文档库 最新最全的文档下载
当前位置:文档库 › 基于Matlab的光学衍射仿真

基于Matlab的光学衍射仿真

基于Matlab的光学衍射仿真
基于Matlab的光学衍射仿真

基于Matlab的光学衍射实验仿真

摘要

光学试验中衍射实验是非常重要的实验. 光的衍射是指光在传播过程中遇到障碍物时能够绕过障碍物的边缘前进的现象, 光的衍射现象为光的波动说提供了有力的证据. 衍射系统一般有光源、衍射屏和接受屏组成, 按照它们相互距离的大小可将衍射分为两大类, 一类是衍射屏与光源和接受屏的距离都是无穷远时的衍射, 称为夫琅禾费衍射, 一类是衍射屏与光源或接受屏的距离为有限远时的衍射称为菲涅尔衍射。

本文用Matlab软件对典型的衍射现象建立了数学模型,对衍射光强分布进行了编程运算,对衍射实验进行了仿真。最后创建了交互式GUI界面,用户可以通过改变输入参数模拟不同条件下的衍射条纹。

本文对于衍射概念、区别、原理及光强分布编程做了详细全面的介绍

关键字:Matlab;衍射;仿真;GUI界面;光学实验

Matlab-based Simulation of Optical Diffraction Experiment

Abstract

Optical diffraction experiment is a very important experiment. is the diffraction of light propagation of light in the obstacles encountered in the process to bypass the obstacles when the forward edge of the phenomenon of light diffraction phenomenon of the wave theory of light provides a strong Evidence. diffraction systems generally have light, diffraction screen and accept the screen composition, size according to their distance from each other diffraction can be divided into two categories, one is the diffraction screen and the light source and the receiving screen is infinity when the distance between the diffraction Known as Fraunhofer diffraction, one is diffraction screen and the light source or accept a limited away from the screen when the diffraction is called Fresnel diffraction.

In this paper, Matlab software on a typical phenomenon of a mathematical model of diffraction, the diffraction intensity distribution of the programming operation, the diffraction experiment is simulated. Finally, create an interactive GUI interface, users can change the input parameters to simulate different conditions of the diffraction pattern.

This concept of the diffraction, difference, intensity distribution of programming principles and a detailed comprehensive description

Key word: matlab;diffraction; simulation; gui interface; optical experiment

目录

1 绪论 (1)

1.1光学仿真的研究意义 (1)

1.2国内外研究现状 (2)

1.3M ATLAB仿真的优越性 (2)

1.4仿真的主要内容 (2)

2 衍射 (3)

2.1光的衍射现象 (3)

2.1.1衍射定义 (3)

2.1.2光的衍射现象 (3)

2.2惠更斯——费涅耳原理 (6)

2.2.1原理表述 (6)

2.2.2原理的定量表达式 (6)

2.3夫琅禾费原理 (7)

2.3.1夫琅禾费衍射的装置 (8)

2.3.2夫琅禾费矩孔衍射 (9)

2.3.3夫琅禾费单缝衍射 (10)

2.3.4夫琅禾费多缝衍射 (11)

2.3.5多缝衍射图样 (12)

2.4菲涅尔衍射原理 (13)

2.4.1菲涅尔半波带法 (13)

2.4.2菲涅尔单缝衍射 (14)

2.4.3矩孔菲涅尔衍射 (15)

3 夫琅禾费衍射仿真 (16)

3.1夫琅禾费单缝衍射仿真 (17)

3.2夫琅禾费多缝衍射仿真 (19)

3.3夫琅禾费矩孔衍射仿真 (20)

4 菲涅尔衍射仿真 (27)

4.1菲涅尔方孔衍射仿真 (23)

4.2菲涅耳单缝衍射仿真 (26)

5 交互式GUI界面 (29)

6 总结 (30)

参考文献 (31)

致谢 (33)

毕业设计(论文)知识产权声明 (34)

毕业设计(论文)独创性声明 (35)

附录1(GUI编程) (36)

1 绪论

1 绪论

1.1光学仿真的研究意义

在工程设计领域中,人们通过对研究对象建立模型,用计算机程序实现系统的运行过程和得到运算结果,寻找出最优方案,然后再予以物理实现,此即为计算机仿真科学。在计算机日益普及的今天,计算机仿真技术作为虚拟实验手段己经成为计算机应用的一个重要分支。它是继理论分析和物理实验之后,认识客观世界规律性的一种新型手段。计算机仿真过程是以仿真程序的运行来实现的。仿真程序运行时,首先要对描述系统特性的模型设置一定的参数值,并让模型中的某些变量在指定的范围内变化,通过计算可以求得这种变量在不断变化的过程中,系统运动的具体情况及结果。仿真程序在运行过程中具有以下多种功能(l)计算机可以显示出系统运动时的整个过程和在这个过程中所产生的各种现象和状态。具有观测方便,过程可控制等优点;

(3)借助计算机的高速运算能力,可以反复改变输入的实验条件、系统参数,大大提高实验效率。

因此,计算机仿真具有良好的可控制性(参数可根据需要调整)、无破坏性(不会因为设计上的不合理导致器件的损坏或事故的发生)、可复现性(排除多种随机因素的影响,如温度、湿度等)、易观察性(能够观察某些在实际实验当中无法或者难以观察的现大幅度节省实验所耗费的人力物力,特别是在一些重复实验工作强度较大且对实验器材、实验环境等要求较苛刻的情况下,如在大型激光仪器的建造过程中,结合基准实验的仿真计算结果可为大型激光器的设计和优化提供依据。

仿真光学实验也可应用于基础光学教学。光学内容比较抽象,如不借助实验,学生很难理解,如光的干涉、菲涅耳衍射、夫琅禾费衍射等。国外著名的光学教材配有大量的图片(包括计算和实验获得的图片),来形象地说明光学中抽象难懂的理论。光学实验一般需要稳定的环境,高精密的仪器,因此在教室里能做的光学实验极为有限,而且也受到授课时间的限制。为了克服光学实验对实验条件要求比较苛刻的缺点,可采用计算机仿真光学实验,特别是光学演示实验,配合理

论课的进行,把光学课程涉及的大多数现象展示在学生面前,以加深对光学内容的理解。如利用计算机仿真联合变换相关实验,可以得到清晰的相关峰,而在实验中液晶光阀的分辨率较低,很难得到清晰的相关峰;又如光学菲涅耳衍射与夫琅禾费衍射它们之间的演化规律,清楚地说明二者之间的联系与区别。学生们可以根据对光学原理和规律的理解,自己设置在仿真光学实验中的可控参数,探索和发现光学世界的奥秘,调动学习的积极性。

1.2 国内外研究现状

在科学计算方面,国外的光学实验仿真是在模拟设计和优化光学系统的过程中发展起来的。在这方面,美国走在最前面,其中最具代表性的是劳伦斯利弗莫尔实验室光传输模拟计算软件Prop92及大型总体优化设计软件CHAINOP和PROPSUI法上有独到之处,主要体现在其快速傅里叶变换的计算效率很高:软件采用特殊方法能够处理小于计算分辨率的灰尘点的衍射过程以及截止频率小于计算网格分辨最小频率的滤波过程等。另外,该软件图形显示界面友好,运行稳定。我国用于科学研究的光学实验计算机数值仿真软件虽开发较晚,但也己经取得了显著成绩。特别是年,神光一川原型装置TIL分系统集成实验的启动为高功率固体激光驱动器的计算机数值模拟的研究创造了条件。目前己基本完成的SG99光传输可靠,模拟计算软件的开发,推出的标准版本基本能稳定运行,对SG99主要计算模块的验证结果表明SG99对能流放大、线性传输、非线性传输的计算是合理可靠的,其中线性传输的计算模块的计算精度与国外同类软件Fresnel相当;目前该软件已经应用于神光一Ⅲ主机可行性论证的工作中。

在光学教学方面,国外己有相关的配有光盘演示光学实验的教材,该教材主要针对高年级学生和研究生使用。其中不仅详尽的介绍了几何光学、物理光学、光学成像技术及图像处理技术,而且利用现在普遍使用的软件工具Matlab对它们进行了系统的仿真。也有针对理科和工科低年级学生使用的光学教材,该教材使用Matchcad绘制各种逼真的光学仪器,创造出仿真的光学实验室,学生可利用其进行探索和发现性学习,充分调动学生的积极性。还有网络版光学教材,该

教材采用进行光学仿真计算,结合LiveGraPhic3DJaval.1的动画制作功能在网络上实时演示各种光学实验的结果图。我国光学教材在利用计算机仿真方面相对落后,至今没有同类教材出现。在2003年北京举行的网络教育软件展上,有关光学实验的网络教学软件都偏重于理论分析方面,对计算机应用于光学实验的仿真方面未给与充分重视。结合国家十五教材建设计划,在光学实验仿真方面进行大量的研究,各项研究工作将在后续各章中一一介绍。

1.3 Matlab仿真的优越性

Matlab是Mathworks公司于1982年推出的一套高性能的数值计算和可视化软件。它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便、界面友好的用户环境。它还包括了ToolBox江具箱)的各类问题的求解工具,可用来求解特定学科的问题。其特点是:

(l)可扩展性:Matlab最重要的特点是易于扩展,它允许用户自行建立指定功能的M文件。对于一个从事特定领域的工程师来说,不仅可利用Matlab所提供的函数及基本工具箱函数,还可方便地构造出专用的函数,从而大大扩展了其应用范围。当前支持Matlab的商用Toofbox(工具箱)有数百种之多。而由个人开发的Toolbox则不可计数。

