文档库 最新最全的文档下载
当前位置:文档库 › 转动机械及电动机振动值规定

转动机械及电动机振动值规定

转动机械及电动机振动值规定

1、转动机械的振幅不得超过下表数值:

2、转轴的轴向串动不得超过2-4mm。

3、电动机运行时各向振动,不得超过下表规定值:

4、电动机转子轴向窜动不应超过下列数值:

(1)、合金轴瓦不应超过2~4mm。

(2)、滚动轴承不应超过0.05mm。

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

旋转机械振动的基本特性 (DEMO)

旋转机械振动的基本特性 一、转子的振动基本特性 大多数情况下,旋转机械的转子轴心线是水平的,转子的两个支承点在同一水平线上。设转子上的圆盘位于转子两支点的中央,当转子静止时.由于圆盘的重量使转子轴弯曲变形产生静挠度,即静变形。此时,由于静变形较小,对转子运动的影响不显著,可以忽略不计,即认为圆盘的几何中心O′与轴线AB上O点相重合,如图7—l所示。转子开始转动后,由于离心力的作用,转子产生动挠度。此时,转子有两种运动:一种是转子的自身转,即圆盘绕其轴线AO′B的转动;另一种是弓形转动,即弯曲的轴心线AO′B与轴承联线AOB组成的平面绕AB轴线的转动。 转子的涡动方向与转子的转动角速度ω同向时,称为正进动;与ω反方向时,称为反进动。 二、临界转速及其影响因素 随着机器转动速度的逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越的速度屏障,即所谓临界转速。Jeffcott用—个对

称的单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来。换句话说,转子在高速区存在着一个稳定的、振幅较小的、可以工作的区域。从此,旋转机械的设计、运行进入了一个新时期,效率高、重量轻的高速转子日益普遍。需要说明的是,从严格意义上讲,临界转速的值并不等于转子的固有频率,而且在临界转速时发生的剧烈振动与共振是不同的物理现象。 在正常运转的情况下: (1)ω<n ω时, 振幅A>0,O′点和质心G 点在O 点的同一侧,如图7—3(a)所示; (2)ω>n ω时,A<0,但A>e,G 在O 和O′点之间,如图 7—3(c)所示; 当ω≥n ω时,A e -≈或O O′≈-O′G,圆盘的质心G 近似 地落在固定点O,振动小。转动反而比较平稳。这种情况称为“自动对心”。 (3)当ω=n ω时,A ∞→,是共振情况。实际上由于存在阻尼,振幅A 不是无穷大而是较大的有限值,转轴的振动非常剧烈,以致有可 能断裂。n ω称为转轴的“临界角速度” ;与其对应的每分钟的转数则称为“临阶转速”。 如果机器的工作转速小于临界转速,则称为刚性轴;如果工作转速高于临界转速,则称为柔性轴。由上面分析可知,只有柔性轴的旋转机器运转时较为平稳 但在启动过程中,要经过临界转速。如果缓

机械设备振动标准.(精选)

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 ?监测点选择、图形标注、现场标注。 ?振动监测参数的选择:做一些调整:长度、频率范围 ?状态判断标准和报警的设置 1 设备振动测点的选择与标注 1.1监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为V,水平方向标注为H,轴线方向标注为A,见图6-1。 图6-1 监测点选择

图 6-2在机器壳体上测量振动时,振动传感器定位的示意图 1.2 振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。 图6-3 振动监测点的标注 图6-4 振动监测点的标注

图6-5 振动监测点的标注 (2)立式机器 遵循与卧式机器同样的约定。 1.3 现场机器测点标注方法 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择 对于超低频振动,建议测量振动位移和速度;对于低频振动,建议测量振动

机械设备振动标准

机械设备振动标准 1 设备振动测点的选择与标注 1.1 监测点选择 测点最好选在振动能量向弹性基础或系统其他部分2进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。水平方向标注为H,铅垂方向标注为V ,轴线方向标注为A,见图6-1。 图6-1 监测点选择 图6-2 在机器壳体上测量振动时,振动传感器定位的示意图

