连乘问题的算法可由(动态规划算法B)设计实现。 实现最大子段和利用的算法是(动态规划法)。 贪心算法 能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题, 不能解决的问题:N皇后问题,0/1背包问题 是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。 回溯法 回溯法解旅行售货员问题时的解空间树是(排列树)。 剪枝函数是回溯法中为避免无效搜索采取的策略 回溯法的效率不依赖于下列哪些因素(确定解空间的时间)

分支限界法 最大效益优先是(分支界限法)的一搜索方式。 分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。 分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆) 优先队列式分支限界法选取扩展结点的原则是(结点的优先级) 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法). 从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式. (1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。 (2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。 (最优子结构性质)是贪心算法与动态规划算法的共同点。 贪心算法与动态规划算法的主要区别是(贪心选择性质)。 回溯算法和分支限界法的问题的解空间树不会是( 无序树). 14.哈弗曼编码的贪心算法所需的计算时间为( B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 21、下面关于NP问题说法正确的是(B ) A NP问题都是不可能解决的问题 B P类问题包含在NP类问题中 C NP完全问题是P类问题的子集 D NP类问题包含在P类问题中 40、背包问题的贪心算法所需的计算时间为( B )

二分查找算法详解

二分查找算法详解 二分查找算法,是一种在有序数组中查找某一特定元素的搜索算法。 注意两点: (1)有序:查找之前元素必须是有序的,可以是数字值有序,也可以是字典序。为什么必须有序呢?如果部分有序或循环有序可以吗? (2)数组:所有逻辑相邻的元素在物理存储上也是相邻的,确保可以随机存取。 算法思想: 搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。 这里我们可以看到: (1) 如果查找值和中间值不相等的时候,我们可以确保可以下次的搜索范围可以缩小一半,正是由于所有元素都是有序的这一先决条件 (2) 我们每次查找的范围都是理应包含查找值的区间,当搜索停止时,如果仍未查找到,那么此时的搜索位置就应该是查找值应该处于的位置,只是该值不在数组中而已算法实现及各种变形: 1. 非降序数组A, 查找任一个值==val的元素,若找到则返回下标位置,若未找到则返回-1 2. 非降序数组A, 查找第一个值==val的元素,若找到则返回下标位置,若未找到则返回-1 (类似:查找数组中元素最后一个小于val 值的位置) 3. 非降序数组A, 查找最后一个值==val的元素,若找到则返回下标位置,若未找到则返回-1 (类似:查找数组中元素第一个大于val 值的位置) 4. 非降序数组A, 查找任一值为val的元素,保证插入该元素后数组仍然有序,返回可以插入的任一位置 5. 非降序数组A, 查找任一值为val的元素,保证插入该元素后数组仍然有序,返回可以插入的第一个位置 6. 非降序数组A, 查找任一值为val的元素,保证插入该元素后数组仍然有序,返回可以插入的最后一个位置 7. 非降序数组A, 查找任一个值==val的元素,若找到则返回一组下标区间(该区间所有值==val),若未找到则返回-1 8. 非降序字符串数组A, 查找任一个值==val的元素,若找到则返回下标位置,若未找到则返回-1(类似:未找到时返回应该插入点) 9. 循环有序数组中查找== val 的元素,若找到则返回下标位置,若未找到则返回-1 1. 非降序数组A, 查找任一个值==val的元素,若找到则返回下标位置,若未找到则返回-1 1 int binary_search(int* a, int len, int val) 2 { 3 assert(a != NULL && len > 0); 4 int low = 0; 5 int high = len - 1;

各种查找算法的性能测试

算法设计与分析实验名称:各种查找算法的性能测试 作者姓名:xxx xxx 完成日期:2013年9月9日星期日 组的编号:28

目录 第一章:简介 (1) 第二章:算法规范 (2) 数据结构 (2) 伪代码 (3) 第三章:算法测试 (4) 顺序查找结果 (4) 二分查找结果 (5) 第四章:分析讨论 (6) 算法分析 (6) 时间复杂度分析 (6) 附录 (7) 声明 (7)