(2)易学易用性:Matlab不需要用户有高深的数学知识和程序设计能力,不需要用户深刻了解算法及编程技巧。

(3)高效性:Matlab语句功能十分强大,一条语句可完成十分复杂的任务。如ffi语句可完成对指定数据的快速傅里叶变换,这相当于上百条C语言语句的功能。它大大加快了工程技术人员从事软件开发的效率。据Mathworks公司声称,Matlab软件中所包含的Matlab源代码相当于70万行C代码。

由于Matlab具有如此之多的特点,在欧美高等院校,Matlab已成为应用于线性代数、自动控制理论、数理统计、数字信号处理、时间序列分析、动态系统仿真等高级课程的基本教学工具;在研究单位、工业部门,Matlab也被广泛用于研究和解决各种工程问题。当前在全世界有超过40万工程师和科学家使用它来分析和解决问题。

1.4 仿真的主要内容

本课题主要培养学生进行光学设计以及计算机仿真的综合能力。光的衍射现象是光学重要物理现象之一,在大学物理课程学习中占有重要的地位,用计算机对光衍射现象的模拟是对其物理本质更好的理解和补充。本课题使用Matlab软件结合所学的物理光学中光的衍射原理,对夫琅禾费衍射实验和菲涅

尔衍射的光强分布进行编程运算,包括了单缝,多缝以及矩空缝宽条件下,并输出计算得到的衍射图样分布,对实验现象进行仿真。最后做成了用户可以通过改变不同的输入参数条件下就模拟出不同的衍射实验的GUI交互式界面。设置的计算参数观察仿真图样的变化规律,给出物理光学理论解释。本课题涉及到光学知识,计算机仿真等知识内容的综合运用。

2 衍射

2 衍射

2.1光的衍射现象

2.1.1衍射定义

当波传播过程中遇到障碍物时,波就不是沿直线传播,它可以到达沿直线传播所不能达到的区域。这种现象称为波的衍射现象(或绕射现象)(原因是波阵面受到了限制而产生的)。

(1) 理解衍射现象的两个要点:

①光波的波面可以看作是连续分布的次波源;

②次波源发射的次波满足相干条件,观察场中衍射光强的重新分布是次波相干叠加的结果

(2)衍射现象的特点:

①光束在什么方向受限制,衍射图样就沿什么方向扩展.

②光束被限制得越厉害,衍射图样越扩展,衍射效应越强.

③λ/a < 1/1000时,衍射现象不明显;

1/100 <λ/a < 1/10时,衍射现象明显;

λ/a ≥1时,衍射向散射过渡;

λ/a →0时,衍射现象消失,光波按几何光学规律传播.

④光的衍射与干涉在本质上是一样的,都遵循光波的叠加原理。

(3)衍射的分类

①Fresnel 衍射:光源和接收屏距离衍射物有限远

②Fraunhofer 衍射:光源和接收屏距离衍射物无限远。

2.1.2光的衍射现象

在日常生活中水波和声波的衍射现象是较容易看到,但光的衍射现象却不易看到,这是因为光波的波长较短,它比衍射物线度小得多之故。如果障碍物尺度与光的波长可以比较时,就会看到衍射现象。如下图,S 为线光源,K 为可调节宽度的狭缝,E 为屏幕(均垂直纸面),高缝宽比光的波长大得多时,E 上出现一光带(可认为光沿直线传播),若缝宽缩小到可以与光的波长比较时(m 410 数量级以下),在E 上出现光幕虽然亮度降低,但范围却增大,形成明暗相间条纹。其范围超过了光沿直线所能达到的区域即形成衍射。

波的衍射现象在我们学习惠更斯原理时就已经接触到了,由于波动的特性,因而水波穿过小桥同时要向两旁散开,人站在大树背后时照样能听到树前传来的声音,光线在一定的条件下(衍射物的线度与波长可以比较)就会拐弯,等。此外,在我们学习双缝干涉时,也包含了衍射的因素,若不是光线能拐弯,经过双缝的光线怎样能相遇呢?衍射是一切波动所具有的共性,衍射是光具有波动性的一种表现。

2.2惠更斯——费涅耳原理

2.2.1原理表述

惠更斯指出:波在介质中传播到的各点,都可以看作是发射子波的波源,其后任一时刻这些小波的包迹就是该时刻的波阵面。此原理能定性地说明光波传播方向的改变(即衍射)现象,但是,不能解释光的衍射中明暗相间条纹的产生。原因是这一原理没有讲到波相遇时能产生干涉问题,因此费涅耳对惠更斯远离做了补充,费涅耳假设:从同一波阵面上各点发出的子波同时传播到空间某一点时,各子波间也可以相互迭加而产生干涉。经过发展的惠更斯原理成为惠更斯费涅耳原理。根据这一原理,如果已知光波在某一时刻的波阵面,就可以计算下一时刻光波传到的点的振动。

2.2.2原理的定量表达式

如图所示,S 为某时刻光波波阵面,s d 为S 面上的一个面元,n 是s d 的法向矢量,P 为S 面前的一点,从s d 发射的子波在P 点引起振动的振幅与面积元DS 成正比,与s d 到P 点的距离R 成反比(因为子波为球面波),还与r 同s d 间夹角α有关,至于子波在P 点引起的振动位相仅取决于R ,DS 在P 处引起的振动可表示为

)2cos()(λ

πωαr t r ds k dy -=

式中ω为光波角频率,λ为波长,)(αk 是α的一个函数。应该指出,α越大在P 点引起的振幅就越小,费涅耳认为2

π

α≥时,0≡dy ,因而强度为零。这也就解

释了子波为什么不能向后传播的问题。 整个波阵面S 在P 产生的合振动为何,由惠更斯——费涅耳原理有:

??-==s r t r ds k dy y )2cos()(λ

πωα 上式是惠更斯——费涅耳原理的定量表达式。在一般情况下,此式积分是比较复杂的,在某些特殊情况下积分比较简单,并可以有矢量加法代替积分。

2.3 夫琅禾费原理

光的衍射可以分为菲涅尔衍射和夫琅禾费衍射,本节将首先从实验看一下这两类衍射现象的一些特点,考察单色平面光波垂直照射不透明屏上的圆孔发生的衍射现象,实验如图所示。

实验表明,在圆孔后不同距离的三个区域内(以A 、B 、C 表示),在观察屏上看到的光波通过圆孔的光强分布,即衍射图样是很不相同的。对于靠近在圆孔的A 区内的观察屏,看到的是边缘清晰,形状和大小与圆孔基本相同的圆形光斑。它可以看成是圆孔的投影,即光的传播可看成是沿直线进行的,衍射现象不明显。当观察屏向后移动,进入B 区时,我们看到光斑省略为变大,边缘逐渐模糊,并

且光斑内出现亮暗相间的圆形条纹,衍射现象此时已明显起来。在B 区内,若观察屏继续后移,光斑将不断扩大,且光斑内圆形条纹数减少,光斑中心有亮暗交替的变化。这表明,在B 区内随着距离的变化,衍射光强分布的大小范围和形式都发生变化。在。此时的衍射属于夫琅禾费衍射。通常,B 区和C 区分别称为近场区和远场区,它们距离衍射屏有多远,还要取决于圆孔的大小和入射光的波长。对一定波长的光来说,圆孔越大,相应的距离也越远。例如,对于光波为600nm 和圆孔直径为2cm 的情形,B 区的起点距离要大于25cm ,而C 区距离要远大于160m 。由于C 区距离远大于衍射圆孔的直径,所以通常我们把夫琅禾费衍射看成是在无穷远处发生的衍射。

2.3.1夫琅禾费衍射的装置

我们已经知道,观察夫琅禾费衍射需要把观察屏放置离衍射孔径很远的地方,其重置距离要满足

()π<<+1max 2

12

12z y x k

对于光波600nm 和孔径宽度为2cm 的夫琅禾费衍射,1z 必须大于大于160m ,取10倍就是1600m 。这一条件在实验室一般很难实现,所以只好用透镜来缩短距离。 'P 点是远离衍射孔径∑的观察屏上的任一代表点,由于'P 很远,所以在P 点的光振动可以认为是面上各点同一方向(θ方向)发出的光振动在孔径后紧靠孔径处放置一个焦距为f 的透镜,则由透镜的性质,对应于θ方向的光波将通过透镜汇聚于焦面上的一个点P 。所以,图中P 点对应,在焦面上观察到的衍射图样与没有透镜时在远场观察到的衍射图样相似,只是大小比例缩小为f/z 。这对于我们只关心的衍射图样的相对强度分布来说,并无任何影响。得到夫琅禾费公式

因此,我们可以说,除了一个二位相位因子外,夫琅禾费衍射的复振幅分布是衍射屏平面上复振幅分布的傅里叶变换。在计算夫琅禾费衍射的光强分布时,二次相位因子不起作用(它与自身的复共轭相乘时自动消失),所以夫琅禾费的光强分布可由傅里叶变换式直接求出。夫琅禾费衍射公式这一意义,不仅表明可由用傅里叶变换方法来计算夫琅禾费衍射的问题,而且表明傅里叶变换的模拟运算可以利用光学方法来实现,在现代光学中其意义十分重要。

2.3.2夫琅禾费矩孔衍射

在夫琅禾费衍射装置中,若衍射孔径是矩形孔,在透镜2L 的后焦面上便可获得矩孔的夫琅禾费衍射图样。图所示一个沿1x 方向宽度a 比沿1y 方向宽度b 小的矩孔的衍射图样。它的主要特征是,衍射亮斑集中分布在互相垂直的两个轴(x 轴和y 轴)上,并且x 轴上亮斑的宽度比y 轴上亮斑的宽度大,这一点与矩孔在两个方向上的宽度关系正好相反。下面我们利用夫琅禾费衍射计算公司来计算矩形孔衍射图样的强度分布。

选取矩孔中心作为坐标原点C ,观察平面P 点复振幅为

()()()()0

21110sinc sinc exp 2exp ,~122

1sin 221sin 11111221ikL b a iky b b ikx ikL e f

ab a c dy e dx e e f a c dy dx yy xx f ik f y x f ik f a c y x E βαθθ'='=??????+-????????????

