文档库 最新最全的文档下载
当前位置:文档库 › 最熟悉的通信常用的协议你了解吗

最熟悉的通信常用的协议你了解吗

最熟悉的通信常用的协议你了解吗?

熟悉基本通讯协议

分类:默认栏目

一、TCP/IP:

(1)掌握协议的构成成份。

(2)理解OSI模型、TCP/IP模型。

(3)掌握以太网的接入方法,以太网和802.3帧的区别是什么?了解无线以太网无线以太帧的构成。(4)第二层主要设备和工作原理。

(5)掌握IP层主要必须协议、IP编址、理解协议配置步骤。

(6)理解传输和应用层主要协议功能。

二、七号信令

(1)掌握三种信令单元的功能。

(2)信令网组成。

(3)信令点编码。

(4)移动网和信令网的关系。

三、移动网

(1)GSM网络结构、信道、帧。

(2)GSM互联其他网络。

(3)GSM网络组成设备的功能。

(4)GSM的编号。

(5)MSC局数据步骤。

(6)GPRS网络结构。

(7)GPRS协议模型。

(8)GPRS路由管理。

(9)EDGE组网。(在欧洲使用,我们国家没有,所以只是作为了解内容)

第一、网络技术的基础(向移动通信软件开发人员转型的入门阶段)要学习通信协议,我们先从网络技术基础开始学起,这也是传统软件开发人员向移动通信软件开发人员过渡的入门知识,掌握这几个知识点后,你也就基本对计算机通信有个概念了。

在本阶段应该掌握以下知识点:

(1)网络协议的概念。

(2)传输模式的种类和它们的区别。

(3)能够描述出OSI(开放系统互连参考模型)的七层。

(4)了解调频、调幅、调相的原理和区别。

(5)知道正交调幅的概念和解决的问题。

(6)知道脉码调制和脉冲幅度调制的区别。(模数转换的两种方式)

(7)复用的概念及其主要的三种复用技术是什么?

(8)FDM(频分复用)如何将多个信号组合为一个,又如何分开?FDM和WDM的相似之处和不同之处。(9)TDM(时分复用)的两种类型。TDM如何将多个信号合并成一个,又如何分开?

(10)CDM(码分复用)的原理

(11)单比特差错和突发差错的区别。

(12)已知数据比特的位数,掌握计算纠正一位差错所需要的冗余比特数的公式。

(13)海明码的先进之处和引入的目的。

详细介绍:

一、网络协议的基本概念?

网络协议是在网络上的各台计算机之间的一种语言,它是通信双方为了实现通信所进行的约定或所做的对话规则,不同的计算机之间必须使用相同的网络协议才能进行通信(为了避免重复工作,每个协议应该处理没有被其他协议处理过的通信问题,并且协议之间可以共享数据和信息)internet上的计算机通常使用的是TCP(传输控制协议)/IP(互联网协议---主要用于负责IP寻址、路由选择和IP数据包的分割和组装)。

协议包括三部分:

(1)语法:确定通信双方“如何讲“,定义了数据格式、编码和信号电平等

(2)语义:确定“讲什么“,定义了用于协调同步和差错处理等信息

(3)同步:确定“讲话的次序“,定义了速度匹配和排序等

二、传输模式的种类和区别?(由于传输模式的概念比较简单,本文已省略)

(一)基本概念:

(1)传输:是信源到信宿之间的过程。

(2)信道:是指通信系统中传输信息的媒体或通道。

(3)传输速率:是衡量传输的一个标准,单位是Mpbs(兆比特/秒),它与我们通常所说的“带宽”是一个意思。

(4)带宽:有两层意思:

从电子电路角度出发,指电子电路中存在一个固有通频带,指的是电路可以保持稳定工作的频率范围(包括显示器带宽、通信/网络中的带宽)。

第二层意思指的就是传输率(如内存带宽、总线带宽、网络带宽等)。

(二)模式分类:

(1)单工:如键盘和传统的监视器;

(2)半双工:对讲机和BP机等民用无线电设备都是半双工(无论哪一方进行传输,都使用信道的整个带宽);

(3)全双工:如电话网络。原理解释:两个方向的信号共享链路带宽,共享有两种方式进行:一种是链路具有两条物理上独立的传输路径,一条发送,一条接收;一种是为传输两个方向的信号而将信道一分为二。

三、画出OSI(开放系统互连参考模型)。

(一)物理层:包含那些在物理介质上传输比特流所必需的功能,它定义了接口与传输介质的机械和电气特性,也定义了物理设备和接口为了传输而必须执行的过程与功能,还有传输介质的类型。

(二)数据链路层:将物理层中对数据不做任何改动的传输通道变成可靠的链路,并负责节点到节点的传输。这样可以将物理层的数据无错的传给上层(网络层)。

具体职责:

(1)成帧(将比特流划分成帧的易处理数据单元)

(1)调幅(AM):对载波信号进行调制,使振幅根据调制信号的改变而变化(调制信号变成了载波信号的包络线)。调幅信号的带宽BWt等于调制信号带宽BWm的两倍,并且覆盖以载波频率为中心的频率范围。

(2)调频(FM):载波信号的频率随着调制信号电压(振幅)的改变而调整。一个调频信号的带宽等于调制信号带宽的10倍,即BWt=10*BWm,而且和调幅带宽一样以载波频率为中心。

(3)调相(PM):载波信号的相位随调制信号的电压变化而调整,当信息信号的振幅变化时,载波信号和相位随之发生相应的改变。

五、什么是正交调幅

QAM (Quadrature Amplitude Modulation) 正交调幅。

一种调制数字信号的编码方法,它兼用振幅编码和相位编码。该方法既可以用于下行,也可以用于上行,不但可以增加合法信号的数目,也能让信号之间保持较大的差异,它为每个比特组合分配一个给定振幅和相移的信号。该方法的优点是能充分利用带宽和抗噪声能力强。(备注说明:(1)波特率:模拟信号的速率,等于每秒钟传输的数据位数,有压缩和没压缩之分,跟阀门电路有关.(2)比特率:数字信号的名词,

模拟信号经过采样量化后,变为数字信号,那在数字信号要如何表示经过数字化的视频和音频呢,就要用到比特率来表示,用的比特位越多(比特就是二进制里面最少的单位),比特率就越大,视频音频质量就越好.

六、知道脉码调制和脉冲幅度调制的区别(此为模数转换的两种方式)

(1)脉冲幅度调制(PAM)

按照一定的时间间隔对模拟信号进行采样,接着产生一个振幅等于采样信号的脉冲。

(2)脉码调制(PCM)

由PAM产生的信号看起来似乎是数字式的,但由于脉冲的振幅和采样信号一样,所以其取值是随意的。使脉冲真正数字化的一种方法为采样信号分配一个预先确定的振幅,这种处理方法称为脉码调制(pulse code modulation,PCM)

PCM有几种普通的应用:

其一是长途电话线上的语音信号的数字化。按照国际标准,每秒采样8000次,每个采样8个比特,依照尼奎斯特定理这个频率是电话机所能够处理的最大语音频率的两倍多一点,它要求每秒8*8000,即大约64kbps的比特速率;

其二是光盘(CD)技术。CD上的音乐是应用PCM编码成数字格式的。

七、复用的概念及其三种主要的复用技术是什么

(一)复用:当连接两台设备的介质的传输能力比设备间的传输要求更高时,该链路就可以被共享。复用就是允许同时通过一条数据链路传输多个信号的一种技术。

(二)主要的复用技术:

(1)频分复用FDM:

所有用户在同样的时间占用不同的带宽资源。多路信号调制在不同载频上进行复用。是一种模拟技术,在链路带宽大于要传输的所有信号带宽之和时采用。如有线电视、无线电广播、光纤的波分复用、频分多址的TACS制式模拟移动通信系统。