1.2 振动监测点的标注(1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001 开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3 ~6-5 。 图6-3 振动监测点的标注 图6-4 振动监测点的标注 (2)立式机器遵循与卧式机器同样的约定 1.3 现场机器测点标注方法机壳振动测点的标注可以用油漆标注(最简单的一种方 法),标注大小与传感 器磁座大小相似;也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标

注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径 30mm, 用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7 至14 天;对接 近或高于3000转/ 分的高速旋转设备,应至少每周监测 1 次。 4)对车间级设备监测(指运行人员),监测周期一般可定为每天1 次或每班1 次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期配件;如果实测振动值接近或超过该设备停机值,应及时停机安排检修;如果因生产原因不能停机时,要加强监测,监测周期可缩短为 1 天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择对于超低频振动,建议测量振动位移和速度;对于低频振动, 建议测量振动 速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:(1)设备振动按频率分类。根据振动的频率,设备振动可以分为以下几种:1)超低频振动,振动频率在10Hz 以下。 2)低频振动,振动频率在10Hz 至1000Hz。 3)中高频振动,振动频率在1000Hz至10000Hz。 4)高频振动,振动频率在10000Hz以上。 (2)位移为峰峰值;速度为有效值;加速度为有效值;有时根据需要,速度和加速度还要测量峰值。 3.2 振动监测中的几个“同” 为保证测量结果的可比性,在振动监测中要注意做到以下 几个“同” : 1 )测量仪器同; 2 )测量仪器设置同; 3 )测点位置、方向同; 4 )设备工况同; 5 )背景振动同。并尽量由同一个人测量。 3.3 振动数据采集应严格按监测路径和监测周期对设备进行定期监测。采集设备振动数据时,通常还需要记录设备的其他过程参数,如温度、压力和流量等,以便于比较和趋

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

石油化工旋转机械振动标准

第三章.石油化工旋转机械振动标准 (SHS01003-2004) 1总则 1.1主题内容与适用范围 1.1.1本标准规定了石油化工旋转机械振动评定的现场测量方法(包括测量参数、测量仪器、测点布置、测试技术要求、机器分类等)及评定准则。石油化工旋转机械振动分析的现场测量方法应满足本标准的规定但不仅限于此。 1.1.2本标准适用的设备包括电动机、发电机、蒸汽轮机、烟气轮机、燃气轮机、离心压缩机、离心泵和风机等类旋转机械。 按照本标准规定的方法进行测试得到的振动数据,可作为设备状态评定和设备验收的依据。经买卖双方协商认可,亦可采用制造厂标准或其他标准。 1.1.3本标准不适用于主要工作部件为往复运动的原动机及其传动装置。 本标准也不适用于振动环境中的旋转机械的振动测量。振动环境是指环境传输的振动值大于运行振动值1/3的情况。 1.1.4未能纳入本标准范围的其他旋转机械,暂按设备出厂标准进行检验和运行。 1.2编写修订依据 GB/T 6075.1-1999 在非旋转部件上测量和评价机器的机械振动第1部分:总则 GB/T 6075.3-2001 在非旋转部件上测量和评价机器的机械振动第3部分:额定功率大于15kw、额定转速在120~15000r/min之间的现场测量的工业机器 GB 11348.1-1999 旋转机械转轴径向振动的测量和评定第一部分:总则 1.3本标准提供两种振动评定方法,即机壳表面振动及轴振动 的评定方法。 在机壳表面,例如轴承部位测得的振动是机器内部应力或运动状态的一种反映。现场应用的多数机泵设备(电动机、各种油泵、水泵等),由