?++'=????----∑ 其中)exp('

'

ikf f CA C = P 点的强度220)sin ()sin (ββa a I I = 式中,βα和点的强度,和00P I 分别为

2/,2k kvb la ==βα 式中就是所求的夫琅禾费衍射的强度分布公式。式中包含两个因子,一个因子依赖于坐标x 或者方向余弦l ,另一个因子依赖于坐标y 或方向余弦w ,表明所考察的P 点的强度与它的两个坐标有关。矩孔衍射在y 轴上的强度分布由

20)sin (ββ

I I =

决定,它可以利用同样的方法方法讨论。如果矩孔的a 和b 不等,那么沿x 轴和

y 轴相邻暗点的距离不同。若b>a,则沿着y 轴较沿x 轴的暗点间距为密,在x 轴和y 轴各点的光强度,要根据它们的坐标进行计算,从上面的分析我们不难明白,强度为零的地方是一些和矩孔边平行的直线,亦即平行于x 轴和y 轴的直线,在两组正交暗线形成的一个个矩形格子内,各有一个亮斑。可以看出,中央亮斑的强度最大,其他亮斑的强度比中央亮斑要小得多,所以绝大部分光能集中在中央亮斑内。中央亮斑可认为是衍射扩展的主要范围,它的边缘在x 和y 轴上分别由条件 λθλθ±=±=y x b a sin sin 和 决定。若以坐标表示,则有 f b

y f a x λλ±=±=00, 可见,衍射扩展与矩孔的宽度成反比,而与光波波长成正比。当>>λ孔宽时,衍射扩展趋于零,衍射效应可以忽略,所得结果与几何光学的结果一致。所以,在几何光学可以看成是波长0→λ的极限情况。

2.3.3夫琅禾费单缝衍射

如果矩孔一个方向的宽度比另一个方向的宽度大得多,比如b>>a ,矩孔就变成了狭缝。单缝的夫琅禾费衍射,由于入射光在y 方向的衍射效应可以忽略,衍射图样只分布在x 轴上。显然,单缝衍射在x 轴上的衍射光强分布公式也是 在衍射理论中通常称为单缝衍射因子。矩孔衍射的相对强度0I I 是两个单缝衍射因子的乘积。根据前面的讨论,可知在单缝衍射图样中,中央亮纹是在下式决定的两个暗点范围内:

f a

x λ±=0 这一范围集中了单缝衍射的绝大部分能量。在宽度上,它是其他亮纹的两倍。在单缝衍射实验中丝测径仪来精确测定金属丝或者纤维丝的直径。因为直径为a 的细丝和不透明屏上的距离为a 的单缝可看成是一对互补屏,所以应用了巴俾涅原理很容易找到细丝衍射图样和单缝衍射图样的关系。在单缝衍射的讨论中,已经知道,衍射条纹的间距(相邻两暗纹之间的距离

f a x e λ

=?=

因此,直径为a 的细丝的衍射条纹间距也有上式表示。在实际测量中,只要测量出细丝的衍射间距间距,便可以由上式计算细丝的直径。目前已把细丝测量仪的生产过程做连续的动态监测。

2.3.4夫琅禾费多缝衍射

多缝夫琅禾费衍射装置如图所示,图中S 是与图面垂直的线光源,位于透镜1L 的焦面上;G 是开有多个等宽等间距狭缝(缝宽为d )的衍射屏,多缝的方向与线光源平行。多缝的衍射图样在透镜2L 的焦面上观察。假如多缝的取向是1y 方向,那么很显然,多缝衍射图样的强度分布只沿着x 方向变化,衍射条纹是一些平行于y 轴的亮暗条纹。

多缝衍射图样的强度分布同样应该用夫琅禾费衍射公式进行计算,这时积分区域是多个狭缝露出的波面。不过,我们也可以利用上节得到的结果来简化计算,无须逐个缝进行积分运算。在1x 方向上两个相距为d 的平行等宽狭缝在P 点产生的复振幅有一位相差θλπδsin 2d =

,而单个P 点产生的振幅为

因此,P 点光强为2202sin 2sin sin ?????? ?

???? ??=δδN a a I I 式中2

~00E I =,是单缝在0P 点的光强

度。上式便是N 缝衍射的强度分布公式。容易看出,当N=2时,上式就是双缝

衍射的强度公式。式中包括两个因子:单缝衍射因子2)sin (a

a 和多束光干涉因子,表明多缝衍射也是衍射和干涉两种效应共同作用的结果。单缝衍射

因子只与单内引入的振幅和位相的变化)有关而多光束干涉因子来源于狭缝的周期性排列,与单缝本身的性质无关。因此,如果有N 个性质相同的缝在一个方向上的周期排列起来,或者N 个性质相同的其他形状的孔径在一个方向上周期性排列起来,它们的夫琅禾费衍射图样的强度分布式中就将出现这个因子。这样,只要把单个衍射孔径的衍射因子求出来,将它乘上多光束干涉因子,便可以得到这种孔径周期排列的衍射图样的强度分布。这个规律对于求多个周期排列的孔径的衍射是很有用的。

2.3.5多缝衍射图样

多缝衍射图样中的亮纹和暗纹位置可通过分析多光束干涉因子和单缝衍射因子的极大值和极小值条件得到。当λθm d =sin ......2,1,0±±=m 时,它有极大值,其数值为2N 。这些极大值称为主极大。当

λθ???

? ??+N m m d 'sin 1,.....2,1,.....;2,1,0'-=±±=N m m 时,它有极小值,其数值为零。不难看出,在两个相邻主极大之间有N-1个零值。相邻两个零值之间(1'=?m )的角距离θ?,相邻两个主极大与相邻一个零值之间的角距离而是θ?,所以主极大的半角宽度为

表明缝数N 越大,主极大的缝宽越小。此为,在相邻两个零值之间也有一个极大值。这些极大值叫做次极大,它们的强度比主极大要弱得多。可以证明,次级大的强度与它离开主极大的远近有关,但主极大旁边的最强的次极大,其强度也是只有主极大强度的4%左右。显然,次极大的宽度也随N 增大而减小,当N 是一个很大的数目时,它们将于强度零点混成一片,成为衍射图样的背影。对应4个缝的干涉因子的曲线,这时在两相邻主极大之间有3个零点,2个次极大。可以看出,与双缝衍射的情况类似,各级主极大的强度也受到单缝衍射因子的调制。各级主极大的强度为

202sin ??

? ??=a a I N I m 它们是单缝衍射在各级主极大位置上产生的强度的2N 倍。其中零级主极大的强

度最大,等于02I N 。如果对应于某一级主极大的位置,0sin 2

=??? ??a a ,那么该级主极大的强度也降为0,该级主极大就消失了,我们知道这就是缺级。缺级的规律如上述,还可以看出,各级主极大的相对强度与缝数N 无关,它只依赖于缝距d 与缝宽a 之比。

2.4菲涅尔衍射原理

菲涅尔衍射是在在菲涅尔近似成立的距离上观察到的衍射现象。相对于观察夫琅禾费衍射而言,观察菲涅尔衍射是在离衍射屏比较近的地方。衍射屏上圆孔直经为2cm ,光波波长600nm ,这时为满足菲涅尔近似,要求观察屏到衍射屏的距离大于25cm ,而

菲涅尔衍射的一般装置中,S 是点光源,K 是开有某种形状孔径∑的衍射屏(也可以是一个很小的不透明屏),M 是观察屏,在距离衍射屏不太远的地方。通常光源离衍射屏的距离都要比衍射屏上的孔径大得多,为处理简明起见,可以认为光源发出的光波垂直照射在孔径上。在某些特别需要精确的情况下,可以不用这一假设,但处理方法完全相同。

2.4.1菲涅尔半波带法

考察单色平面波垂直照射圆孔衍射屏的情形,我们利用菲涅尔波带法来决定0P 点的光强度,0P 光强度位于通过圆孔中心C 且垂直于圆孔平面的轴上。假设单色平面波在圆孔范围内可以按照如下方法:以0P 为中心,以

λλ++11,2

z z …..为半径分别做出一系列球面,每个球面都与∑相交成圆,而∑ 则被划分一个环带,在这些环带中,两相邻带的相应点到0P 点的光程差为半个波长,这些环带因此叫做菲涅尔半波带或菲涅尔波带。显然,0P 点的复振幅就

是波面∑上所有波带发出的子波在0P 点产生的复振幅的叠加。由惠更斯-菲涅尔原理得知,各个波带在0P 点产生的振幅正比与该带的面积,反比于该带到0P 的距离,因此,第j 个波带(圆心C 所在的为第1波带,向外依次为第2,,…j,波带)在0P 点产生的振幅可以表示为