(2)时分复用TDM(是在物理层实现的):

所有用户在不同的时间占用同样的频带宽度。多路信号占用不同时隙进行复用。是一个数字化过程,当传输介质的数据速率容量大于发送和接收设备所需要的数据速率时就可以采用它。如电话网采用这种技术。

包括同步时分复用(电路交换)和异步时分复用(包交换)。

在这里我多说几句:中国采用欧洲体制,以E1为一次群(2.048M=32*64k);

而美国、日本等国家采用北美体制,以T1为一次群(24*64k)。

具体原理:3.9ns为一个话路,共32个话路,发送方逆时针旋转的同时接收方顺时针旋转,转一圈就是一帧,它的缺点是浪费资源。

(3)码分复用CDM:

多路信息调制在不同的码型上进行复用。(例如码分多址CDMA数字移动通信技术,cdma的多址技术的原理是采用一组正交或准正交的伪随机序列通过相关处理实现多用户共享频率资源和时间资源)

八、FDM如何将多个信号组合为一个?又如何将一个FDM信号分离成原来的多个?FDM和WDM有何相似之处和不同?

(1)复用过程:FDM是一个模拟过程,把频率范围相似的信号采用调幅或调频技术将信号调制到独立载波频率上(f1、f2、f3),然后将调制后的信号合成为一个复合信号并通过具有足够带宽容量的介质链路发送出去。载波频率之间的频率差必须能够容纳调制信号的带宽。这些带宽范围就是不同信号传输的信道。信号之间必须由狭长的未用带宽(警戒频带)以防止信号交叉。另外,载波频率必须不会影响原来的数据频率。

(2)多路分解:在多路分解器中采用了一系列过滤器来将复合信号分解成组成它的各个信号。每个信号随后被送往解调器,解调器将他们与载波信号分离并转发给等待的接收方。

(3)波分复用WDM是频分的一个特例,用在光纤通信中,除了复用和多路分解包括通过光纤信道传输光信号之外wdm在概念上与频分复用相同。不同之处是组合的频率很高。

九、时分复用的两种类型,TDM如何将多个信号合并成一个,又如何分开?考虑TDM实现的两种方法。

多道传输流通过细分链路和交织过程来使用单条链路,采用的链路与FDM中一样,但是这里显示的分割是时间上的并不是频率上的,信号按顺序占据链路。

(一)同步时分复用:同步所包含的意义与在远程通信等其他领域中的含义不同,这里同步是指复用器在所有时间为每个设备都分配完全一样的时间片,不管该设备有没有数据要传输。

(1)帧。一帧由时间片的一个完整循环组成,包括分配给每个发送设备的一个或者多个时间片。

(2)交织。同步时分复用以恒定速率和固定顺序在设备间轮转的过程乘坐交织。

(3)帧定位比特。因为在同步时分复用系统中各帧内时间片的顺序不变,因而在每帧头上只需要很少的额外开销。

(4)同步时分复用实例

(5)比特填充。

(二)异步时分复用。

同步时分复用不能保证使用链路的全部容量。实际上很有可能在一个给定时刻只使用了一部分时间片。因为时间片是预分配的和固定的。每当有一台设备不发送时,对应的时间片就会是空的并且浪费了通路带宽。

异步时分复用(也叫统计复用)就是为避免这种浪费而设计的,这里的异步是可变的、不固定的。异步时分复用允许将许多较低速率的输入线路复用到一条较高速率的线路上,但是与同步时分复用不同的是,在异步中所有输入线路之和可能比通路容量大。

十、单比特差错和突发差错的区别?

(1)单比特差错是指在给定数据单元(例如一个字节、字符、数据单元或数据包)只有一个比特被从0变为1或是从1变为0,即在数据单元中只有一个比特发生了改变。

(2)突发差错指数据单元中的两个或者连个以上连续的比特从0变为1或是从1变为0.但它的长度是由第一各改变的位置到最后一个改变的位置来确定,其中间某些比特可以不改变

突发差错大多发生在串行传输时。

十一、已知数据比特的位数,计算纠正一位差错所需要的冗余比特数的公式是什么?

2的r次方大于等于m+r+1

(说明:m为给定数量的数据位数即要传输的数据单元的原始长度;r为冗余位的数量,它的值可以通过插入m)

十二、引入海明码的目的和作用是什么?

海明码是一种可以纠正一位差错的编码。它可以利用单比特差错状态所需要的比特数来发现出现的差错状态,它可以在任意长度的数据单元上应用。海明码的纠错在物理层。

这个阶段的内容大概就是这么多。下面我来总结一下这个阶段的一些东西或者一些需要读者必须掌握的东西,当然这个掌握是相对而言的。其实,涉及到物理层的东西是固化的东西,我们在实际工作中根本就用不到,但是作为(移动通信软件工程师)通信入门的基础还是必须得了解的,我们可能做不到精通但是大概应该听过这些东西。

首先,我说一下OSI(开放系统互连参考模型)七层。我们知道这个模型是由国际标准化组织(ISO)制定的一个覆盖网络通信各个方面的标准,包括以后要讲到的TCP/IP模型都是这个模型(OSI)某层具体实现的一个版本。

建立七层模型的主要目的是为解决异种网络互连时所遇到的兼容性问题。它的最大优点是将服务、接口和协议这三个概念明确地区分开来:服务说明某一层为上一层提供一些什么功能,接口说明上一层如何使用下层的服务,而协议涉及如何实现本层的服务;这样各层之间具有很强的独立性,互连网络中各实体采用什么样的协议是没有限制的,只要向上提供相同的服务并且不改变相邻层的接口就可以了。网络七层的划分也是为了使网络的不同功能模块(不同层次)分担起不同的职责。

从应用层开始说起,它为应用程序提供接口,应用程序调用这个接口以实现对应用程序的一个初始化。接下来是表示层涉及到编码(比如同样的文件在windows系统和linux系统下编码肯定会不一样)、加密和压缩,要加入表示层首部H6。再往下是会话层,跟踪会话、管理传输模式(比如是全双工还是半双工等等),要加入会话层首部H5,再下边是传输层,这是应用程序的终点传输数据片(切片工作是由网络层来完成的)每片加上首部H4,加源端口和目的端口,这个层已经有了识别应用程序的能力,以上四层在本机实现(有人观点会不同:把传输层独立出来将上三层和下三层连接起来并保证下层是以上层能够使用的型式传输的)

低三层再来说一下,网络层包括主机域和网络域,它解决的是网间的寻址(IP地址),再往下是数据链路层,解决寻找硬件地址,即网段中具体的某一台机子,再下边是物理层,注意它不是实际的传输介质,但是它定义了传输介质的接口和机械与电气特性(规程就是流程的意思;电气特性就是电平信号的一些定义;机械特性就是比如传输介质的尺寸的配合等等,格式化的数据经过这层后它被转换成电磁信号,并在物理链路上传输)。

说到物理层我们不得不说两种设备:DTE和DCE:前者是数据终端设备,是具有数据处理、发送和接收能力的一种设备(比如路由器,可以想象成计算机或者终端);后者是数据通信设备,它在DTE和传输线路之间提供信号变换和编码的功能。注意:DTE和DCE之间是由物理层来定义的(这里用到典型的物理规范RS232,可以说是串行通信的一种协议EIA-232/V.24),标准的传输距离是100米,这里进行简单的信号定义即可通信如只是对:信号地、保护、发送数据和接收数据的定义。