第一章:简介 问题的描述: 查找问题就是在给定的集合(或者是多重集,它允许多个元素具有相同的值)中找寻一个给定的值,我们称之为查找键。 对于查找问题来说,没有一种算法在任何情况下是都是最优的。有些算法速度比其他算法快,但是需要较多的存储空间;有些算法速度非常快,但仅适用于有序数组。查找问题没有稳定性的问题,但会发生其他的问题(动态查找表)。 在数据结构课程中,我们已经学过了几种查找算法,比较有代表性的有顺序查找(蛮力查找),二分查找(递归,非递归)。 利用随机函数产生N个随机整数,利用顺序查找,二分法查找(递归,非递归),并统计每一种查找所消耗的时间。把查找花的时间排在表格里面。

第二章:算法规范 数据结构: 在所有的查找策略中,我们用了数组,函数作为主要的数据结构。因为我们只是测试了不查找所需要的时间,也即分析了顺序查找,二分法查找(递归,非递归)的性能,没涉及其他复杂的操作,所以在这个项目中用了静态实现数组就可以。 伪代码如下所示 顺序查找: 1.int SeqSearch1(int r[ ], i nt n, int k) 3.1.while (i>0 && r[i]!=k); 3.2.循环 i--; 3.3.返回是否找到要查找的元素k; 二分法查找: 一.递归 1int search(int a[],int n,int k) 1.1.Low=0,High=n-1; Mid=(Low+High)/2; 1.2. if ((Low>=High)||(n==-1)) return -1

禁忌搜索和应用

目录 一、摘要 (2) 二、禁忌搜索简介 (2) 三、禁忌搜索的应用 (2) 1、现实情况 (2) 2、车辆路径问题的描述 (3) 3、算法思路 (3) 4、具体步骤 (3) 5、程序设计简介 (3) 6、算例分析 (4) 四、禁忌搜索算法的评述和展望 (4) 五、参考文献 (5)

禁忌搜索及应用 一、摘要 工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。 二、禁忌搜索简介 禁忌搜索(Tabu Search或Taboo Search,简称TS)的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。相对于模拟退火和遗传算法,TS是又一种搜索特点不同的meta-heuristic算法。 迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。 禁忌搜索是人工智能的一种体现,是局部领域搜索的一种扩展。禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索。禁忌搜索涉及到邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu length)、候选解(candidate)、藐视准则(aspiration criterion)等概念。 三、禁忌搜索的应用 禁忌搜索应用的领域多种多样,下面我们简单的介绍下基于禁忌搜索算法的车辆路径选择。 1、现实情况 物流配送过程的成本构成中,运输成本占到52%之多,如何安排运输车辆的行驶路径,使得配送车辆依照最短行驶路径或最短时间费用,在满足服务时间限制、车辆容量限制、行驶里程限制等约束条件下,依次服务于每个客户后返回起点,实现总运输成本的最小化,车辆路径问题正是基于这一需求而产生的。求解车辆路径问题(vehicle routing problem简记vrp)的方法分为精确算法与启发式算法,精确算法随问题规模的增大,时间复杂度与空间复杂度呈指数增长,且vrp问题属于np-hard问题,求解比较困难,因此启发式算法成为求解vrp问题的主要方法。禁忌搜索算法是启发式算法的一种,为求解vrp提供了新的工具。本文通过一种客户直接排列的解的表示方法,设计了一种求解车辆路径问题的新的禁忌搜索算法。 因此研究车辆路径问题,就是要研究如何安排运输车辆的行驶路线,使运输车辆依照最