2

c o s 1~θ+?=j j

j r A C E 式中C 是比例常数,j r 是j 个波带到0P 点的距离,j A 是第j 个波带的面积。这样一来,各波带在差为半波长,它们发出的子波到达0P 点产生位相差为π。因此,若把奇数波带在0P 点产生的复振幅的位相为零,则偶数波带在0P 点产生的复振幅的位相就是π;相邻波带产生的复振幅分别为一正一负。这样,个波带在0P 产生的总振幅总和为

~

~3~2~1~.......En

E E E E +++= ?????????≈-≈+=)(022n 22~~1

~1~~1~为偶数为奇数)(n E E E E E E n n

另一方面,对于一定的圆孔大小和光波波长,波带数n 取决于0P 点的距离1z ,即1z 不同的0P 点对应不同的波带数n 。因此,当把观察屏沿光轴C 0P 平移时,同样可以看到0P 点忽明忽暗地交替变化。利用菲涅尔衍射的计算公式可以证明,0P 点的光强随1z 的变化是大所致)。因此表明这时0P 点的复振幅等于第1个波带的复振幅的一半,强度为第1波带产生的强度的1/4。由此可见,当圆孔包含的波带的数目很大时,圆孔的大小不再影响0P 点的光强度。这实际上也是从光的直线传播定律出发所得出的结论。所以我们可以说:从波动概念和从光的直线传播概念得出的结论,当圆孔包含的波带的数目很大时开始吻合。

2.4.2菲涅尔单缝衍射

衍射装置如图所示。单缝宽度为a ,缝长∞,缝长方向平行于1y 轴。当选取坐

标原点C 通过单缝中心时,观察屏上的复振幅分布为:

这就是单缝的菲涅尔衍射的公式。它表示,单缝菲涅尔衍射同样可以利用菲涅尔积分和科纽蜷线来计算。在科纽蜷线图上,上式上式大括号里面的两个复数差也有一个矢量表示,矢量起点在 1122z a x w λ??? ??-= 终点在1222z a x w λ??? ??+= 。由于1

122z a w w w λ=-=? 对于一个特定的装置,它是常数,与x 无关,所以不管考察观察屏上x 坐标为何值的点,这个矢量两端点之间的曲线长度相等。这样一来,当矢量两端点在科纽蜷线上w=0附近(两端点位置取决于x 值,当x=0时,两端点对称位于原点两边),一般地矢量长度较短。不过,矢量实际的长短变化变化与缝宽a 很有关系,不能一概而论。

2.4.3矩孔菲涅尔衍射

设矩孔在1x 方向的宽度为a ,在1y 方向的宽度为b 。选取矩孔中心为坐标原点,由式,得到矩孔衍射公式

()()()()()??????????????????? ??--????????? ??+???????????????????? ??--????????? ??++=??????-??????-=∞--??11112~

12221112221111~

2222222212exp 2exp exp ,z b y F z b y F z a x F z a x F i E dy y y z ik dx x x z ik z i ikz y x E b b a a λλλλλ

该式表明,矩孔衍射图样的振幅(强度)分布是两个互相垂直的单缝衍射图样

3 夫琅禾费衍射仿真

3 夫琅禾费衍射仿真

光的衍射现象是光的波动性的重要表现之一.波动在传播过程中,只要其波面受到某种限制,如振幅或相位的突变等,就必然伴随着衍射的发生. 然而,只有当这种限制的空间几何线度与波长大小可以比拟时,其衍射现象才能显著地表现出来. 所有光学系统,特别是成像光学系统,一般都将光波限制在一个特定的空间域内,这使得光波的传播过程进光学滤波器设计等具有非常重要的意义. 然而,由于光波波长较短,与此相应的复杂形状衍射屏的制作较困难,并且实验过程中对光学系统及环境条件的要求较高. 因而在实际的实验操作和观察上存在诸多不便. 计算机仿真以其良好的可控性、无破坏、易观察及低成本等优点,为数字化模拟现代光学实验提供了一种极好的手段. 本文探讨利用MATLAB 软件实现对任意形状衍射屏的夫琅禾费衍射实验的计算机仿真.夫琅禾费衍射实验装置如图

由基础光学可知,任意衍射屏的夫琅禾费衍射可借助两个透镜来实现. 如图1 所示,位于透镜L1物方焦平面上的点源S 所发出的单色球面光波经L1 变换为一束平面光波,照射在衍射屏AB 上. 按照平面波理论,衍射屏开口处的波前向各个方向发出次波,方向彼此相同的衍射次波经透镜L2 会聚到其像方焦平面的同一点

P上. 满足相长干涉条件时,该点为亮点;满足相消干涉条件时, 该点为暗点. 所有亮点和暗点的集合构成了该衍射屏的夫琅禾费衍射图样. 其次,从傅里叶光学角度, 任意衍射屏在单位振幅的单色平面波垂直照射下, 其夫琅禾费衍射光场复振幅即衍射屏透射系数的傅里叶变换, 而衍射图样实际上就是衍射屏的空间频谱强度分布.因此,可以用两种方法实现夫琅禾费衍射实验的仿真:1) 直接计算法. 通过推导给定衍射屏的夫琅禾费衍射图样强度分布公式, 得到观察屏上强度分布与位置的关系, 然后利用绘图函数将其光强度分布曲线和衍射图样绘出;2) 傅里叶变换法. 将衍射屏作为输入图像,经过二维傅里叶变换运算,得到衍

基于Matlab的光学衍射仿真

基于Matlab的光学衍射实验仿真 摘要 光学试验中衍射实验是非常重要的实验. 光的衍射是指光在传播过程中遇到障碍物时能够绕过障碍物的边缘前进的现象, 光的衍射现象为光的波动说提供了有力的证据. 衍射系统一般有光源、衍射屏和接受屏组成, 按照它们相互距离的大小可将衍射分为两大类, 一类是衍射屏与光源和接受屏的距离都是无穷远时的衍射, 称为夫琅禾费衍射, 一类是衍射屏与光源或接受屏的距离为有限远时的衍射称为菲涅尔衍射。 本文用Matlab软件对典型的衍射现象建立了数学模型,对衍射光强分布进行了编程运算,对衍射实验进行了仿真。最后创建了交互式GUI界面,用户可以通过改变输入参数模拟不同条件下的衍射条纹。 本文对于衍射概念、区别、原理及光强分布编程做了详细全面的介绍 关键字:Matlab;衍射;仿真;GUI界面;光学实验

Matlab-based Simulation of Optical Diffraction Experiment Abstract Optical diffraction experiment is a very important experiment. is the diffraction of light propagation of light in the obstacles encountered in the process to bypass the obstacles when the forward edge of the phenomenon of light diffraction phenomenon of the wave theory of light provides a strong Evidence. diffraction systems generally have light, diffraction screen and accept the screen composition, size according to their distance from each other diffraction can be divided into two categories, one is the diffraction screen and the light source and the receiving screen is infinity when the distance between the diffraction Known as Fraunhofer diffraction, one is diffraction screen and the light source or accept a limited away from the screen when the diffraction is called Fresnel diffraction. In this paper, Matlab software on a typical phenomenon of a mathematical model of diffraction, the diffraction intensity distribution of the programming operation, the diffraction experiment is simulated. Finally, create an interactive GUI interface, users can change the input parameters to simulate different conditions of the diffraction pattern. This concept of the diffraction, difference, intensity distribution of programming principles and a detailed comprehensive description Key word: matlab;diffraction; simulation; gui interface; optical experiment

单缝衍射实验实验报告

单缝衍射实验 一、实验目的 1.观察单缝衍射现象,了解其特点。 2.测量单缝衍射时的相对光强分布。 3.利用光强分布图形计算单缝宽度。 二、实验仪器 He-Ne激光器、衍射狭缝、光具座、白屏、光电探头、光功率计。 三、实验原理 波长为λ的单色平行光垂直照射到单缝上,在接收屏上,将得到单缝衍射图样,即一组平行于狭缝的明暗相间条纹。单缝衍射图样的暗纹中心满足条件: (1) 式中,x为暗纹中心在接收屏上的x轴坐标,f为单缝到接收屏的距离;a为单缝的宽度,k为暗纹级数。在±1级暗纹间为中央明条纹。中间明条纹最亮,其宽度约为其他明纹宽度的两倍。 实验装置示意图如图1所示。 图1 实验装置示意图 光电探头(即硅光电池探测器)是光电转换元件。当光照射到光电探头表面时在光电探头的上下两表面产生电势差ΔU,ΔU的大小与入射光强成线性关系。光电探头与光电流放大器连接形成回路,回路中电流的大小与ΔU成正比。因此,通过电流的大小就可以反映出入射到光电探头的光强大小。 四、实验内容 1.观察单缝衍射的衍射图形;

2.测定单缝衍射的光强分布; 3.利用光强分布图形计算单缝宽度。 五、数据处理 ★(1)原始测量数据 将光电探头接收口移动到超过衍射图样一侧的第3级暗纹处,记录此处的位置读数X(此处的位置读数定义为0.000)及光功率计的读数P。转动鼓轮,每转半圈(即光电探头每移动0.5mm),记录光功率测试仪读数,直到光电探头移动到超过另一侧第3级衍射暗纹处为止。实验数据记录如下: 将表格数据由matlab拟合曲线如下:

★ (2)根据记录的数据,计算单缝的宽度。 衍射狭缝在光具座上的位置 L1=21.20cm. 光电探测头测量底架座 L2=92.00cm. 千分尺测得狭缝宽度 d’=0.091mm. 光电探头接收口到测量座底座的距离△f=6.00cm. 则单缝到光电探头接收口距离为f= L2 - L1+△f=92.00cm21.20cm+6.00cm=76.80cm. 由拟合曲线可读得下表各级暗纹距离: 各级暗纹±1级暗纹±2级暗纹±3级暗纹 距离/mm 10.500 21.500 31.200 单缝宽度/mm 0.093 0.090 0.093 单缝宽度计算过程: 因为λ=632.8nm.由d =2kfλ/△Xi,得 d1=(2*1*768*632.8*10^-6)/10.500 mm=0.093mm. d2=(2*2*768*632.8*10^-6)/21.500 mm=0.090mm.

