文档库 最新最全的文档下载
当前位置:文档库 › midas fea 预应力梁-施工阶段分析

midas fea 预应力梁-施工阶段分析

midas fea 预应力梁-施工阶段分析
midas fea 预应力梁-施工阶段分析

预应力梁局部承压计算(9) (2)

晋中市城市规划展示馆 预应力工程专项施工方案 一、工程概况 1、本工程9轴~13轴/D轴~H轴,8.3m标高处预应力混凝土结构。 2、平面布置见附图一。 3、设计参数:见总说明。 4、混凝土施工于2012年1月26日完成。混凝土强度等级改为C45;WYKL1、WYKL2预留孔道水平方向间距按063G429-51页布置,为220mm。 5、预应力筋矢高图见附图三。 二、混凝土局部承压验 1、WYKL1、2梁。 1.1、计算条件。 1.1.1、计算简图。

注;S虽然超出30~80mm规定,但有柱箍筋 14@100,所以实际小于80mm。 局部受压承载力验算

计算公式: ln )2(9.0A f f F y cor v c l c l ?+≤βαρββ c β=1;c f =21.1 ;α=1;y f =360; 解:ln A =l A -孔A =89594-15080=745142mm 42.289594 526183===l b l A A β 42.2==l cor ββ 1001100600600 06.20111110006.20172211????+??=???+??=S A l A n l A n cor Sl Sl v ρ=4.36% 局部承载力 0.9×(1×2.42×21.1+2×1×0.0436×2.42×360)×74514=8519KN 结论 8519KN >(l F )5234KN 安全 2、WYKL3、4梁。 1.1、计算条件。 1.1.1、计算简图。

1.1.2、受压位置:见图。 注;S虽然超出30~80mm规定,但有柱箍筋 14@100,所以实际小于

计算机操作系统典型例题解析之四

计算机操作系统复习题之四【例1】可变分区存储管理系统中,若采用最佳适应分配算法,“空闲区表”中的空闲区可按(A)顺序排列。 A、长度递增 B、长度递减 C、地址递增 D、地址递减分析:最佳适应算法要求每次都分配给用户进程能够满足其要求的空闲区中最小的空闲区,所以为了提高算法效率,我们把所有的空闲区,按其大小以递增的顺序形成一空闲分区链。这样,第一个找到的满足要求的空闲区,必然是符合要求中最小的。所以本题的答案是A。 【例2】虚拟存储技术是(B)。 A、扩充主存物理空间技术 B、扩充主存逻辑地址空间技术 C、扩充外存空间的技术 D、扩充输入/输出缓冲区技术 分析:所谓虚拟存储器,是指仅把作业的一部分装入内存便可运行作业的存储器系统。具体地说,所谓虚拟存储器是指具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。实际上,用户所看到的大容量只是一种感觉,是虚的,故称之为虚拟存储器。虚拟存储技术是一种性能非常优越的存储器管理技术、故被广泛地应用于大、中、小型机器和微型机中。所以本题的答案是B。 【例3】很好地解决了“零头”问题的存储管理方法是(A)。A、分页存储管理方式B、分段存储管理方式C、多重分区管理D、可变式分区管理 分析:“零头”也就是内存碎片,是指内存中无法被利用的小空闲

区。在有些内存管理方式下,系统运行一段时间后,内存的碎片会占据相当的数量的空间。分段存储管理方式、多重分区管理、可变式分区管理都会因为内存分配回收产生“零头”,而分页存储管理方式,按事先划分好的内存块为单位分配回收内存,所以不会产生“零头”。所以本题的答案是A。 【例4】系统“抖动”现象的发生是由(B)引起的。 A、交换的信息量过大 B、置换算法选择不当 C、内存容量不足 D、请求分页管理方案 分析:“抖动”现象是指刚被换出的页很快又要被访问,为此,又要换出其他页,而该页又很快被访问,如此频繁地置换页面,以致大部分时间都花在页面置换上。交换的信息量过大,内存容量不足都不是引起系统“抖动”现象的原因,而选择的置换算法不当才是引起“抖动”现象的根本原因,例如,先进先出算法就可能产生“抖动”现象。所以本题的答案是B。 【例5】虚拟存储管理系统的基础是程序的(C)理论。 A、全局性 B、虚拟性 C、局部性 D、动态性 分析:虚拟存储技术是基于程序的局部性原理的,程序的局部性原理体现在两个方面:时间局部性和空间局部性。时间局部性是指一条指令被执行后,那么它可能很快会再次被执行,空间局部性是指若某一存储单元被访问,那么与该存储单元相邻的单元可能也会很快被访问。所以本题的答案是C。