概括:在发送端每一层都在从直接上层传来的报文中加上自己的信息并将整个包传到它的直接下层,这些信息以报文头或尾部(附加在数据包的头或尾的控制信息)的型式加入报文,一般来说报文头加在第6、5、4、3、2层,尾部通常只加在第二层。在接收端报文被一层一层地打开,每一层接收并提取对他有意义的数据。

我们说两台计算机之间能不能通信呢?这句话严格来说是错误的,应该是计算机之间的应用程序之间的通信。那么如何实现两台计算机应用程序之间的通信呢?第一、通过网络层寻找网络地址(逻辑地址即我们通常所说的IP地址)。第二、通过数据链路层来识别是那个网络的具体哪一台机子(即通过这个层的ARP和RARP协议将IP地址映射为硬件地址)。第三、通过应用层的端口号来识别是哪个应用程序(说明:不是只有端口才能识别应用程序)。

举例来说:比如我的机器上有应用程序A,进程号是1073(所谓进程号是由操作系统来识别的),那么我这边需要有源端口和目的端口,源端口是可以是0~65535之间的随机数字,目的端口必须小于1021(必须小于1024),那么对方机器也有一个应用程序B,进程号是1097,那么它的源端口也是0~65535(必须是之间的数字)之间的随机数字,而且B程序的目的端口也必须是1021(必须小于1024).

如果链路是理想的传输信道,所传送的任何数据既不会出差错也不会丢失,那么数据链路层协议是根本不需要的。但是,这可能吗?不可能。所以我们需要数据链路层协议。

如果不管发送方以多快的速率发送数据,接收方总是来得及收下,并及时上交主机,那么数据链路层协议也是不需要的。但是,这可能吗?不可能。所以我们还是需要数据链路层协议。

这就是说,传输数据的信道是不可靠的(即不能保证所传的数据不产生差错),并且还需要对数据的发送端进行流量控制。

看看最简单的停止等待协议。

收方在收到一个正确的数据帧后,向发方发送一个确认帧ACK(表示“我收到啦”)。当发方收到确认帧后才能发送一个新的数据帧。这样就实现了收方对发方的流量控制。假如数据帧在传输过程中出现了差错。由于通常都在数据帧中加上了循环冗余校验CRC,所以收方很容易校验出收到的数据帧是否有差错。当发现差错时,收方就向发方发送一个否认帧NAK(表示“嘿,哥们儿,你搞错了”),以表示发方应当重发出错的那个数据帧。

有时,链路上的干扰很严重,或由于其他一些原因,收方收不到发方发来的数据帧。这种情况称为帧丢失。发生帧丢失时,收方当然不会向发方发送任何应答帧。如果发方要等收到收方的应答信息后再发送下一个数据帧,那么就将永远等下去。要解决这个问题,可在收方发送完一个数据帧时,就启动一个超时定时器。若到了超时定时器所设置的重发时间仍收不到收方的任何应答帧,则发方就重传前面所发送的这一数据帧。

然而现在问题并没有完全解决。当出现数据帧丢失时,超时重发的确是一个好办法。但是若丢失的是应答帧,则超时重发将使收方收到两个同样的数据帧。由于收方现在无法识别重复的数据帧,因而在收方收到的数据中出现了另一种差错,称为重复帧。要解决这个问题,必须使每一个数据帧带上不同的发送序号。若收方收到序号相同的数据帧,就表明出现了重复帧。这时应当丢弃这重复帧。但应注意,此时收方还必须向发方发送一个确认帧,因为收方已经知道发方还没有收到上一次发过去的确认帧。

我们知道,任何一个编号系统的序号所占用的比特数一定是有限的。因此,经过一段时间,发送序号就会重复。序号占用的比特数越少,数据传输的额外开销就越少。对于停等协议,由于每发送一个数据帧就停止等待,因此用一个比特来编号就够了。就是说序号轮流使用0和1。

由于发方对出错的数据帧进行重复是自动进行的,所以这种差错控制体制常简称为ARQ(Automatic Repeat reQuest),直译是自动重复请求,意思是自动请求重发。

停止等待协议ARQ比较简单,但信道利用率不高,信道远远没有被数据比特填满。为了克服这一缺点,

常用无线通信协议

常用无线通信协议 目前使用较广泛的近距无线通信技术有蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外线数据传输(IrDA).此外,还有一些具有发展潜力的近距无线技术标准,分别是ZigBee,超宽频,短距通信,WiMedia,GPS,DECT,无线1394和专用无线系统等。 蓝牙(Bluetooth)技术 蓝牙是一种支持设备短距离通信的无线电技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。蓝牙技术的实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHzISM频段,提供1Mbps的传输速率和10m 的传输距离。 优势:⑴全性高。蓝牙设备在通信时,工作的频率是不停地同步变化的,也就是跳频通信。双方的信息很难被抓获,防止被破解或恶意插入欺骗信息。⑵于使用。蓝牙技术是一项即时技术,不要求固定的基础设施,且易于安装和设置。 不足:⑴通信速度不高。蓝牙设备的通信速度较慢,有很多的应用需求不能得到满足。⑵传输距离短。蓝牙规范最初为近距离通信而设计,所以他的通信距离比较短,一般不超过10m。 Wi-Fi(无线高保真)技术 无线宽带是Wi-Fi的俗称。所谓Wi-Fi就是IEEE 802.11b的别称,它是一种短程无线传输技术,能够在数百英尺范围内支持互联网接入的无线电信号。Wi-Fi速率最高可达11Mb/s,电波的覆盖范围可达200m左右。 优势:⑴覆盖广。其无线电波的覆盖范围广,穿透力强。可以方便地为整栋大楼提供无线的宽带互联网的接入。⑵速度高。Wi-Fi技术的传输速度非常快,通信速度可达300Mb/s,能满足用户接入互联网,浏览和下载各类信息的要求。 不足:安全性不好。由于Wi-Fi设备在通信中没有使用跳频等技术,虽然使用了加密协议,但还是存在被破解的隐患。 IrDA(红外线数据协会)技术 IrDA是一种利用红外线进行点对点通信的技术,是第一个实现无线个人局域网(PAN)的技术。 IrDA 的主要优点是无需申请频率的使用权,因而红外通信成本低廉。并且还具有移动通信所需的体积小、功耗低、连接方便、简单易用的特点。此外,红外线发射角度较小,传输上安全性高。IrDA的不足在于它是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而该技术只能用于 2 台(非多台)设备之间的连接。 优势:⑴无需申请频率的使用权,因此红外线通信成本低廉。⑵移动通信所需的体积小、功耗低、连接方便、简单易用。⑶外线发射角度较小,传输上安全性高。 不足:IrDA是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而只用于两台设备之间连接。ZigBee(紫蜂)技术 ZigBee使用2.4 GHz 波段,采用跳频技术。它的基本速率是250kb/s,当降低到28kb/s 时,传输范围可扩大到134m,并获得更高的可靠性。另外,它可与254个节点联网。 优势:⑴功耗低。在低耗电待机模式下,两节普通5号干电池可使用6个月以上。⑵成本低。因ZigBee数据传输速率低,协议简单,所以成本很低。⑶网络容量大。每个ZigBee网络最多可支持255个设备。⑷作频段灵活。使用的频段分别为2.4GHz、868MHz(欧)及915MHz(美),均为免执照频段。 不足:⑴数据传输速率低。只有10kb/s~250kb/s,专注于低传输应用。⑵有效范围小。有效覆盖范围为10~75m之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境。 UWB(超宽带)技术 UWB(Ultra Wideband)是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB 有可能在10 m 范围内,支持高达110 Mb/s的数据传输率,不需要压缩数据,可以快速、简单、经济地完成视频数据处理。 特点:⑴系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,载货能力低。⑵定位精度高,相容性好,速度高。⑶成本低,功耗低,可穿透障碍物。近距离无线传输 NFC(近距离无线传输)技术 NFC采用了双向的识别和连接。在20cm 距离内工作于13.56MHz 频率范围。NFC现已发展成无线连接技术。它能快速自动地建立无线网络,为蜂窝设备、蓝牙设备、Wi-Fi 设备提供一个“虚拟连接”,使电子设备可以在短距离范围进行通讯。 特点:NFC的短距离交互大大简化了整个认证识别过程,使电子设备间互相访问更直接、更安全和更清楚,不用再听到各种电子杂音。NFC 通过在单一设备上组合所有的身份识别应用和服务,帮助解决记忆多个密码的麻烦,同时也保证了数据的安全保护。此外NFC 还可以将其它类型无线通讯(如Wi-Fi 和蓝牙)“加速”,实现更快和更远距离的数据传输。