基于matlab干涉系统仿真_

《工程光学》综合性练习一题目:基于matlab的干涉系统仿真 学院精密仪器与光电子工程学院 专业测控技术与仪器

综合练习大作业一 一、要求 3-4人组成小组,对下面给出的各题目利用Matlab等工具进行仿真。 二、仿真题目 1、对于杨氏双缝干涉,改变双缝的缝宽和缝间距,观察干涉图样变化 ①原理图 图中参数 光线波长:lam=500纳米; 双缝距离:d=0.1毫米;(可调) 双缝距接收屏距离:D=1米; 接收屏范围:xs:-0.005~0.005 ys:-0.005~0.005 光源振幅:AI=A2=1; (单位振幅,可调) ②matlab代码: clear; lam=500e-9; %设定波长lam(500纳米) d=0.5e-3; %设定两缝之间距离d(0.5毫米) D=1; %双缝到接收屏距离D(1米) A1=1; %初始两光源均为单位振幅 A2=1; xm=0.005; ym=xm; %接受屏的范围ym,xm(0.01*0.01矩形) n=1001; xs=linspace(-xm,xm,n); %用线性采样法生成两个一位数组xs,ys %(n为总点数) ys=linspace(-ym,ym,n); L1=sqrt((xs-d/2).^2+ys.^2+D^2);%光屏上点(xs,ys)距光源1距离r1 L2=sqrt((xs+d/2).^2+ys.^2+D^2);%光屏上点(xs,ys)距光源2距离r2 E1=A1./sqrt(L1).*exp(1i*L1*2*pi/lam);%光源1在接受屏上复振幅E1 E2=A2./sqrt(L2).*exp(1i*L2*2*pi/lam);%光源2在接受屏上复振幅E2 E=E1+E2; %复振幅叠加为合成振幅E

基于MATLAB的物理光学实验仿真平台构建

毕业设计(论文)开题报告题目:基于Matlab的物理光学实验仿真平台构建 院(系)光电工程学院 专业光信息科学与技术 班级120110 姓名闫武娟 学号120110127 导师刘王云 年月日

开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成。2.开题报告内容必须按教务处统一设计的电子文档标准格式(可从教务处网页上下载)填写并打印(禁止打印在其它纸上后剪贴),完成后应及时交给指导教师审阅。3.开题报告字数应在1500字以上,参考文献应不少于15篇(不包括辞典、手册,其中外文文献至少3篇),文中引用参考文献处应标出文献序号,“参考文献”应按附件中《参考文献“注释格式”》的要求书写。 4.年、月、日的日期一律用阿拉伯数字书写,例:“2005年11月26日”。

这些仿真平台的使用不仅方便了教学,而且也使学生更容易理解物理光实验的基本原理,加深对理论知识的理解与记忆。 2.课题研究的主要内容和拟采用的研究方案、研究方法 2.1课题研究的主要内容 (1). 在光的干涉基本理论基础上,实现两束平面波、球面波的干涉实验,杨氏双缝和杨氏双孔干涉实验,平行平板的等倾干涉实验,楔形平板的等厚干涉实验,牛顿环干涉实验,迈克尔逊干涉实验以及平行平板的多光束干涉实验。 (2). 在菲涅尔衍射及夫琅和费衍射基本理论基础上,实现矩孔、单缝、圆孔、双缝、多缝、平面光栅及闪耀光栅的衍射实验。 2.2 研究方法及方案 物理光学实验可分为两大类:干涉与衍射。光的干涉有光源、干涉装置和干涉图形三个基本要素;衍射分为菲涅尔衍射和夫琅禾费衍射。光学领域的大部分图像及曲线分布都可以用MATLAB 软件加以计算和实现[16], 以杨氏双缝干涉为例,简述实验方案 杨氏双缝干涉模型是典型的分波面干涉,其干涉装置图如图所示,用一个单缝与一个双缝,从同一波面上分出两个同相位的单色光,进而获得相干光源并观察分析干涉图样。 图1.1杨氏双缝干涉实验装置图 2.2.1数学建模 根据干涉的基本原理,点光源S 发出的光波经双缝分解为次波源S 1、S 2,这两个次波源发出的光波在空间相干叠加,继而在其后的接收屏形成一系列明暗相间的干涉条纹。 设入射光波波长为λ,两个次波源的强度相同,且间距为d (1)位相差的计算: 221)2 (y d x r ++ =222)2 - (y d x r +=(2.1) )(*12r r n -=?(2.2)

基于matlab的单缝衍射计算机模拟研究

课程设计说明书(论文) 基于matlab的单缝衍射计算机模拟研究 学院:数理学院 专业班级: 学生姓名: 学生学号: 指导老师: 2014年月号

摘要:美国Mathworks公司推出的MATLAB,是一种集数值计算、符号预算、可视化建模、仿真和图形处理等多种功能于一体的优秀图形化软件。本文将会通过MATLAB软件编程用衍射积分的方法对单缝衍射进行计算机模拟。计算机模拟为衍射实验的验证提供一条简捷、直观的途径。从而可以加深我们对物理原理、概念和图像的理解。 关键词:MATLAB;衍射积分;单缝衍射;计算机模拟 一、单缝衍射原理 惠更斯原理表明,波源发出的波阵面上的每一点都可视为一个新的子波源。这些子波源发出次级子波,其后任一时刻次级子波的包迹决定新的波阵面。惠更斯原理用光波能确定光波的传播方向,但不能确定沿不同方向传播的光振动的振幅。 菲涅尔在次级子波概念的基础上,提出的“子波相干叠加”理论,又称为惠更斯-菲涅尔原理。这个原理表述为:同一波面上的每一微小面元都可以看作是新的振动中心,它们发出次级子波。这些次级子波经传播而在空间某点相遇时,该点的振动是所有这些次级子波在该点的相干叠加。 二、编程原理 把单缝看作是np个分立的相干光源,屏幕上任意一点复振幅为np个光源照射结果的合成,对每个光源,光程差Δ=ypsinΦ,sinΦ=ys/D,光强I=I0(Σcosα)2+(Σsinα)2,其中α=2Δ/λ=πypys/λD 三、程序的编写 编写程序如下: clear lam=500e-9; a=1e-3;D=1; ym=3*lam*D/a; ny=51; ys=linspace(-ym,ym,ny); np=51; yp=linspace(0,a,np); for i=1:ny sinphi=ys(i)/D; alpha=2*pi*yp*sinphi/lam; sumcos=sum(cos(alpha)); sumsin=sum(sin(alpha)); B(i,:)=(sumcos^2+sumsin^2)/np^2; end N=255; Br=(B/max(B))*N;

单缝衍射光强分布的测定

单缝衍射光强分布的测定 光的衍射现象是光的波动性又一重要特征。单缝衍射是衍射现象中最简单的也是最典型的例子。在近代光学技术中,如光谱分析、晶体分析、光信息处理等到领域,光的衍射已成为一种重要的研究手段和方法。所以,研究衍射现象及其规律,在理论和实践上都有重要意义。 实验目的 1. 观察单缝衍射现象及特点。 2. 测定单缝衍射时的相对光强分布 3. 应用单缝衍射的光强分布规律计算缝的宽度α。 实验仪器 光具导轨座,He-Ne 激光管及电源,二维调节架,光强分布测定仪,可调狭缝,狭缝A 、B 。扩束镜与起偏听偏器,分划板,光电探头,小孔屏,数字式检流计(全套)等。 实验原理 光在传播过程中遇到障碍时将绕过障碍物,改变光的直线传播,称为光的衍射。光的衍射分为夫琅和费衍射与菲涅耳衍射,亦称为远场衍射与近场衍射。本实验只研究夫琅和费衍 射。理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。单缝的夫琅和费衍射如图二 所示。 当处于夫琅和费衍射区域,式中α是狭缝宽度,L 是狭缝与屏之间的距离,λ是入射光的波长。 实验时,若取α≤10-4m, L ≥1.00m ,入射光是 He-Ne 激光,其波长是632.8nm,就可满足上述条件。所以,实验时就可以采用如图一装置。 λ<

根据惠更斯-菲涅耳原理,可导出单缝衍射的光强分布规律为 当衍射角?等于或趋于零时,即?=0(或?→0),按式,有 故I=I 0,衍射花样中心点P 0的光强达到最大值(亮条纹),称为主极大。 当衍射角?满足 时,u=k π 则I=0,对应点的光强为极小(暗条纹), k 称为极小值级次。若用X k 表示光强极小值点到中心点P 0的距离,因衍射角ψ甚小,则 故X k =L ?=k λL/α,当λ、L 固定时,X k 与α成反比。缝宽α变大,衍射条纹变密;缝宽α变小,衍射条纹变疏。同时可推导出中央主极大的角度(即±1级暗纹的间距)??=2λ/α,两相邻暗纹的衍射角之差为??= λ/α。两相邻暗纹间的亮纹称为次极大。 sin ? 0 ±1.43λ/α ±2.46λ/α ±3.47λ/α … I I 0 0.47 I 0 0.017 I 0 0.008 I 0 … 各极极大的位置和相应的光强如下图三所示: 实验内容和步骤 实验装置如图一所示,按图搭好实验仪器。实验采用发散度甚小的He-Ne 激光作为光源,满足入射光为平行光的条件。为满足夫琅和费衍射条件,应尽量将显示衍射图像的屏远 ? ?? ? ?=?? ? ??=λ?πsin sin 2 0αu u u I I 1sin lim =u u () ±±±==,2,1sin k k α λ ?α λ ??k ≈≈sin 图三 单缝衍射的相对光强分布曲线