机壳表面测得的振动速度,可为实际遇到的大多数情况提供与实践经验相一致的可信评定。 汽轮机、离心压缩机等大型旋转机械(如炼油催化三机、化肥五大机组、乙烯三大机组和空分装置的空压机等)通常含有挠性转子轴系,在固定构件上(如轴承座)测得的振动响应不足以表征机器的运转状态,对这类设备必须测量轴振动,根据实际需要,结合固定构件上的振动情况评定设备的振动状态。 2机壳表面振动 2.1本标准适用于转速为10~200r/s(600~12000r/min)旋转机 械振动烈度的现场测量与评定。 2.2测量参数 本标准规定在机壳表面(例如轴承盖处)测得的、频率在10~1000Hz 范围内的振动速度的均方根(Vrms)作为表征机械振动状态的测量参数,在规定点和规定的测量方向上测得的最大值作为机器的振动烈度。 2.3测量点的布置 测点一般布置在每一主轴承或主轴承座上,并在径向和轴向两个方向上进行测量,如图1所示。对于立式或倾斜安装的机器,测量点应布置在能得出最大振动读数的位置或规定的位置上,并将测点位置和测量值一同记录。测点位置应固定,一般应作明显标记。机器护罩、盖板等零件不适宜作测点。 2.4测量仪器 2.4.1一般采用由传感器、滤波放大器、指示器和电源装置等组成的测量仪表。允许采用能取得同样结果的其他仪器。 2.4.2测量登记表滤波放大器的带通频率为10~1000Hz。 2.4.3测量仪表系统误差不超过±10%。 2.4.4传感器振动速度线性响应的最大值至少为感受方向上满量程振动速度的3倍,传感器横向灵敏度应小于10%。 2.4.5直读仪器应能指示或记录振动速度的均方根值。 2.4.6测量登记表尽可能采用电池为电源装置。 2.4.7测量仪表需定期校准,保证它具有可靠的测量结果。 2.5测量技术要求

旋转机械振动故障诊断的图形识别方法研究

编号:AQ-JS-04028 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 旋转机械振动故障诊断的图形 识别方法研究 Research on graphic recognition method for vibration fault diagnosis of rotating machinery

旋转机械振动故障诊断的图形识别 方法研究 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械

故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则采集诊断依据 被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选

小型转动机械振动的判断及处理方法

小型转动机械振动的判断及处理方法 摘要转动机械是火电厂里一种比较常见的设备,此种设备在工作时都存在着不同程度的振动。振动在转动机械工作时是必然存在的。同时,振动有的时候也是火电厂里小型转动机械常见的故障之一。本文通过对小型转动机械的振动分析以及一些实例加以探讨,得出如何根据小型转动机械的振动来判断该设备的故障,以及处理故障的方法。 关键词转动机械;振动;判断;处理 中图分类号TK228 文献标识码 A 文章编号1673-9671-(2012)062-0135-01 小型转动机械在目前的工业上应用十分的广泛,例如火电厂里的风机、磨煤机、排粉机和水(汽)泵等等?。在日常的生产中,这些机械经常会因为振动而无法正常生产或者造成设备损坏,但是振动的原因却是繁复冗杂。加强对这些机械振动的判断,可以防止一些故障的发生,对工业的发展具有十分重要的作用。 1 关于振动的一些基本理论知识 振动,从物理学的角度来看,就是说物体处于往复运动的状态。可以根据不同的角度把振动分为不同的类型,对比分析如表1所示。 2 小型转动机械出现振动的原因 转动机械出现不正常的振动有多方面的原因,根据通常的实践生产探索可以发现,其中振动原因可以归结为以下几点: 1)由于转子轴或者是叶轮的变形或者是磨损,或者是转子的一些构成部件出现松动现象,这统一可以归纳为转子不平衡。 2)由于制造上的一些问题,例如联轴器的损伤或者是在加工、安装的过程中出现较大的误差,最终导致联轴器对中不良现象的发生。 3)新安装的轴承系统出现间隙过大、或者是损伤还有可能是润滑系统出现问题,最终造成轴承系统出现故障。 4)转动机械中那些转动部件和非转动部件之间的摩擦、共振现象的发生。 5)转动机械中的一些部件的刚性太差。 6)转动机械在工作中会出现发热现象,最终造成转动部件出现热膨胀的问题,导致没有多余的地方。 3 小型转动机械振动的判断及处理方法 3.1 关于小型转动机械的一些振动判断方法 一些小型转动机械振动判断方法可以通过查看它们的轴承箱或者机壳,如果在这上面看不出来问题,则可以通过它们上面安装的测温度的设备来判断;也可以通过转动机械在工作时机械内部的音质来判断,看是否有异音或者是音量不正常的现象出现;还可以通过感受设备的振动状况来判断。如果发现异常,就利用振动仪表来测量振动是否超标。 下表分别为国家电力行业轴承振动烈度和振动振幅的标准: 3.2 关于小型转动机械的一些振动的处理方法 1)对于振动的问题出现在制造方面,如果简单就可以直接处理,如果问题严重就返厂处理。 2)对于一些部件的损坏,直接更换部件。 3)关于风机的喘振问题,可以调整偏离其不平衡区域[3]。