常用网络通信协议简介

常用网络通信协议简介 常用网络通信协议 物理层: DTE(Data Terminal Equipment):数据终端设备 DCE(Data Communications Equipment):数据电路端接设备 #窄宽接入: PSTN ( Public Switched Telephone Network )公共交换电话网络 ISDN(Integrated Services Digital Network)ISDN综合业务数字网 ISDN有6种信道: A信道 4khz模拟信道 B信道 64kbps用于语音数据、调整数据、数字传真 C信道 8kbps/16kbps的数字信道,用于传输低速数据 D信道 16kbps数字信道,用于传输用户接入信令 E信道 64kbps数字信道,用于传输内部信令 H信道 384kbps高速数据传输数字信道,用于图像、视频会议、快速传真等. B代表承载, D代表Delta. ISDN有3种标准化接入速率: 基本速率接口(BRI)由2个B信道,每个带宽64kbps和一个带宽16kbps的D信道组成。三个信道设计成2B+D。 主速率接口(PRI) - 由很多的B信道和一个带宽64Kbps的D信道组成,B信道的数量取决于不同的国家: 北美和日本: 23B+1D, 总位速率1.544 Mbit/s (T1) 欧洲,澳大利亚:30B+2D,总位速率2.048 Mbit/s (E1) FR(Frame Relay)帧中继

X.25 X.25网络是第一个面向连接的网络,也是第一个公共数据网络. #宽带接入: ADSL:(Asymmetric Digital Subscriber Line)非对称数字用户环路 HFC(Hybrid Fiber,Coaxial)光纤和同轴电缆相结合的混合网络 PLC:电力线通信技术 #传输网: SDH:(Synchronous Digital Hierarchy)同步数字体系 DWDM:密集型光波复用(DWDM:Dense Wavelength Division Multiplexing)是能组合一组光波长用一根光纤进行传送。这是一项用来在现有的光纤骨干网上提高带宽的激光技术。更确切地说,该技术是在一根指定的光纤中,多路复用单个光纤载波的紧密光谱间距,以便利用可以达到的传输性能(例如,达到最小程度的色散或者衰减)。 #无线/卫星: LMDS:(Local Multipoint Distribution Services)作区域多点传输服务。这是一种微波的宽带业务,工作在28GHz附近频段,在较近的距离双向传输话音、数据和图像等信息。 GPRS:(General Packet Radio Service)通用分组无线服务技术。 3G:(3rd-generation,3G)第三代移动通信技术 DBS:(Direct Broadcasting Satellite Service)直播卫星业务 VAST: 协议:RS-232、RS-449、X.21、V.35、ISDN、FDDI、IEEE802.3、IEEE802.4、IEEE802.5等。 RS-232:是个人计算机上的通讯接口之一,由电子工业协会(Electronic Industries

常用的硬件接口及通信协议详解

一:串口 串口是串行接口的简称,分为同步传输(USRT)和异步传输(UART)。在同步通信中,发送端和接收端使用同一个时钟。在异步通信中,接受时钟和发送时钟是不同步的,即发送端和接收端都有自己独立的时钟和相同的速度约定。 1:RS232接口定义 2:异步串口的通信协议 作为UART的一种,工作原理是将传输数据的每个字符一位接一位地传输。图一给出了其工作模式: 图一 其中各位的意义如下: 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。

数据位:紧接着起始位之后。数据位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指针。表示每秒钟传送的二进制位数。例如资料传送速率为120字符/秒,而每一个字符为10位,则其传送的波特率为10×120=1200字符/秒=1200波特。 3:在嵌入式处理器中,通常都集成了串口,只需对相关寄存器进行设置,就可以使用啦。尽管不同的体系结构的处理器中,相关的寄存器可能不大一样,但是基于FIFO的uart框图还是差不多。

发送过程:把数据发送到fifo中,fifo把数据发送到移位寄存器,然后在时钟脉冲的作用下,往串口线上发送一位bit数据。 接受过程:接受移位寄存器接收到数据后,将数据放到fifo中,接受fifo事先设置好触发门限,当fifo中数据超过这个门限时,就触发一个中断,然后调用驱动中的中断服务函数,把数据写到flip_buf 中。 二:SPI SPI,是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接口。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB 的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。

通信协议

常用通信协议汇总 一、有线连接 1.1RS-232 优点:RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3kΩ~7kΩ。所以RS-232适合本地设备之间的通信。 缺点:(1)接口的信号电平值较高,易损坏接口电路的芯片,又因为与TTL 电平不兼容故需使用电平转换电路方能与TTL电路连接。 (2)传输速率较低,在异步传输时,最高速率为20Kbps。 (3)接口使用一根信号线和一根信号返回线而构成共地的传输形式,而发送电平与接收 电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米。 1.2RS-485 RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构,传输距离一般在1~2km以下为最佳,如果超过距离加"中继"可以保证信号不丢失,而且结点数有限制,结点越多调试起来稍复杂,是目前使用最多的一种抄表方式,后期维护比较简单。常见用于串行方式,经济实用。 1.3CAN 最高速度可达1Mbps,在传输速率50Kbps时,传输距离可以达到1公里。在10Kbps速率时,传输距离可以达到5公里。一般常用在汽车总线上,可靠性高。 1.4TCP/IP 它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。 1.5ADSL 基于TCP/IP 或UDP协议,将抄表数据发送到固定ip,利用电信/网通现有的布线方式,速度快,性能比较可以,缺点是不适合在野外,设备费用投入较大,对仪表通讯要求高。 1.6FSK 可靠通信速率为1200波特,可以连接树状总线;对线路性能要求低,通信距离远,一般可达30公里,线路绝缘电阻大于30欧姆,串联电阻高达数百欧姆都可以工作,适合用于大型矿井监控系统。主要缺点是:系统造价略高,通信线路要求使用屏蔽电缆;抗干扰性能一般,误码率略高于基带。 1.7光纤方式 传输速率高,可达百兆以上;通信可靠无干扰;抗雷击性能好,缺点:系统造价高;光纤断线后熔接受井下防爆环境制约,不宜直达分站,一般只用于通信干线。 1.8电力载波 1.9利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。由于使用坚固可靠的电力线作 为载波信号的传输媒介,因此具有信息传输稳定可靠,路由合理、可同时复用远动信号等特点,不需要线路投资的有线通信方式,但是开发费用高,调试难度大,易受用电环境影响,通讯状况用户的用电质量关系紧密。 二、无线连接 2.1Bluetooth 蓝牙是一种支持设备短距离通信的无线电技术。它是一种无线数据与语音通信的开放性全球规范,它以低