工程光学matlab仿真设计

工程光学仿真实验报告 1、氏双缝干涉实验 (1)氏干涉模型 氏双缝干涉实验装置如图1所示: S 发出的光 波射到光屏上的两个小孔S1 和S2 , S1 和S2 相 距很近,且到S 等距;从S1 和S2 分别发散出的光 波是由同一光波分出来的,所以是相干光波,它们在距离光屏为D 的屏幕上叠加,形成一定的干涉图 样。 图1.1 氏双缝干涉 假设S 是单色点光源,考察屏幕上某一点P ,从S1 和S2 发出的光波在该点叠加 产生的光强度为: I = I1 + I2 + 2 I1 I2 cos δ (1-1) 式中, I1 和I2 分别是两光波在屏幕上的光强度, 若实验装置中S1 和S2 两个缝 大小相等, 则有 I1 = I2 =I0 (1-2) δ= 2π(r2 - r1)/λ(1-3) (1-3) 2221)2/(D y d x r +++= (1-4) 2222)2/(D y d x r ++-= (1-5) 可得 xd r r 22 122=- (1-6) 因此光程差:12r r -=? (1-7) 则可以得到条纹的强度变化规律- 强度分布公式: ]/)([cos 1220λπd r r I I -= (1-8) (2)仿真程序 clear; Lambda=650; %设定波长,以Lambda 表示波长 Lambda=Lambda*1e-9; d=input('输入两个缝的间距 )'); %设定两缝之间的距离,以d 表示两缝之间距离 d=d*0.001; Z=0.5; %设定从缝到屏幕之间的距离,用Z 表示

yMax=5*Lambda*Z/d;xs=yMax; %设定y方向和x方向的围 Ny=101;ys=linspace(-yMax,yMax,Ny);%产生一个一维数组ys,Ny是此次采样总点数 %采样的围从- ymax到ymax,采样的数组命名为ys %此数组装的是屏幕上的采样点的纵坐标 for i=1:Ny %对屏幕上的全部点进行循环计算,则要进行Ny次计算L1=sqrt((ys(i)-d/2).^2+Z^2); L2=sqrt((ys(i)+d/2).^2+Z^2); %屏上没一点到双缝的距离L1和L2 Phi=2*pi*(L2-L1)/Lambda; %计算相位差 B(i,:)=4*cos(Phi/2).^2; %建立一个二维数组,用来装该点的光强的值 end%结束循环 NCLevels=255; %确定使用的灰度等级为255级 Br=(B/4.0)*NCLevels; %定标:使最大光强(4. 0)对应于最大灰度级(白色) subplot(1,4,1),image(xs,ys,Br); %用subplot创建和控制多坐标轴 colormap(gray(NCLevels)); %用灰度级颜色图设置色图和明暗 subplot(1,4,2),plot(B(:),ys); %把当前窗口对象分成2块矩形区域 %在第2块区域创建新的坐标轴 %把这个坐标轴设定为当前坐标轴 %然后绘制以( b (: ) , ys)为坐标相连的线title('氏双缝干涉'); (3)仿真图样及分析 a)双缝间距2mm b)双缝间距4mm

matlab光学仿真

MATLAB光学仿真实验报告

目录 一、实验目的 (3) 二、实验内容 (3) 三、实验原理 (3) 四.实验结果(各种干涉图样,) (4) 1.平面波与球面波之间的相互干涉 (4) (1)平面波与平面波方向相对的干涉 (4) (2)球面波与球面波 (5) (3)球面波与平面波 (6) 2.双缝干涉 (7) (1)经典杨氏双缝干涉 (7) (2)接收屏在侧面,且二者连线与干涉面垂直 (7) 3.多孔干涉 (8) (1)三孔干涉 (8) (2)四个孔干涉 (9) 4.多个不同方向的平面波 (10) 5.牛顿环与电磁波传播 (10) (1)牛顿环 (10) (2)模拟电磁波动画 (11) 五,实验总结与感想 (11)

一、实验目的 通过对光学现象的仿真,加深对各种光学现象本质的理解,同时,学会利用MATLAB,这种有效工具研究物理光学。 二、实验内容 这次由于时间关系,只研究了光的干涉现象,不过干涉内容很多,按照老师给的实验的提示内容,我每个都做了。并且自己还加了一些内容。按先后顺序非别如下: 1.平面波与球面波之间的相互干涉 (1)平面波与平面波方向相对的干涉,并且调整角度,方向相对干涉。 (2)球面波与球面波,这个研究的比较多,我分别研究了两个光源,三个,四个以及六个光源在与之共面的平面上的干涉,得到许多精美的图案。 (3)球面波与平面波 2.经典的杨氏双缝干涉 由于杨氏干涉比较重要,所以研究的时间相对较长,这个我为了更好的调整参数,采用了先输入数据的方法,之后才运行得到结果,我还增加了研究非单色光的研究。 另外,我还研究了与两个点光源连线相垂直的屏上的干涉,虽然这个不属于杨氏干涉,但是原理其实差不多。 3.多孔干涉 这部分其实原理差不多,只需要设置对参数。这部分分别研究了三孔和四孔的干涉,并且干涉屏的位置也不一样,分为与孔面平行和与孔面平行,总共四中情况,从中自己也找到了规律。 4.多个不同方向的平面波 这部分研究了三个不同方向的片面波与四个方向的平面波,从中得到一些图案,找到了规律。 5.模拟电磁波传播动画(代码借鉴一本参考书的)与牛顿环 为了加深对电磁波传播的理解,做了个模拟电磁波传播的动画,另外,还做了个牛顿环干涉。 三、实验原理 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括

基于Matlab的菲涅尔衍射仿真

南京航空航天大学 高等光学期末报告 题目:基于Matlab的单缝菲涅尔衍射实验仿真 学院 专业 姓名 学号 2014 年12 月30 日

基于Matlab的菲涅尔衍射仿真 摘要 光学试验中衍射实验是非常重要的实验. 光的衍射是指光在传播过程中遇到障碍物时能够绕过障碍物的边缘前进的现象, 光的衍射现象为光的波动说提供了有力的证据. 衍射系统一般有光源、衍射屏和接受屏组成, 按照它们相互距离的大小可将衍射分为两大类, 一类是衍射屏与光源和接受屏的距离都是无穷远时的衍射, 称为夫琅禾费衍射, 一类是衍射屏与光源或接受屏的距离为有限远时的衍射称为菲涅尔衍射。 本文用Matlab软件主要针对单缝菲涅尔衍射现象建立了数学模型,对衍射光强分布进行了编程运算,对衍射实验进行了仿真。 关键字:Matlab;单缝菲涅尔衍射;仿真;光学实验 Abstract Optical diffraction experiment is a very important experiment. is the diffraction of light propagation of light in the obstacles encountered in the process to bypass the obstacles when the forward edge of the phenomenon of light diffraction phenomenon of the wave theory of light provides a strong Evidence. diffraction systems generally have light, diffraction screen and accept the screen composition, size according to their distance from each other diffraction can be divided into two categories, one is the diffraction screen and the light source and the receiving screen is infinity when the distance between the diffraction Known as Fraunhofer diffraction, one is diffraction screen and the light source or accept a limited away from the screen when the diffraction is called Fresnel diffraction. In this paper, Matlab software on a typical phenomenon of a mathematical model of single slit Fresnel diffraction, the diffraction intensity distribution of the programming operation, the diffraction experiment is simulated. Key word: matlab;single slit Fresnel diffraction; simulation; optical experiment

光栅衍射实验的MATLAB仿真

届.别.2012届 学号200814060106 毕业设计 光栅衍射实验的MATLAB仿真 姓名吴帅 系别、专业物理与电子信息工程系 应用物理专业 导师姓名、职称姚敏教授 完成时间2012年5月16日

目录 摘要................................................... I ABSTRACT................................................ II 1 引言 (1) 1.1 国内外研究动态 (1) 2理论依据 (2) 2.1 平面光栅衍射实验装置 (2) 2.2 原理分析 (3) 2.3 MATLAB主程序的编写 (6) 2.4 仿真图形的用户界面设计 (7) 3 光栅衍射现象的分析 (8) 3.1 缝数N对衍射条纹的影响 (8) 3.2 波长λ对衍射条纹的影响 (10) 3.3 光栅常数d对衍射光强的影响 (12) 3.4 条纹缺级现象 (13) 4 总结 (14) 参考文献 (16) 致谢 (17) 附录 (18)

摘要 平面光栅衍射实验是大学物理中非常重要的实验,实验装置虽然简单,但实验现象却是受很多因素的影响,例如波长λ,缝数N,以及光栅常数d。本文利用惠更斯一菲涅耳原理,获得了衍射光栅光强的解析表达式,再运用Matlab软件,将模拟的界面设计成实验参数可调gui界面,能够连续地改变波长λ,缝数N,光栅常数d,从而从这 3个层面对衍射光栅的光强分布和谱线特征进行了数值模拟,并讨论了光栅衍射的缺级现象,不仅有利于克服试验中物理仪器和其他偶然情况等因素给实验带来的限制和误差.并而且通过实验现象的对比,能够加深对光栅衍射特征及规律的理解,这些都很有意义。 关键词:平面光栅衍射;惠更斯-菲涅尔原理;gui;光强分布;Matlab