搜索算法比较和优化

深度优先搜索和广度优先搜索的比较和优化 第一节比较 一、深度优先搜索的特点是: 1、从上面几个实例看出,可以用深度优先搜索的方法处理的题目是各种各样的。有的搜索深度是已知和固定的,如例题2-4,2-5,2-6;有的是未知的,如例题2-7、例题2-8;有的搜索深度是有限制的,但达到目标的深度是不定的。 但也看到,无论问题的内容和性质以及求解要求如何不同,它们的程序结构都是相同的,即都是深度优先算法(一)和深度优先算法(二)中描述的算法结构,不相同的仅仅是存储结点数据结构和产生规则以及输出要求。 2、深度优先搜索法有递归以及非递归两种设计方法。一般的,当搜索深度较小、问题递归方式比较明显时,用递归方法设计好,它可以使得程序结构更简捷易懂。当搜索深度较大时,如例题2-5、2-6。当数据量较大时,由于系统堆栈容量的限制,递归容易产生溢出,用非递归方法设计比较好。 3、深度优先搜索方法有广义和狭义两种理解。广义的理解是,只要最新产生的结点(即深度最大的结点)先进行扩展的方法,就称为深度优先搜索方法。在这种理解情况下,深度优先搜索算法有全部保留和不全部保留产生的结点的两种情况。而狭义的理解是,仅仅只保留全部产生结点的算法。本书取前一种广义的理解。不保留全部结点的算法属于一般的回溯算法范畴。保留全部结点的算法,实际上是在数据库中产生一个结点之间的搜索树,因此也属于图搜索算法的范畴。 4、不保留全部结点的深度优先搜索法,由于把扩展出的结点从数据库中弹出删除,这样,一般在数据库中存储的结点数就是深度值,因此它占用的空间较少,所以,当搜索树的结点较多,用其他方法易产生内存溢出时,深度优先搜索不失为一种有效的算法。 5、从输出结果可看出,深度优先搜索找到的第一个解并不一定是最优解。例如例题2-8得最优解为13,但第一个解却是17。 如果要求出最优解的话,一种方法将是后面要介绍的动态规划法,另一种方法是修改原算法:把原输出过程的地方改为记录过程,即记录达到当前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优的,等全部搜索完成后,才把保留的最优解输出。 二、广度优先搜索法的显著特点是:

二分搜索实验报告

二分搜索 一.实验目的: 1.理解算法设计的基本步骤及各步的主要内容、基本要求; 2.加深对分治设计方法基本思想的理解,并利用其解决现实生活中的问题; 3.通过本次实验初步掌握将算法转化为计算机上机程序的方法。 二.实验内容: 1.编写实现算法:给定n个元素,在这n个元素中找到值为key的元素。 2.将输入的数据存储到指定的文本文件中,而输出数据存放到另一个文本文件中,包括结果和具体的运行时间。 3.对实验结果进行分析。 三.实验操作: 1.二分搜索的思想: 首先,假设表中的元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复上述过程,知道找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。 由于二分搜索是基于有序序列的一种搜索算法,故将输入的一组数据首先进行排序,考虑到输入数据可能有多个,采用快速排或者是合并排序,其中与冒泡做了对比。 冒泡排序算法: void sort(int List[],int length){ int change; for(int i=0;iList[j]){ change=List[i]; List[i]=List[j]; List[j]=change; } } } 快速排序算法: void Qsort(int List[],int low,int high){ if(low>=high) return; int first=low; int last=high; int key=List[first]; while(first=key) --last; List[first]=List[last]; while(first

一维数组的常用算法源代码

1.数组元素逆置 #include #include int main() { int a[10],t,i,j; //随机生成数组元素,并显示 printf("逆置前:"); for(i=0;i<10;i++) { a[i]= rand()%100; printf("%4d",a[i]); } printf("\n"); //数组元素逆置,即对称位置交换for(i=0,j=9;i

2.静态查找 #include #include int main() { int a[10],t,i,j; //随机生成数组元素,并显示 printf("数组元素:"); for(i=0;i<10;i++) { a[i]= rand()%100; printf("%4d",a[i]); } printf("\n"); //输入查找的数 printf("请输入要查找的数:"); scanf("%d", &t); //静态查找:从前往后依次遍历 for(i=0;i<10;i++) if(a[i]==t) break;//找到并退出//输出查找结果 if(i<10)

printf("%d在数组a[%d]中。\n",t,i); else printf("%d不在a数组中。\n",t); } 3.二分查找:前提数组有序 #include #include void sort(int a[], int n) { int i,j, t; for(i=0;ia[j+1]) {t=a[j]; a[j]=a[j+1]; a[j+1]=t;} } int main() { int a[10],t,i,left,right,mid; //随机生成数组元素 printf("数组元素:"); for(i=0;i<10;i++)

实验十二 实现顺序和二分查找算法[管理资料]