最熟悉的通信常用的协议你了解吗

最熟悉的通信常用的协议你了解吗? 熟悉基本通讯协议 分类:默认栏目 一、TCP/IP: (1)掌握协议的构成成份。 (2)理解OSI模型、TCP/IP模型。 (3)掌握以太网的接入方法,以太网和802.3帧的区别是什么?了解无线以太网无线以太帧的构成。(4)第二层主要设备和工作原理。 (5)掌握IP层主要必须协议、IP编址、理解协议配置步骤。 (6)理解传输和应用层主要协议功能。 二、七号信令 (1)掌握三种信令单元的功能。 (2)信令网组成。 (3)信令点编码。 (4)移动网和信令网的关系。 三、移动网 (1)GSM网络结构、信道、帧。 (2)GSM互联其他网络。 (3)GSM网络组成设备的功能。 (4)GSM的编号。 (5)MSC局数据步骤。 (6)GPRS网络结构。 (7)GPRS协议模型。 (8)GPRS路由管理。 (9)EDGE组网。(在欧洲使用,我们国家没有,所以只是作为了解内容) 第一、网络技术的基础(向移动通信软件开发人员转型的入门阶段)要学习通信协议,我们先从网络技术基础开始学起,这也是传统软件开发人员向移动通信软件开发人员过渡的入门知识,掌握这几个知识点后,你也就基本对计算机通信有个概念了。 在本阶段应该掌握以下知识点: (1)网络协议的概念。 (2)传输模式的种类和它们的区别。 (3)能够描述出OSI(开放系统互连参考模型)的七层。 (4)了解调频、调幅、调相的原理和区别。 (5)知道正交调幅的概念和解决的问题。 (6)知道脉码调制和脉冲幅度调制的区别。(模数转换的两种方式) (7)复用的概念及其主要的三种复用技术是什么? (8)FDM(频分复用)如何将多个信号组合为一个,又如何分开?FDM和WDM的相似之处和不同之处。(9)TDM(时分复用)的两种类型。TDM如何将多个信号合并成一个,又如何分开?

通讯方式和通讯协议介绍

目录 一、RS232的串口通讯 (2) 应用 (2) 工作方式 (2) 接口标准 (2) 电路组成 (3) 概述 (3) 简介 (3) 二、RS485串行通讯 (3) 简介 (3) 接口 (4) 电缆 (4) 布网 (5) 区别 (5) 三、串行通信 (6) 概念 (6) 分类 (7) 同步通信 (7) 异步通信 (7) 特点 (7) 形式和标准 (7) 调幅方式 (7) 调频方式 (8) 数字编码方式 (8) 数据传输率 (8) 发送时钟和接收时钟 (9) 异步通信协议 (9) 通信协议 (10) 普遍协议 (10) USB (11) IEEE 1394 (11) 相关应用 (12) 四、通讯协议 (12) 简介 (12) 详细介绍 (13) TCP/IP (13) IPX/SPX (13) NetBEUI (14) 通信协议 (14) RS-232-C (14) RS-449 (14) V.35 (15) X.21 (15) HDLC (15) 管理协议 (15) SNMP (15) PPP (16)

一、RS232的串口通讯 应用 随着计算机系统的应用和微机网络的发展,通信功能越来越显得重要.这里所说的通信是指计算机与外界的信息交换.因此,通信既包括计算机与外部设备之间,也包括计算机和计算机之间的信息交换.由于串行通信是在一根传输线上一位一位的传送信息,所用的传输线少,并且可以借助现成的电话网进行信息传送,因此,特别适合于远距离传输.对于那些与计算机相距不远的人-机交换设备和串行存储的外部设备如终端、打印机、逻辑分析仪、磁盘等,采用串行方式交换数据也很普遍.在实时控制和管理方面,采用多台微机处理机组成分级分布控制系统中,各CPU 之间的通信一般都是串行方式.所以串行接口是微机应用系统常用的接口。许多外设和计算机按串行方式进行通信,这里所说的串行方式,是指外设与接口电路之间的信息传送方式,实际上,CPU 与接口之间仍按并行方式工作. 工作方式 由于CPU 与接口之间按并行方式传输,接口与外设之间按串行方式传输,因此,在串行接口中,必须要有" 接收移位寄存器" (串→并)和" 发送移位寄存器" (并→串). 在数据输入过程中,数据1 位1 位地从外设进入接口的" 接收移位寄存器",当" 接收移位寄存器" 中已接收完1 个字符的各位后,数据就从" 接收移位寄存器" 进入" 数据输入寄存器" . CPU 从" 数据输入寄存器" 中读取接收到的字符.(并行读取,即D7~D0 同时被读至累加器中). " 接收移位寄存器" 的移位速度由" 接收时钟" 确定. 在数据输出过程中,CPU 把要输出的字符(并行地)送入" 数据输出寄存器"," 数据输出寄存器" 的内容传输到" 发送移位寄存器",然后由" 发送移位寄存器" 移位,把数据1 位 1 位地送到外设. " 发送移位寄存器" 的移位速度由" 发送时钟" 确定. 接口中的" 控制寄存器" 用来容纳CPU 送给此接口的各种控制信息,这些控制信息决定接口的工作方式. " 状态寄存器" 的各位称为" 状态位",每一个状态位都可以用来指示数据传输过程中的状态或某种错误.例如,用状态寄存器的D5 位为"1" 表示" 数据输出寄存器" 空,用D0 位表示" 数据输入寄存器满",用D2 位表示" 奇偶检验错" 等. 能够完成上述" 串<- -> 并" 转换功能的电路,通常称为" 通用异步收发器" (UART :Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251,16550 接口标准 ⑴实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。

常见网络端口和网络协议

常见网络端口和网络协议 常见端口号: HTTP——80 FTP——21 TELNETt——23 SMTP ——25 DNS——53 TFTP——69 SNMP——161 RIP——520 查看端口状况: Netstat –n 应用层、表示层、会话层(telnet、ftp、snmp、smtp、rpc) 传输层、网络层(IP、TCP、OSPF、RIP、ARP、RARP、BOOTP、ICMP) 端口号的范围: 0~255 公共应用 255~1023 商业公司 1024~65535 没有限制 或: 1-1023 众所周知端口 >=1024 随机端口 下面介绍的这些端口都是服务器默认的端口,所以认识这些服务器端口对我们学习,和故障排错时很有帮助的。 下面列出了这些服务所对应的端口。 ftp-data20/tcp#FTP, data ftp21/tcp#FTP. control telnet23/tcp smtp25/tcp mail#Simple Mail Transfer Protocol pop3110/tcp#Post Office Protocol - Version 3 domain53/udp#Domain Name Server tftp69/udp#Trivial File Transfer http80/tcp www www-http#World Wide Web https443/tcp ms-sql-s1433/tcp#Microsoft-SQL-Server ms-sql-m1434/udp#Microsoft-SQL-Monitor 终端服务3389/tcp [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server\Wds\rdpwd\Tds\tcp]下的PortNumber键值

各种通信协议

分层及通信协议 协议软件是计算机通信网中各部分之间所必须遵守的规则的集合,它定义了通信各部分交换信息时的顺序、格式和词汇。协议软件是计算机通信网软件中最重要的部分。网络的体系结构往往都是和协议对应的,而且,网络管理软件、交换与路由软件以及应用软件等都要通过协议软件才能发生作用。 一、通信协议 1、什么是通信协议 通信协议(简称协议Protoco l),是指相互通信的双方(或多方)对如何进行信息交换所一致同意的一整套规则。一个网络有一系列的协议,每一个协议都规定了一个特定任务的完成。协议的作用是完成计算机之间有序的信息交换。 通信网络是由处在不同位置上的各节点用通信链路连接而组成的一个群体。通信网必须在节点之间以及不同节点上的用户之间提供有效的通信,即提供有效的接入通路。在计算机通信网中,将这种接入通路称为连接(connection)。建立一次连接必需要遵守的一些规则,这些规则也就是通信网设计时所要考虑的主要问题。 (l)为了能在两个硬件设备之间建立起连接,应保证在源、宿点之间存在物理的传输媒介,在该通路的各条链路上要执行某种协议。 如果传输线路使用电话线,则要通过调制解调器将信号从数字转换成模拟的,并在接收端进行反变换。 如果用的是数字传输线路,则在数据处理设备和通信设备之间,必须有一个数字适配器,以便将数字信号的格式转换成两种设备各自所期望的形式。 为了在两个端设备之间互换数据,需要协调和同步,调制解调器和数字适配器必须执行它们自己的协议。 无论是模拟的还是数字的通信设备,调制解调器和数字适配器的状态必须由接到节点上的设备来控制,这里必定有一个物理的或电气的接口来执行这种功能,执行某种适当的协议来达到这一控制目的。 (2)在计算机通信网中,许多信息源都是突发性的(bursty),问题是要利用信息的这种突发性质来降低消耗在线路上的费用,由此开发了许多共享通信资源的技术。所谓共享,是指允许多个用户使用同一通信资源,这就产生了多用户的接入问题。多路接入