转动机械的振动

对一个单一频率的振动,速度峰值是位移峰值的2πf倍,加速度峰值又是速度峰值的2πf倍。当然要注意位移一般用的峰峰值,速度用有效值,加速度用峰值。 还要注意现场测量的位移是轴和轴瓦的相对振动,速度和加速度测的是轴瓦的绝对振动。假设一个振动的速度一定,是5mm/s,大家可以自己算下如果是低频振动,其位移会很大,但加速度很小。高频振动位移则极小,加速度很大。 所以一般在低频区域都用位移,高频区域用加速度,中频用速度。但使用范围也有重叠。位移值体现的是设备在空间上的振动范围,因此取其峰峰值,电力行业一般以位移为评判标准。速度的有效值和振动的能量是成比例的,其大小代表了振动能量的大小,现在出了电力行业基本上都是以速度有效值为标准的。加速度和力成正比,一般用其峰值,其大小表示了振动中最大的冲击力,冲击力大设备更容易疲劳损坏,现在没有加速度的标准。 振动幅值的表达式是正弦函数形式的,位移微分得到速度,速度微分得到加速度。则: 振动位移方程式:Y=Asinωt 振动速度方程式:V= -Aωcosωt 振动速度方程式:G= -Aωωsinωt 如果振动频率为f的话,那么ω=2πf 其中π=3.1415926 如果是单频率f的振动,位移的幅值为A,则速度幅值为2πfA,加速度幅值为2πf*2πfA。但是工程中读取的振动值,位移用峰峰值,速度用有效值,加速度用峰值。所以一个单频率的振动,位移读数是A的话,速度应该是0.707πfA,加速度是2πf*πfA。 但是因为现场是复杂的,不是单一频率的振动,所以位移,速度和加速度读数间通常没有确定的换算关系。但是振动频率比较单一,以一个频率为主时可以利用上述关系近似计算。计算方法举例: s = 峰值偏移振幅,μm⊥ N = 频率min-1 f = 频率Hz Veff = 有效振动速率mm/s s N 0.000074⊥Veff =

旋转设备振动管理实施细则

旋转设备振动管理实施细则 1 目的 1.1 为加强我公司旋转设备振动管理(简称振动管理)工作,保证旋转设备质量及其技术性能,减少设备的损耗,避免损坏设备事故,提高电厂经济效益。根据振动管理标准、《防止电力生产重大事故的二十五项重点要求》和公司运行、检修等有关规程,制定本细则。 1.2 振动管理工作深入到设计、产品选型、出厂验收、基建安装、调试、运行、停用、检修及技术改造等各个环节,达到设备全过程的质量监督与管理。执行汽轮机及辅机的国家标准及各项反事故措施的相关规定;掌握设备的健康变化规律,振动情况,及时发现和消除设备缺陷;分析振动及事故的原因;参与制订反事故措施,始终保持各旋转设备振动值合格。 2 适用范围 本细则规定了振动管理机构的组成、管理职责、管理内容、检查与考核等,适用于公司生产岗位的振动管理。 3 组织机构与职责 3.1 成立在生产副总经理领导下的振动管理工作三级管理体系。振动管理领导小组以生产副总经理为组长、副生产副总经理为副组长,维护部副主任为协管人,在安全监察部设振动管理专责。公司各有关生产部门指定兼职振动管理人员。 3.2 公司振动管理组织机构,详见公司技术监督网络。 3.3 公司振动管理领导小组和协管人主要职责:

3.3.1 组织贯彻执行国家、行业有关振动管理的政策、法规、标准、规程、规范、制度以及本地区有关汽轮机安全技术监督规程、标准、制度、措施等,修定本公司有关振动管理规定的实施细则。 3.3.2 负责召集公司各级振动管理网成员,研究本公司汽轮机及旋转设备的重大缺陷,分析原因、制定对策、监督落实;发生设备重大故障应及时提出技术措施并组织实施。 3.3.3 组织本公司汽轮机及旋转设备振动重大事故的调查、分析、处理。 3.3.4 组织采用和推广成熟、可靠、实用的振动管理技术和故障诊断技术;不断完善检测手段,推广应用振动管理新技术、新工艺。 3.3.5 负责本公司新建、扩建、技改工程设计审查和安装质量监督,加强对新设备的检查验收,严把设备调试等质量关。 3.3.6 认真做好年度振动管理工作总结,年度计划,对运行、检修等生产部室振动管理工作进行检查、监督和考核。 3.4 振动管理专责主要职责: 3.4.1 认真贯彻执行有关规程、制度与反事故措施,按规定做好监管工作,努力提高监管质量,认真分析设备振动状况并且结论明确。 3.4.2 掌握设备振动状况,参加事故分析,提出改进意见和防止措施,并配合运行、检修人员消除缺陷. 3.4.3 负责定期对主、辅机在线监测系统的振动数据筛选、分析记录进行监督检查及意见汇总、落实。对严重影响机组安全运行的故障,应及时上报振动管理协管人及上级领导,并提出分析、处理意见。

旋转设备振动在线监测系统

. 旋转设备振动在线系统 技术方案

合肥优尔电子科技有限公司 2016. 8

一.现状分析 随着我国工业现代化进程的加快,对于连续生产的企业而言,大型旋转设备的稳定运行十分重要,一旦发生故障,都有可能导致整个生产线停机,造成极大的损失。这种损失可达每小时数十万元之巨,特别是生产过程智能控制系统的采用,对关键设备安全运行的依赖程度越来越高,因此,对这些设备进行在线监测就显得非常重要。 各种旋转设备运转过程中各零部件磨损并非相同,随其工作条件而异,但磨损的发展是有其规律的,如果能够对设备受到的这种磨损失效规律进行掌握,设备各零部件的相对运动趋势将反应出振动、温度、声音的连锁效应,使我们提前知晓设备各项功能发生改变的趋势与结果。国网铜陵发电有限公司拥有多种大、中、小型旋转设备,其较多旋转设备占据着生产中的核心地位。 二、系统架构 旋转设备振动在线监测系统,通过无线自组网和现场总线的方式,将从各传感单元采集的数据汇集到管理后台,通过计算机系统处理实现应用服务,计算机系统主要由数据前端设备、服务器机和管理端PC组成。 系统拓扑如下图所示:

无线自组网系统管理后台 旋转设备 工业局网 关联工控系统 TCP/IP 三、振动采集终端 3.1振动传感器 在旋转设备两端轴座(具体部位可根据现场情况确定)设置两组三维(X、Y、Z方向)加速度振动传感器,测量振动位移矢量,监测主轴与轴瓦(轴座)之间的轴向、径向游离与波动情况。 振动传感器利用压电晶体的正压电效应,当压电晶体在一定方向的外力作用下,它的晶体面产生电压,采集电路检测出这个电压值后换算成受力大小F,由公式a=F/m可以得出瞬间加速度大小a,对加速度二次积分得出瞬间位移量,从而得出被测对象振动频谱和振动位移。 主要技术参数: 传感器类型:IEPE