实验十二实现顺序和二分查找算法[管理资料] 实验十二实现顺序和二分查找算法姓名:张就班级:09计算机一班学 号:2009111111 一、实验目的 掌握顺序和二分查找算法的基本思想及其实现方法。 二、实验内容 对给定的任意数组(设其长度为n),分别用顺序和二分查找方法在此数组中查找与给定值k相等的元素。三、算法思想与算法描述 1、顺序查找,在顺序表R[0..n-1]中查找关键字为k的记录,成功时返回找到的记录位置,失败时返回-1,具体的算法如下所示: int SeqSearch(SeqList R,int n,KeyType k) { int i=0; while(i=n) return -1; else { printf("%d",R[i].key);

return i; } } 2、二分查找,在有序表R[0..n-1]中进行二分查找,成功时返回记录 的位置,失败时返回-1,具体的算法如下: int BinSearch(SeqList R,int n,KeyType k) { int low=0,high=n-1,mid,count=0; while(low<=high) { mid=(low+high)/2; printf("第%d次查找:在[ %d ,%d]中找到元素R[%d]:%d\n ",++count,low,high,mid,R[mid].key); if(R[mid].key==k) return mid; if(R[mid].key>k) high=mid-1; else low=mid+1; } return -1; } 四、实验步骤与算法实现 #include #define MAXL 100

实验八各种查找算法性能比较

《数据结构》课程设计 课程设计题目: 各种查找算法性能比较 姓名: 宋京 院系: 计算机学院 专业:软件工程 年级: 12级 学号: E01214018 指导教师: 王爱平 2014年 11月2日

目录 1课程设计的目的 (3) 2 需求分析 (3) 3.1概要设计 (3) 3.2详细设计 (4) 3.3源程序 (4) 3.3调试分析 (8) 3.4运行结果 (9) 4 小结 (9) 5 参考文献 (9)

1.课程设计的目的 (1) 熟练使用 C 语言编写程序,解决实际问题; (2) 了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; (3) 初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; (4) 提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 2.需求分析 程序通过使用不同查找算法在2000个随机数中查找一个数,比较不同算法的查找时间,从而得出算法性能。使用的算法有二分查找算法、二叉查找算法、散列查找算法。 3.1概要设计 使用数组来存放产生的2000个随机数并随机产生一个需查找的随机数,使用静态查找、动态查找、散列查找查找算法的函数

3.2详细设计 3.3源程序 #include #include #include using namespace std; template int Find_s(T data[], int n,T key,int &num) //顺序查找(从n维数组中查找key,并且给出比较的次数icmp {num=0; for(int i=0;i

常用一维搜索算法

无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。 这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。 (直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。 间接法:又称解析法,是应用数学极值理论的解析方法。首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。) 在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。 一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。 一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。 在多变量函数的最优化中,迭代格式X k+1=X k+a k d k其关键就是构造搜索方向d k和步长因子a k 设Φ(a)=f(x k+ad k) 这样从凡出发,沿搜索方向d k,确定步长因子a k,使Φ(a)<Φ(0)的问题就是关于步长因子a的一维搜索问题。其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。 一维搜索通常分为精确的和不精确的两类。如果求得a k使目标函数沿方向d k达到 极小,即使得f (x k+a k d k)=min f (x k+ ad k) ( a>0) 则称这样的一维搜索为最优一维搜索,或精确一维搜索,a k叫最优步长因子; 如果选取a k使目标函数f得到可接受的下降量,即使得下降量f (x k)一f (x k+a k d k)>0是用 户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维 搜索。 由于在实际计算中,一般做不到精确的一维搜索,实际上也没有必要做到这一点,因为精确的

算法实验报告二分搜索算法

算法程序与设计预习实验报告 一、二分搜索算法: 代码: #include int BinarySearch(int a[], int x, int n){ int left = 0; int right = x - 1; while(left<= right){ int middle = (left + right)/2; if(a[middle]n) right = middle - 1; else return middle; } return -1; } main(){ int i, serch, fanhui; int a[10]={-24,-7,0,5,13,29,44,58,72,99}; for(i=0; i<10; i++) printf("%d\t", a[i]); printf("\n请输入要找的数:"); scanf("%d",&serch); fanhui = BinarySearch(a,10,serch); if(-1 == fanhui) printf("查找失败\n"); else printf ("查找成功\n"); } 运行结果:

二、合并排序: 代码: #include void Show(int c[], int n) { int i; for ( i=0; i

} void Merge(int d[], int l, int m, int r) { int e[10]={0}; for (int i=l,int j=m+1,int k=0;k<=r-l;k++) { if (i==m+1) { e[k]=d[j++]; continue; } if (j==r+1) { e[k]=d[i++]; continue; } if (d[i]

相关文档
相关文档 最新文档