常用几种通讯协议

常用几种通讯协议 Modbus Modbus技术已成为一种工业标准。它是由Modicon公司制定并开发的。其通讯主要采用RS232,RS485等其他通讯媒介。它为用户提供了一种开放、灵活和标准的通讯技术,降低了开发和维护成本。 Modbus通讯协议由主设备先建立消息格式,格式包括设备地址、功能代码、数据地址和出错校验。从设备必需用Modbus协议建立答复消息,其格式包含确认的功能代码,返回数据和出错校验。如果接收到的数据出错,或者从设备不能执行所要求的命令,从设备将返回出错信息。 Modbus通讯协议拥有自己的消息结构。不管采用何种网络进行通讯,该消息结构均可以被系统采用和识别。利用此通信协议,既可以询问网络上的其他设备,也能答复其他设备的询问,又可以检测并报告出错信息。 在Modbus网络上通讯期间,通讯协议能识别出设备地址,消息,命令,以及包含在消息中的数据和其他信息,如果协议要求从设备予以答复,那么从设备将组建一个消息,并利用Modbus发送出去。 BACnet BACnet是楼宇自动控制系统的数据通讯协议,它由一系列与软件及硬件相关的通讯协议组成,规定了计算机控制器之间所有对话方式。协议包括:(1)所选通讯介质使用的电子信号特性,如何识别计算机网址,判断计算机何时使用网络及如何使用。(2)误码检验,数据压缩和编码以及各计算机专门的信息格式。显然,由于有多种方法可以解决上述问题,但两种不同的通讯模式选择同一种协议的可能性极少,因此,就需要一种标准。即由ISO(国际标准化协会〉于80年代着手解决,制定了《开放式系统互联(OSI〉基本参考模式(Open System Interconnection/Basic Reference Model简称OSI/RM)IS0- 7498》。 OSI/RM是ISO/OSI标准中最重要的一个,它为其它0SI标准的相容性提供了共同的参考,为研究、设计、实现和改造信息处理系统提供了功能上和概念上的框架。它是一个具有总体性的指导性标准,也是理解其它0SI标准的基础和前提。 0SI/RM按分层原则分为七层,即物理层、数据链路层、网络层、运输层、会话层、表示层、应用层。 BACnet既然是一种开放性的计算机网络,就必须参考OSIAM。但BACnet没有从网络的最低层重新定义自己的层次,而是选用已成熟的局域网技术,简化0SI/RM,形成包容许多局 域网的简单而实用的四级体系结构。 四级结构包括物理层、数据链路层、网络层和应用层。

三种常见的局域网通信协议

三种常见的局域网通信协议 各种网络协议都有所依赖的操作系统和工作环境,同样的通信协议在不同网络上运行的效果不一定相同。所以,组建网络时通信协议的选择尤为重要。无论是Windows 95/98对等网,还是规模较大的Windows NT、Novell或Unix/Xenix局域网,组建者都遇到过如何选择和配置网络通信协议的问题。我们在选择通信协议时应遵循3个原则:所选协议要与网络结构和功能相一致;尽量只选择一种通信协议;注意协议不同的版本具有不尽相同的功能。 局域网中常用的3种通信协议 NetBEUI协议:这是一种体积小、效率高、速度快的通信协议。在微软公司的主流产品中,如Windows 95/98和Windows NT,NetBEUI已成为固有的缺省协议。NetBEUI是专门为几台到百余台电脑所组成的单网段小型局域网而设计的,不具有跨网段工作的功能,即NetBEUI不具备路由功能。如果一个服务器上安装多块网卡,或采用路由器等设备进行两个局域网的互联时,不能使用NetBEUI协议。否则,在不同网卡(每一块网卡连接一个网段)相连的设备之间,以及不同的局域网之间将无法进行通信。虽然NetBEUI存在许多不尽人意的地方,但它也具有其他协议所不具备的优点。在3种常用的通信协议中,NetBEUI占用内存最少,在网络中基本不需要任何配置。 NetBEUI中包含一个网络接口标准NetBIOS,是IBM公司在1983年开发的一套用于实现电脑间相互通信的标准。其后,IBM公司发现NetBIOS存在着许多缺陷,于1985年对其进行了改进,推出了NetBEUI通信协议。随即,微软公司将NetBEUI作为其客户机/服务器网络系统的基本通信协议,并进一步进行了扩充和完善。最有代表性的是在NetBEUI中增加了叫做SMB(服务器消息块)的组成部分。因此,NetBEUI协议也被人们称为SMB协议。 IPX/SPX及其兼容协议:这是Novell公司的通信协议集。与NetBEUI的明显区别是:IPX/SPX比较庞大,在复杂环境下有很强的适应性。因为IPX/SPX在开始就考虑了多网段的问题,具有强大的路由功能,适合大型网络使用。当用户端接入NetWare服务器时,IPX/SPX 及其兼容协议是最好的选择。但在非Novell网络环境中,一般不使用IPX/SPX。尤其在Windows NT网络和由Windows 95/98组成的对等网中,无法使用IPX/SPX协议。 IPX/SPX及其兼容协议不需要任何配置,它可通过网络地址来识别自己的身份。Novell 网络中的网络地址由两部分组成:标明物理网段的网络ID和标明特殊设备的节点ID。其中网络ID集中在NetWare服务器或路由器中,节点ID即为每个网卡的ID号(网卡卡号)。所有的网络ID和节点ID都是一个独一无二的内部IPX地址,正是由于网络地址的惟一性,才使IPX/SPX具有较强的路由功能。 在IPX/SPX协议中,IPX是NetWare最底层的协议,它只负责数据在网络中的移动,并不保证数据是否传输成功,也不提供纠错服务。IPX在负责数据传送时,如果接收节点在同一网段内,就直接按该节点的ID将数据传给它;如果接收节点是远程的,数据将交给NetWare服务器或路由器中的网络ID,继续数据的下一步传输。SPX在整个协议中负责对所传输的数据进行无差错处理,所以IPX/SPX也叫做Novell的协议集。 Windows NT中提供了两个IPX/SPX的兼容协议,NWLink SPX/SPX兼容协议和NWLink NetBIOS,两者统称为NWLink通信协议。NWLink协议是Novell公司IPX/SPX协议在微软公司网络中的实现,它在继承IPX/SPX协议优点的同时,更加适应微软公司的操作系统和