圆孔矩孔的菲涅尔衍射模拟(matlab实现)-工程光学(20200607000913)

工程光学综合练习-----圆孔、矩孔的菲涅尔衍射模拟

圆孔和矩孔的菲涅尔衍射模拟 一、原理 由惠更斯-菲涅尔原理可知接收屏上的P点的复振幅可以表示为 其中为衍射屏上的复振幅分布, 为倾斜因子。根据基尔霍夫对此公式的 完善,有 设衍射屏上点的坐标为(x1, y1),接收屏上点的坐标为(x, y),衍射屏与接收屏间距离为z1,当满足菲涅尔近似条件时,即 此时可得到菲涅尔衍射的计算公式 把上式指数项中的二次项展开,并改写成傅里叶变换的形式,可以写成上式为菲涅尔衍射的傅里叶变换表达式,它表明除了积分号前面的一个与 x1、y1无关的振幅和相位因子外,菲涅尔衍射的复振幅分布是孔径平面的复振 幅分布和一个二次相位因子乘积的傅里叶变换。 相对于夫琅和费衍射而言,菲涅尔衍射的观察屏距衍射屏不太远。在菲涅尔衍射中,输入变量和输出变量分别为衍射孔径平面的光场分布和观察平面的光场 以及光强分布,考虑到这三个量都是二维分布,而且Matlab主要应用于矩阵数值运算,所以本程序选择用二维矩阵来存储衍射孔径平面和观察平面的场分布,并分别以矩阵的列数和行数来对应平面的直角坐标值(x, y)以及(x1, y1)。 二、圆孔菲涅尔衍射 用MATLAB分别构造表示衍射屏和接收屏的二维矩阵。注意使两矩阵阶次相同,考虑到运算量的要求,采样点数不能过多,所以每个屏的x和y方向各取200到300点进行运算。根据式(4),选取合适的衍射屏和接收屏尺寸和相距的

距离,模拟结果如下: 取典型的He-Ne激光器波长=632.8nm,固定衍射屏和接收屏尺寸和相距的 距离,分别取不同的圆孔半径,得到以下三组衍射图样,其圆孔半径分别为12mm,20mm,50mm 图 1(r=12mm) 图 2(r=20mm)

工程光学matlab仿真

工程光学仿真实验报告1、杨氏双缝干涉实验 (1)杨氏干涉模型 屏 图 , 0(1-8) 2 1 (2)仿真程序 clear; Lambda=650; %设定波长,以Lambda表示波长 Lambda=Lambda*1e-9; d=input('输入两个缝的间距 )'); %设定两缝之间的距离,以d表示两缝之间距离 d=d*0.001; Z=0.5; %设定从缝到屏幕之间的距离,用Z表示 yMax=5*Lambda*Z/d;xs=yMax; %设定y方向和x方向的范围

Ny=101;ys=linspace(-yMax,yMax,Ny);%产生一个一维数组ys,Ny 是此次采样总点数 %采样的范围从- ymax 到ymax,采样的数组命名为ys %此数组装的是屏幕上的采样点的纵坐标 for i=1:Ny %对屏幕上的全部点进行循环计算,则要进行Ny 次计算 L1=sqrt((ys(i)-d/2).^2+Z^2); L2=sqrt((ys(i)+d/2).^2+Z^2); %屏上没一点到双缝的距离L1和L2 Phi=2*pi*(L2-L1)/Lambda; %计算相位差 B(i,:)=4*cos(Phi/2).^2; %建立一个二维数组,用来装该点的光强的值 end %结束循环 NCLevels=255; %确定使用的灰度等级为255级 Br=(B/4.0)*NCLevels; %定标:使最大光强(4. 0)对应于最大灰度级(白色) subplot(1,4,1),image(xs,ys,Br); %用subplot 创建和控制多坐标轴 colormap(gray(NCLevels)); %用灰度级颜色图设置色图和明暗 subplot(1,4,2),plot(B(:),ys); %把当前窗口对象分成2块矩形区域 %在第2块区域创建新的坐标轴 %把这个坐标轴设定为当前坐标轴 %然后绘制以( b (: ) , ys)为坐标相连的线 title('杨氏双缝干涉'); (3)仿真图样及分析 a)双缝间距2mm b)双缝间距4mm c)双缝间距6mm d)双缝间距8mm 图1.2改变双缝间距的条纹变化 由上面四幅图可以看出,随着双缝之间的距离增大,条纹边缘坐标减小,也就是条纹 间距减小,和理论公式d D e /λ=推导一致。如果增大双缝的缝宽,会使光强I 增加,能够 看到条纹变亮。 二、杨氏双孔干涉实验 1、杨氏双孔干涉 杨氏双孔干涉实验是两个点光源干涉实 验的典型代表。如图2所示。当光穿过这两个 离得很近小孔后在空间叠加后发生干涉, 并 在像屏上呈现出清晰的明暗相间的条纹。 由 于双孔发出的波是两组同频率同相位的球面 波, 故在双孔屏的光射空间会发生干涉。 于是, 在图2中两屏之间的空间里, 如果一点P 处于 两相干的球面波同时到达 波 峰 (或波谷)的位置, 叠加后振幅达到最高, 图2.1 杨氏双孔干涉 表现为干涉波的亮点; 反之, 当P 处处于一个球面波的波峰以及另一个球面波的波谷时候, 叠加后振幅为零,变现是暗纹。

单缝衍射的matlab分析教程

单缝衍射的MATLAB分析 学院:精密仪器与光电子工程学院专业:生物医学工程 班级:1班 姓名:

单缝衍射的MATLAB分析 摘要:在光的衍射概述和发展历史的基础上,说明了单缝衍射的图样特点,介绍了夫琅禾费衍射和菲涅耳衍射,几种实现夫琅禾费衍射的方法和原理及光强、条纹分布特点。并利用衍射公式的近似对基尔霍夫衍射公式进行了推导,从理论上得出了夫琅禾费单缝衍射的光强公式,利用Matlab软件进行了光强分布的图样仿真,并用实验采集到的图样对理论和仿真的结论进行了验证,计算结果与实验结果得到了很好的吻合。 关键字:单缝衍射夫琅禾费单缝衍射光强分布条纹分布 一、光的衍射概述

1.光的衍射现象 物理光学中,光的衍射现象是指光波在空间传播遇到障碍时,其传播方向会偏离直线传播,弯入到障碍物的几何阴影中,并呈现光强的不均匀分布的现象。通常将观察屏上的不均匀的光强分布称为衍射图样。光的衍射是光的波动性的主要标志之一。 光波遇到障碍物以后会或多或少地偏离几何光学传播定律的现象。几何光学表明,光在均匀媒质中按直线定律传播,光在两种媒质的分界面按反射定律和折射定律传播。但是,光是一种电磁波,当一束光通过有孔的屏障以后,其强度可以波及到按直线传播定律所划定的几何阴影区内,也使得几何照明区内出现某些暗斑或暗纹。 1.1衍射现象的基本问题 1.已知照明光场和衍射屏的特征,求屏幕上衍射光场的分布; 2.已知衍射屏及屏幕上衍射光场的发布,去探索照明光场的某些特性; 3.已知照明光场及屏幕上所需的衍射光场发布,设计、计算衍射屏的结构和制造衍射光学元件。 1.2衍射现象的分类 根据光源、衍射物(衍射屏)和衍射场(观察屏)三者之间的位置确定 1.夫琅和费衍射:(远场衍射) 光源和衍射场都在衍射物无限远处的衍射。 2.菲涅耳衍射:(近场衍射)

Matlab在物理学中的应用--光衍射

光的干涉和衍射 一、实验目的 ①学习用用模拟实验方法探究光的干涉和衍射问题. ②进一步熟悉MA TLAB编程. 二、实验内容和要求 1. 双缝干涉模拟实验 杨氏双缝干涉实验是利用分波前法获得相干光束的典型例子. 如图2.24所示,单色光通过两个窄缝s1,s2射向屏幕,相当于位置不同的两个同频率同相位光源向屏幕照射的叠合,由于到达屏幕各点的距离(光程)不同引起相位差,叠合的结果是在有的点加强,在有的点抵消,造成干涉现象. P O 图2.24 双缝干涉示意图 考虑两个相干光源到屏幕上任意点P的距离差为 1 2 21 r r r r r = ?=- (2.19)引起的相位差为 2π r ? λ ? = 设两束相干光在屏幕上P点产生的幅度相同,均为A0,则夹角为φ的两个矢量A0的合成矢量的幅度为 A=2A0 cos(φ/2)