旋转设备振动案例讲解

旋转设备振动案例分析 一、水流作用引起的振动 1、异常情况简介: 7号机1号、2号循环泵并列运行时,2号循环泵电机上机架振动变化不大,1号循环泵电机上机架水平振动最高达到0.17mm;站在电机上机架的平台上有很强的晃动感,1号循环泵电机电流为185A, 2号循环泵电流为225A;两台泵的出口压力均为0.22MPa。 1号循环泵单独运行时的参数:电流225~227A,出口压力0.155MPa(2号泵单独运行出口压力也为0.155MPa),电机上机架水平振动最大0.04mm。 2、振动分析: 当1号循环泵单独运行时,电机电流,电机上机架振动,泵出口压力均处于正常状态。当与2号泵并列运行时,此时1号泵性能不如2号泵性能好,2号泵的出口水压对1号泵产生影响,即水力冲击或1号泵入口产生涡流现象,1号泵的流量大幅度降低,出现1号泵在并列运行时电机上机架水平振动大和电机电流低的现象。 分析原因为1号循环泵的泵体密封环与叶轮密封环由于磨损间隙过大,泵的轴套与导向橡胶轴承间隙由于磨损超标。 3、结论: 3个月后利用机组小修的机会对7号机1号循环泵解体检查,橡胶轴承磨损严重与轴套的总间隙达2.5毫米,叶轮密封环间隙达7毫米。导叶室内积聚有许多细砂。 二、由于处理缺陷工艺程序不正确引起的振动 1、详细经过 2012年8月30日9时20分,1号机汽泵转速5140r/min,机组负荷280MW,点检员现场点检发现汽泵振动增大,振动产生的声音也很大,用听针进行听诊,驱动端声音比非驱动端声音偏大,由于振动太大,没有听到有摩擦的声音,用点检仪测定振动主要以工频振动为主。点检员申请降低汽泵转速运行观察,晚上低负荷时停汽泵检查,当转速降低时,振动的振幅值也在下降。8月31日4时50分停泵检查,解体联轴器罩发现联轴器膜片出现多处对称裂纹,此时由于电泵偶合器润滑油滤网堵塞,润滑油压不断降低,偶合器轴瓦温度在不断上升,切换滤网操作有断油危险,为了防止发生引起停机事故,因此没有进一步检查,更换联轴器膜片后恢复运行。13时15分汽泵冲转运行,转速在4100r/min以下时运行较稳定,振动值不是很大,汽泵继续升速时,汽泵轴瓦的振动值随着转速升高振幅值增加。8月30日晚上更

机械设备振动标准汇总

------------------------------------------精品文档------------------------------------- 机械设备振动标准它是指导我们的状态监测行为的规范 。最终目标:我们要建立起自己的 每台设备的标准(除了新安装的设备) 监测点选择、图形标注、现场标注。? 振动监测参数的选择:做一些调整:长度、频率范围? 状态判断标准和报警的设置? 设备振动测点的选择与标注1 监测点选择1.1对包括回测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方。见图A,6-1,V向的振动。铅垂方向标注为,水平方向标注为H轴线方向标注为

图6-1 监测点选择1 图6-2在机器壳体上测量振动时,振动传感器定位的示意图1.2 振动监测点的标注(1)卧式机器开始,朝着被驱动设这个数字序列从驱动器非驱动侧的轴承座赋予数字001)(齿轮传动备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几。种标注方法见图6-3~6-5 振动监测点的标注图6-3