几种通信协议

RS-232-C RS-232-C是OSI基本参考模型物理层部分的规格,它决定了连接器形状等物理特性、以0和1表示的电气特性及表示信号意义的逻辑特性。 RS-232-C是EIA发表的,是RS-232-B的修改版。本来是为连接模拟通信线路中的调制解调器等DCE及电传打印机等DTE拉接口而标准化的。现在很多个人计算机也用RS-232-C作为输入输出接口,用RS-232-C作为接口的个人计算机也很普及。 RS-232-C的如下特点:采用直通方式,双向通信,基本频带,电流环方式,串行传输方式,DCE-DTE间使用的信号形态,交接方式,全双工通信。RS-232-C在ITU建议的V.24和V.28规定的25引脚连接器在功能上具有互换性。 RS-232-C所使用的连接器为25引脚插入式连接器,一般称为25引脚D-SUB。DTE端的电缆顶端接公插头,DCE端接母插座。 RS-232-C所用电缆的形状并不固定,但大多使用带屏蔽的24芯电缆。电缆的最大长度为15m。使用RS-232-C在200K位/秒以下的任何速率都能进行数据传输。 RS-449 RS-449是1977年由EIA发表的标准,它规定了DTE和DCE之间的机械特性和电气特性。RS-449是想取代RS-232-C而开发的标准,但是几乎所有的数据通信设备厂家仍然采用原来的标准,所以RS-232-C仍然是最受欢迎的接口而被广泛采用。 RS-449的连接器使用ISO规格的37引脚及9引脚的连接器,2次通道(返回字通道)电路以外的所有相互连接的电路都使用37引脚的连接器,而2次通道电路则采用9引脚连接器。 RS-449的电特性,对平衡电路来说由RS-422-A规定,大体与V.11具有相同规格,而RS-423-A大体与V.10具有相同规格。

线传感器网络常用的通信协议

线传感器网络常用的通信协议(上) 通信协议是无线传感器网络实现通信的基础,无线传感器网络通信协议的设计目的是为了使具体的无线传感器网络通信机制与上层应用分离,为传感器节点提供自组织的无线网络通信功能。 与传统无线网络相比,无线传感器网络的应用环境有诸多不同。无线传感器网络是能量受限的网络,需要使用低功率、短距离的无线通信技术,以节省能源消耗,延长网络寿命。无线传感器网络的通信协议可以采用自定义的通信协议,也可以采用已经形成标准的通信协议,如ZigBee、蓝牙、Wi-Fi,这三种无线通信技术标准都是短距离的无线通信,它们在各方面性能之间有较大差异,ZigBee、蓝牙、Wi-Fi.之间的比较见表5-6。蓝牙技术所能通信的距离非常短,限制了其应用范围;Wi-Fi协议栈所占内存很大、功耗高使其在很多场合不实用。究竟选用什么通信标准,还需要根据系统需求来定。 由表5-6得知,ZigBee是比较适合无线传感器网络应用的,简单阐述自定义通信协议并对ZigBee协议栈进行分析。 1. 自定义通信协议 自定义的通信协议可以采用分层设计,参考OSI参考模型的结构,可以提高系统的灵活性,在保持各层协议之间接口不变的情况下,各层协议可以独立进行开发,并尝试不同的算法。早期提出的一个协议栈包括物理层、数据链路层、网络层、传输层和应用层,另外还有能量管理平台、移动管理平台和任务管理平台,如图5-23所示。 如图524所示的网络协议栈对原始模型进行了改进,加入了定位和时间同步子层,并用倒L型描述这两个子层。另外还增加了QoS管理及网络管理等功能。 2 ZigBee协议栈

目前已经有多家公司推出支持ZigBee的无线收发芯片、ZigBee开发套件及ZigBee协议栈等,如Microchip的PICDEMZ Demo Kit及其ZigBee协议栈、飞思卡尔的MC13191/92开发者初级套件及其协议栈、Figure8的Z-Stack ZigBee 协议栈等,国内也涌现出了不少专门从事ZigBee开发的公司。在此介绍Microchip的ZigBeel.0版协议栈。 1.Microchip ZigBee协议栈简介 Microchip的ZigBee1.0版协议栈设计得可以随着ZigBee的发展而发展,它具有以下特点。 ①基于ZigBee规范的0.8版本。 ②使用Chipcon CC2420 RF收发器,支持2.4GHz频带。 ③支持简化功能设备(Reduced Device,RFD)和协调器。 ④在协调器节点中实现对邻接表和绑定表的非易失性存储。 ⑤支持非时隙的星型网络。 ⑥可以在大多数PICl8系列单片机之间进行移植。 ⑦协同多任务处理架构。 ⑧不依赖于RTOS和应用。 ⑨支持Microchip MPLAB?C18和Hi-Tech PICC-18TM C编译器。 ⑩易于添加或删除特定模块的模块化设计。 当然,该协议栈也不是完全支持ZigBee标准中的所有规范,它有以下限制。 ①不完全符合ZigBee协议。 ②不支持群集和点对点网络。 ③无安全和访问控制功能。 ④无路由器功能。 ⑤不提供标准的配置文件,但是包含创建配置文件所必需的所有原始函数。

常用通信协议介绍

常用通信协议介绍 RS-232-C RS-232-C是OSI基本参考模型物理层部分的规格,它决定了连接器形状等物理特性、以0和1表示的电气特性及表示信号意义的逻辑特性。 RS-232-C是EIA发表的,是RS-232-B的修改版。本来是为连接模拟通信线路中的调制解调器等DCE及电传打印机等DTE拉接口而标准化的。现在很多个人计算机也用RS-232-C作为输入输出接口,用RS-232-C作为接口的个人计算机也很普及。 RS-232-C的如下特点:采用直通方式,双向通信,基本频带,电流环方式,串行传输方式,DCE-DTE间使用的信号形态,交接方式,全双工通信。RS-232-C在ITU建议的V.24和V.28规定的25引脚连接器在功能上具有互换性。 RS-232-C所使用的连接器为25引脚插入式连接器,一般称为25引脚D-SUB。DTE端的电缆顶端接公插头,DCE端接母插座。RS-232-C所用电缆的形状并不固定,但大多使用带屏蔽的24芯电缆。电缆的最大长度为15m。使用RS-232-C在200K位/秒以下的任何速率都能进行数据传输。

RS-449 RS-449是1977年由EIA发表的标准,它规定了DTE和DCE 之间的机械特性和电气特性。RS-449是想取代RS-232-C而开发的标准,但是几乎所有的数据通信设备厂家仍然采用原来的标准,所以RS-232-C仍然是最受欢迎的接口而被广泛采用。 RS-449的连接器使用ISO规格的37引脚及9引脚的连接器,2次通道(返回字通道)电路以外的所有相互连接的电路都使用37引脚的连接器,而2次通道电路则采用9引脚连接器。 RS-449的电特性,对平衡电路来说由RS-422-A规定,大体与V.11具有相同规格,而RS-423-A大体与V.10具有相同规格。 V.35 V.35是通用终端接口的规定,其实V.35是对60-108kHz群带宽线路进行48Kbps同步数据传输的调制解调器的规定,其中一部分内容记述了终端接口的规定。 V.35对机械特性即对连接器的形状并未规定。但由于48Dbps-64Kbps的美国Bell规格调制解调器的普及,34引脚的ISO2593被广泛采用。模拟传输用的音频调制解调器的电气条件使用V.28(不平衡电流环互连电路),而宽频带调制解调器则使用平衡电流环电路。