第二章 数理探究试验 135 光强B 正比于振幅的平方,故P 点光强为 B =4B 0cos 2(φ/2) (2.20) 运行sy211.m 程序得到干涉条纹如图2.27所示. clear all %sy211.m lam=500e-9; %输入波长 a=2e-3; D=1; ym=5*lam*D/a; xs=ym; %设定光屏的范围 n=101;ys=linspace(-ym,ym,n); % 把光屏的y 方向分成101点 for i=1:n r1=sqrt((ys(i)-a/2).^2+D^2); r2=sqrt((ys(i)+a/2).^2+D^2); phi=2*pi*(r2-r1)/lam; B(i,:)=4*cos(phi/2).^2; end N=255; % 确定用的灰度等级为255级 Br=(B/4.0)*N; %使最大光强对应于最大灰度级(白色) subplot(1,2,1) image(xs,ys,Br); %画干涉条纹 colormap(gray(N)); subplot(1,2,2) plot(B,ys) %画出光强变化曲线 图2.25中左图是光屏上的干涉条纹,右图是光屏上沿y 轴方向光强的变化曲线. 从图中也不难看出,干涉条纹是以点o 所对应的水平线为对称,沿上下两侧交替,等距离 排列,相邻亮条纹中心间距为2.5×10-4m. -0.4-0.200.20.4-1.5 -1-0.500.511.5x 10图2.25 单色光的干涉条纹 这与理论推导和实验结果基本一致. 下面我们从理论上加以推导,由上面的式(2.19)可得 22212121()()2d r r r r r r y -=+-= -1.5 -1 -0.5 0 0.5 1 1.5 -0.4 -0.2 0 0.4 0.2

用matlab实现杨氏双缝干涉的实验仿真

用MATLAB实现杨氏双缝干涉实验仿真摘要: 实验室中,做普通光学实验,受到仪器和场所的限制;实验参数的改变引起干涉图样的改变不明显,难以体现实验的特征。本文利用MA TLAB仿真杨氏双缝干涉实验,创建用户界面,实现人机交互,输入不同实验参数,使干涉现象直观表现出来。 关键词: MATLAB;杨氏双缝干涉实验;用户界面设计;程序编写;仿真。 1. 引言: 在计算机迅猛发展的今天,光学实验的仿真越来越多的受科研工作者和教育工作者关注。其应用主要有两个方面:一是科学计算方面,利用仿真实验的结果指导实际实验,减少和避免贵重仪器的损害;二是在光学教学方面,将抽象难懂的光学概念和规律,由仿真实验过程直观的描述,使学生对学习感兴趣。在科学计算方面,国外的光学实验仿真是模拟设计和优化光学系统的过程中发展起来的,在这方面美国走在最前,其中最具代表性的是劳伦斯利和弗莫尔实验光传输模拟计算机软件Prop92及大型总体优化设计软件CHAINOP和PROPSUITE;另外法国也开发完成其具有自身特点的光传输软件Miro。在光学教学方面,国外已有相关的配有光盘演示光学实验的教材。我国用于科学研究的光学实验计算机数值仿真软件随开发较晚,但也已经取得了显著成绩。特别是1999年,神光——III原型装置TLL分系统集成实验的启动为高功率固体激光驱动器的计算机数值模拟的研究创造了条件。目前已基本完成SG99光传输模拟计算软件的开发,推出的标准版本基本能稳定运行。目前该软件已经应用于神光——III主机可行性论证的工作中。计算机仿真具有观测方便,过程可控等优点,可以减少系统对外界条件对实验本身的限制,方便设置不同的参数,借助计算机的高数运算能力,可以反复改变输入的实验条件系统参数,大大提高实验效率。MATLAB是MatlabWorks公司于1982年推出的一套高性能的数值计算和可视化软件。具有可扩展性,易学易用性,高效性等优势。 通过对目前计算机仿真光学实验的现状和相关研究的分析,本文将用Matlab 编程实现杨氏双缝干涉实验的仿真。利用Matlab GUI建立用户界面,实现人机

Matlab数字衍射光学实验讲义(一)

实验注意事项(必读) 1.没有弄清楚实验内容者,禁止接触实验仪器。 2.注意激光安全。绝对不可用眼直视激光束,或借助有聚光性的光学组件观察激光束,以免损伤眼睛。 3.注意用电安全。He-Ne激光器电源有高压输出,严禁接触电源输出和激光头的输入端,避免触电。 4.注意保持卫生。严禁用手或其他物品接触所有光学元件(透镜、反射镜、分光镜等)的光学表面;特别是 在调整光路中,要避免手指碰到光学表面。 5.光学支架上的调整螺丝,只可微量调整。过度的调整,不仅损坏器材,且使防震功能大减。 6.实验完成后,将实验所用仪器摆放整齐,清理一下卫生。

Matlab数字衍射光学实验一 计算机仿真过程是以仿真程序的运行来实现的。仿真程序运行时,首先要对描述系统特性的模型设置一定的参数值,并让模型中的某些变量在指定的范围内变化,通过计算可以求得这种变量在不断变化的过程中,系统运动的具体情况及结果。仿真程序在运行过程中具有以下多种功能: 1)计算机可以显示出系统运动时的整个过程和在这个过程中所产生的各种现象和状态。具有观测方便,过程可控制等优点; 2)可减少系统外界条件对实验本身的限制,方便地设置不同的系统参数,便于研究和发现系统运动的特性; 3)借助计算机的高速运算能力,可以反复改变输入的实验条件、系统参数,大大提高实验效率。因此.计算机仿真具有良好的可控制性(参数可根据需要调整)、无破坏性(不会因为设计上的不合理导致器件的损坏或事故的发生)、可复现性(排除多种随机因素的影响,如温度、湿度等)、易观察性(能够观察某些在实际实验当中无法或者难以观察的现象和难以实现的测量,捕捉稍纵即逝的物理现象,可以记录物理过程的每一个细节)和经济性(不需要贵重的仪器设备)等特点。 Matlab是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件。它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便、界面友好的用户环境。它还包括了ToolBox(工具箱)的各类问题的求解工具,可用来求解特定学科的问题。Matlab的长处在于数值计算,能处理大量的数据,而且效率比较高。MathWorths公司在此基础上开拓了符号计算、文字处理、可视化建模和实时控制能力,增强了Matlab的市场竞争力,使Matlab成为市场主流的数值计算软件。Matlab产品族支持概念设计、算法开发、建模仿真、实时实现的理想的集成环境。其主要功能有:数据分析、数值和符号计算、工程与科学绘图、控制系统设计、数字图像信号处理、财务工程,建模、仿真、原型开发,应用开发,图形用户界面。 在光学仪器设计和优化过程中,计算机的数值仿真已经成为不可缺少的手段。通过仿真计算,可以大幅度节省实验所耗费的人力物力,特别是在一些重复实验工作强度较大且对实验器材、实验环境等要求较苛刻的情况下。如在大型激光仪器的建造过程中,结合基准实验的仿真计算结果可为大型激光器的设计和优化提供依据。仿真光学实验也可应用于基础光学教学。光学内容比较抽象,如不借助实验,很难理解,如光的干涉、菲涅耳衍射、夫琅禾费衍射等。传统的光学实验需要专门的实验仪器和实验环境。其操作比较烦琐,误差大现象也不明显,对改变参数多次观察现象也多有不便。MATLAB是当今国际上公认的在科技领域方面最为优秀的应用软件和开发环境。利用它对光学实验仿真可避免传统实验中的缺点,强大的功能使光学实验变得简便准确。基于MATLAB的科学可视化功能对光学仿真实验现象进行计算机模拟的效果更加准确明显。 1.实验目的: 掌握基本的Matlab编程语言,了解其编程特点;模拟几种常用函数,了解其编程过程及图像显示命令函数,掌握Matlab画图方法;通过设计制作一系列光学研究物体掌握其编程方法;掌握光波的matlab编程原理及方法,初步了解Matlab

圆孔矩孔的菲涅尔衍射模拟(matlab实现)-工程光学.docx

XX大学XXXX学院 工程光学综合练习?…圆孔、矩孔的菲涅尔衍射模拟

圆孔和矩孔的菲涅尔衍射模拟 一、原理 由恵更斯?菲涅尔原理町知接收屏上的 P点的复振幅可以表示为 其中F(Q)为衍射屏上的复振幅分布,K(B)为倾斜因子。根据基尔霍夫对此公式的完善,有 设衍射屏上点的坐标为(χ17yj,接收屏上点的坐标为(χ,y),衍射屏与接收屏间距离为“,当满足菲涅尔近似条件时,即 上式为菲涅尔衍射的傅里叶变换表达式,它表明除了积分号前面的一个与xl、yl无关的振幅和相位因子外,菲涅尔衍射的复振幅分布是孔径平面的复振幅分布和一个二次和位因子乘积的傅里叶变换。 相对于夫琅和费衍射而言,菲涅尔衍射的观察屏距衍射屏不太远。在菲涅尔衍射中,输入变最和输出变最分别为衍射孔径平面的光场分布利观察平面的光场以及光强分布,考虑到这三个量都是二维分布,而且MatIab主要应用于矩阵数值运第所以本程序选择用二维矩阵來存储衍射孔径平面和观察平而的场分布,并分别以矩阵的列数和行数來对应平面的直角坐标值(x,y)以及(x h yι)o 用MATLAB分别构造表示衍射屏和接收屏的二维矩阵。注意使两矩阵阶次相冋,考虑到运算最的要求,釆样点数不能过多,所以每个屏的X和y方向各取200到300点进行运算。根据式(4),选取合适的衍射屏和接收屏尺寸和相距 E(P) = C —K(θ)ciσ 把上式指数项中的二次项展开,并改写成傅里叶变换的形式,可以写成

的距离,模拟结果如下: 取典型的He-Ne激光器波长λ=632.8nm,固定衍射屏和接收屏尺寸和相距的距离,分别取不同的圆孔半径,得到以下三组衍射图样,其圆孔半径分别为12 mm ■ 2Omm, 5Omm 图 1 (r=12mm) 图 2 (r=20mm) 园礼形状 ?J 103 2CD 253 Tn 1DO 2C0 3□□ 衍射园洋 圆孔形状 3C0 2£0 2C0 1∞ 1Γ∩ E O 100 2C0 300 轨射區存 2UJ -200

相关文档