图6-4 振动监测点的标注2 振动监测点的标注图6-5 )立式机器(2 遵循与卧式机器同样的约定。现场机器测点标注方法1.3 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规,用强度较好的粘接剂粘接,以保证良好的振动传递,直径30mm格为厚度5mm 特性。设备振动监测周期的确定2 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测

旋转机械振动分析基础

第一章旋转机械振动分析基础 汽轮机、发电机、燃气轮机、压缩机、风机、泵等都属于旋转机械,是电力、石化和冶金等行业的关键设备。这些设备出现故障后,大多会带来严重的经济损失。以100MW~600MW汽轮发电机组为例,出现故障后,多启动一次的直接经济代价(仅考虑燃油和厂用电消耗)约5万~30万元。机组容量越大,经济损失越大。 振动在设备故障中占了很大比重,是影响设备安全、稳定运行的重要因素。振动又是设备的“体温计”,直接反映了设备健康状况,是设备安全评估的重要指标。一台机组正常运行时,其振动值和振动变化值都应该比较小。一旦机组振动值变大,或振动变得不稳定,都说明设备出现了一定程度的故障。 振动对机组安全、稳定运行的危害主要表现在: (1)振动过大将会导致轴承乌金疲劳损坏。图1给出了某台机组轴承乌金损坏图片。某厂一台汽轮发电机组#1轴承乌金经常损坏。新轴承换上后,短时只能运行20~30天,长时也只能运行2~3个月。测试发现,轴颈处转轴振动达到280μm。大修中对该转子进行了动平衡,大修后的轴振减小为70μm。稳定运行四年多,乌金没有再次碎裂。某厂一台压缩机振动不稳定,三个月内累计发生阵发性振动8次。虽然每次幅值不大、时间不长,但是揭开轴承检查,经常能发现乌金局部碎裂,有时顶轴油孔甚至被磨损的乌金堵住。 图1 轴承乌金疲劳碎裂 (2)过大振动将会造成通流部分磨损,严重时将会导致大轴弯曲。统计数据表明,汽轮发电机组60%以上的大轴弯曲事故就是由于摩擦引起的。图2给出了某台300MW汽轮机大轴弯曲后实测得到的弯轴曲线[1]。图3给出了某台机组汽封摩擦损坏图片。某厂1台汽轮机冷态启动,在1200rpm下暖机30分钟后,2号轴承振动逐渐增大到40μm。降速到500rpm后再次升速到1200rpm暖机,振动逐渐增大到82μm,振动发散速度越来越快。打闸停机过程中,振动未见减小,反而进一步加大。现场人员发现汽封摩擦冒火星。停机后2号轴颈处大轴晃度达

《机械振动》课程期终考试卷 答案

一、填空题 1、机械振动按不同情况进行分类大致可分成(线性振动)和非线性振动;确定性振动和(随机振动);(自由振动)和强迫振动。 2、周期运动的最简单形式是(简谐运动),它是时间的单一(正弦)或(余弦)函数。 3、单自由度系统无阻尼自由振动的频率只与(质量)和(刚度)有关,与系统受到的激励无关。 4、简谐激励下单自由度系统的响应由(瞬态响应)和(稳态响应)组成。 5、工程上分析随机振动用(数学统计)方法,描述随机过程的最基本的数字特征包括均值、方差、(自相关函数)和(互相关函数)。 6、单位脉冲力激励下,系统的脉冲响应函数和系统的(频响函数)函数是一对傅里叶变换对,和系统的(传递函数)函数是一对拉普拉斯变换对。 2、在离散系统中,弹性元件储存( 势能 ),惯性元件储存(动能),(阻尼)元件耗散能量。 4、叠加原理是分析(线性)系统的基础。 5、系统固有频率主要与系统的(刚度)和(质量)有关,与系统受到的激励无关。 6、系统的脉冲响应函数和(频响函数)函数是一对傅里叶变换对,和(传递函数)函数是一对拉普拉斯变换对。 7、机械振动是指机械或结构在平衡位置附近的(往复弹性)运动。 1.振动基本研究课题中的系统识别是指根据已知的激励和响应特性分析系统的性质,并可得到振动系统的全部参数。(本小题2分) 2.振动按激励情况可分为自由振动和强迫振动两类。(本小题2分)。