通讯协议

网络通讯协议 服务器端:ARM 客户端:PC IP地址: 端口号:8088 通讯方式:TCP 1.协议格式 FLAG1 LEN ADR COMND DATA SUM FLAG1 双字节帧头,为十六进制的7E7E。 LEN 单字节,从ADR到SUM的字节数(含ADR和SUM)。 ADR 单字节地址(FF为通用地址)。 COMND 单字节,命令字节。 DATA 数据字节,长度不定。 SUM 单字节校验和,SUM=FLAG1+LEN+ADR+COMND+DATA。 应答命令格式:(ARM应答PC机命令) FLAG2 LEN ADR RESP DATA SUM FLAG2 双字节帧头,为十六进制的E7E7。 LEN 单字节,从ADR到SUM的字节数(含ADR和SUM)。 ADR 单字节地址(FF为通用地址)。 RESP 单字节,应答字节。接收命令无误时同命令字节,命令错误时为FF。 DATA 数据字节,长度不定。 SUM 单字节校验和,SUM=FLAG2+LEN+ADR+RESP+DATA。 其中: 2.详细命令格式 a)读取全部参数 命令字:0x00

命令帧格式: 应答: 测试数据: PC: 7e 7e 03 ff 00 fe ARM:e7 e7 25 ff 00 01 02 03 04 05 06 07 07 08 09 5a 0a 5b 0b 5c 0c 5d 0d 5e 0e 5f 0f 50 10 51 11 52 12 53 13 54 14 55 15 fa b)读取序列号 命令字:0x01 命令帧格式: 应答: 测试数据: PC: 7e 7e 03 ff 01 ff ARM: e7 e7 06 ff 01 01 02 03 da c)读取告警字节 命令字:0x02 命令帧格式:

网络通信协议与技术标准分类图

网络通信协议与技术标准分类图(三)【1】 说明:如何观看本文中的清晰的插图?可将鼠标光标放在浏览器显示的插图上,点击右键,选择“图片另存为”一个图片文件放在桌面上。然后鼠标左键双击此图片文件,可自动启用多种显示工具显示出该插图的清晰图像,以便进行数据分析判读。 一、应当正确地看待各种网络通信协议 从上世纪60年代以来,在计算机网络体系的研究发展过程中,很多企业曾经开发了各自知识产权的网络操作系统和网络协议(参看本网站文章《网络通信协议与技术标准简介》)。随着网络安全威胁的日益突出,这些网络协议不能适应新形势的需求,逐渐被淘汰了。今天我们在计算机网络中使用的主流协议,是长期的技术竞争与淘汰的结果,但它们也不是完美的,也存在很多问题,并不断地修正。将来还会有更新的协议来取代我们当前使用的这些协议。各种不同网络协议的出现与消亡是一个优胜劣汰的发展过程,此过程在过去、现在和将来都永远不会停止。 因此应当客观理智地看待我们计算机中Windows提供的各种网络协议和网络服务组件,在计算机网络的使用和管理中要尽量采用新的安全性能好的协议,卸载那些不需要的、存在安全隐患或已经被淘汰的协议。当前校园网和企事业单位的网络中出现的大量安全问题,一个重要的原因是网络管理员和用户没有删除掉计算机中的一些有安全漏洞的网络软件而造成的。网络计算机中安装的协议要尽可能简洁,够用即可,这样就可净化网络数据流,保障计算机网络系统安全高效地稳定运行。在本站的文章《如何保护你自己的网络计算机》中就建议普通网络用户:在计算机的“本地连接属性常规”中,只安装“Internet 协议(TCP/IP)”即可。 二、互联网与早期的局域网操作系统的发展目标是不同的 当前在互联网Internet和内联网Intranet中使用的协议是TCP/IP协议,它的服务目标是:在网络用户之间提供跨网段的、主机对主机的、基于客户机/服务器结构的数据报传输服务(见教材第4章)。因此,万维网的安全重点可以通过加强服务器端的安全防护来保证。 而局域网操作系统的服务目标是:在单位部门内部计算机群之间提供文件共享、打印机共享等信息传输服务,提供网络目录服务,采用对等网络的结构,以此提高单位部门和工作组内部的业务工作效率(见教材第3章82页)。这些网络操作系统的研发和应用必须有一个最基本的安全条件:即在同一局域网内的工作站之间是互相信任的,是不需要互相防备的。如果网络中某台计算机出现了恶意的欺诈行为或安全问题,那么同一局域网内的其他计算机就会面临很大的安全风险。这些网络操作系统在安全防范方面的漏洞属于先天不足,是很难根治的。 由于上述原因,很多曾经盛行一时的网络操作系统对于近年来泛滥的蠕虫、木马、黑客等恶意网络活动缺乏有效的防护能力(本站对此已有另文介绍)。不幸的是广泛使用的Windows操作系统给计算机提供了一些有安全漏洞的、普通用户并不需要的网络协议和模块,这就形成了局域网内部的安全隐患。 近年来局域网操作系统的发展趋势是:直接利用在广域网上成功研发的WWW万维网模式。这种基于Web 的客户机/服务器工作模式,以及TCP/IP协议族,正在成为局域网的主流网络运行模式。而早期那些企业自主知识产权的网络操作系统正在退出历史舞台,但是很多残留的协议和组件模块至今还保留在在我们的

弱电常用几种通讯协议

常用几种通讯协议 发布日期:2011-08-31 来源:互联网作者:manage 浏览次数:1136 核心提示:Modbus Modbus技术已成为一种工业标准。它是由Modicon公司制定并开发的。其通讯主要采用RS232,RS485等其他通讯媒介。它为用户提供了一种开放、灵活和标准的通讯技术,降低了开发和维护成本。Modbus通讯协议由主设备先建立消息格式,格式包括设备地址、功能代码、 Modbus Modbus技术已成为一种工业标准。它是由Modicon公司制定并开发的。其通讯主要采用RS232,RS485等其他通讯媒介。它为用户提供了一种开放、灵活和标准的通讯技术,降低了开发和维护成本。 Modbus通讯协议由主设备先建立消息格式,格式包括设备地址、功能代码、数据地址和出错校验。从设备必需用Modbus协议建立答复消息,其格式包含确认的功能代码,返回数据和出错校验。如果接收到的数据出错,或者从设备不能执行所要求的命令,从设备将返回出错信息。 Modbus通讯协议拥有自己的消息结构。不管采用何种网络进行通讯,该消息结构均可以被系统采用和识别。利用此通信协议,既可以询问网络上的其他设备,也能答复其他设备的询问,又可以检测并报告出错信息。 在Modbus网络上通讯期间,通讯协议能识别出设备地址,消息,命令,以及包含在消息中的数据和其他信息,如果协议要求从设备予以答复,那么从设备将组建一个消息,并利用Modbus发送出去。 BACnet BACnet是楼宇自动控制系统的数据通讯协议,它由一系列与软件及硬件相关的通讯协议组成,规定了计算机控制器之间所有对话方式。协议包括:(1)所选通讯介质使用的电子信号特性,如何识别计算机网址,判断计算机何时使用网络及如何使用。(2)误码检验,数据压缩和编码以及各计算机专门的信息格式。显然,由于有多种方法可以解决上述问题,但两种不同的通讯模式选择同一种协议的可能性极少,因此,就需要一种标准。即由ISO(国际标准化协会〉于80年代着手解决,制定了《开放式系统互联(OSI〉基本参考模式(Open System Inter connection/Basic Reference Model简称OSI/RM)IS0- 7498》。 OSI/RM是ISO/OSI标准中最重要的一个,它为其它0SI标准的相容性提供了共同的参考,为研究、设计、实现和改造信息处理系统提供了功能上和概念上的框架。它是一个具有总体性的指导性标准,也是理解其它0SI标准的基础和前提。 0SI/RM按分层原则分为七层,即物理层、数据链路层、网络层、运输层、会话层、表示层、应用层。 BACnet既然是一种开放性的计算机网络,就必须参考OSIAM。但BACnet没有从网络的最低层重新定义自己的层次,而是选用已成熟的局域网技术, 简化0SI/RM,形成包容许多局域网的简单而实用的四级体系结构。 四级结构包括物理层、数据链路层、网络层和应用层。

相关文档