3.图(a )所示n 个弹簧串联的等效刚度= k ∑=n i i k 111;图(b )所示n 个粘性阻尼串联的等 效粘性阻尼系数= e C ∑=n i i c 11 1。(本小题3分) (a ) (b ) 题一 3 题图 4.已知简谐振动的物体通过距离静平衡位置为cm x 51=和cm x 102=时的速度分别为 s cm x 201=&和s cm x 82=&,则其振动周期=T 2.97s ;振幅=A 10.69cm 。 (本小题4分) 5.如图(a )所示扭转振动系统,等效为如图(b )所示以转角2?描述系统运动的单自由度系统后,则系统的等效转动惯量=eq I 221I i I +,等效扭转刚度=teq k 221t t k i k +。(本小题4分) 题一 5 题图 解:设两个齿轮的传动比为:2 1 ??=i 系统的动能为:() 2 22212222111212121???&&&I i I I I E T +=+= 系统的势能为:()2 2 22122221112 12121???t t t t k i k k k U +=+= 等效系统的动能为:2 2221?&eq T I E = 等效系统的势能为:2 222 1?eq k U = 令21T T E E =,可得等效转动惯量为:221I i I I eq += 令21U U =,可得等效转动惯量为:221t t teq k i k k += 6.已知某单自由度系统自由振动微分方程为?????=-==+002 )0( , )0(0x x x x x x n &&&& ω,则其自由振动 的振幅为= A 2 02 0??? ? ??+n x x ω&,初相角=?00x x arctg n &ωπ+。(本小题4分)

旋转设备振动在线监测系统

旋转设备振动在线系统 技术方案 合肥优尔电子科技有限公司 2016. 8

一.现状分析 随着我国工业现代化进程的加快,对于连续生产的企业而言,大型旋转设备的稳定运行十分重要,一旦发生故障,都有可能导致整个生产线停机,造成极大的损失。这种损失可达每小时数十万元之巨,特别是生产过程智能控制系统的采用,对关键设备安全运行的依赖程度越来越高,因此,对这些设备进行在线监测就显得非常重要。 各种旋转设备运转过程中各零部件磨损并非相同,随其工作条件而异,但磨损的发展是有其规律的,如果能够对设备受到的这种磨损失效规律进行掌握,设备各零部件的相对运动趋势将反应出振动、温度、声音的连锁效应,使我们提前知晓设备各项功能发生改变的趋势与结果。国网铜陵发电有限公司拥有多种大、中、小型旋转设备,其较多旋转设备占据着生产中的核心地位。 二、系统架构 旋转设备振动在线监测系统,通过无线自组网和现场总线的方式,将从各传感单元采集的数据汇集到管理后台,通过计算机系统处理实现应用服务,计算机系统主要由数据前端设备、服务器机和管理端PC组成。 系统拓扑如下图所示:

无线自组网系统管理后台 旋转设备 工业局网 关联工控系统 TCP/IP 三、振动采集终端 3.1振动传感器 在旋转设备两端轴座(具体部位可根据现场情况确定)设置两组三维(X、Y、Z方向)加速度振动传感器,测量振动位移矢量,监测主轴与轴瓦(轴座)之间的轴向、径向游离与波动情况。 振动传感器利用压电晶体的正压电效应,当压电晶体在一定方向的外力作用下,它的晶体面产生电压,采集电路检测出这个电压值后换算成受力大小F,由公式a=F/m可以得出瞬间加速度大小a,对加速度二次积分得出瞬间位移量,从而得出被测对象振动频谱和振动位移。 主要技术参数: ●传感器类型:IEPE ●灵敏度:100mV/g ●加速度量程: 0.1~100mm/s2 ●速度量程:0.1~250mm/s

相关文档