30+45+30m预应力连续梁计算书

30+45+30米连续梁计算书 一、预应力钢筋砼上部结构纵向计算书 (一)工程概况: 本计算书是针对标段中的30+45+30米的预应力混凝土连续梁桥进行。桥宽为9.5m,采用单箱单室,单侧翼板长2.5米;梁高为1.6~2.3米,梁底按二次抛物线型变化。 箱梁腹板采用斜腹板,腹板的厚度随着剪力的增大而从跨中向支点逐渐加大,箱梁边腹板厚度为50~70cm。箱梁顶板厚22cm。为了满足支座布置及承受支点反力的需要,底板的厚度随着负弯矩的增大而逐渐从跨中向支点逐渐加大,厚度为22~35cm。其中跨跨中断面形式见图1.1,支承横梁边的截面形式见图1.2。结构支承形式见图1.3。主梁设纵向预应力。钢束采用?j15.24低松弛预应力钢绞线,标准强度为1860MPa,弹性模量为1.9X105 MPa,公称面积为140mm2。预应力钢束采用真空吸浆工艺,管道采用与其配套的镀锌金属波纹管。纵向钢束采用大吨位锚。钢束为19?s15.24的钢绞线,均为两端张拉,张拉控制应力为1339MPa。 图1.1 中跨跨中截面形式

图1.2 横梁边截面形式 图1.3 结构支承示意图 (二)设计荷载 结构重要性系数:1.0 设计荷载:桥宽9.5米,车道数为2,城-A汽车荷载。 人群荷载:没有人行道,所以未考虑人群荷载。 设计风载:按平均风压1000pa计, 地震荷载:按基本地震烈度7度设防, 温度变化:结构按整体温升200C,整体温降200C计,桥面板升温140C,降温70C。基础沉降:桩基础按下沉5mm计算组合。 其他荷载: (三)主要计算参数 材料:C50砼; 预应力钢束:高强度低松弛钢绞线,抗拉标准强度fpk=1860MPa,抗拉设计强度fpd=1260MPa,抗压设计强度fpd=390Mpa。

箱梁的结构与受力特点

(二)箱形截面的配筋 箱形截面的预应力混凝土结构一般配 有预应力钢筋和非预应力向普通钢筋。 1、纵向预应力钢筋:结构的主要受力 钢筋,根据正负弯矩的需要一般布置在顶板 和底板内。这些预应力钢束部分上弯或下弯 而锚于助板,以产生预剪力。近年来,由于 大吨位预应力束的采用,使在大跨径桥梁设 计中,无需单纯为了布置众多的预应力束而 增大顶板或底板面积,使结构设计简洁,而 又便于施工。 2、横向预应力钢筋:当箱梁肋板间距 厚的桥面板。的上、下两层钢筋网间,锚固于悬臂板端。 3时,可布置竖向预应力钢筋,面桥梁都采用三向预应力。 4 钢筋网。必须指出,因此必须精心设计,做到既安全又经济。 第二节 箱形梁的受力特点 作用在箱形梁上的主要荷载是恒载与活载。恒载 一般是对称作用的,活载可以是对称作用,但更多的 情况是偏心作用的,因此,作用于箱形梁的外力可综 合表达为偏心荷载来进行结构分析; 在偏心荷载作用下,箱形梁将产生纵向弯曲、扭 转、畸变及横向挠曲四种基本变形状态。详见图2-4。 1、纵向弯曲 产生竖向变位w ,在横截面上起纵向正应力M σ及剪应力M τ。对于肋距不大的箱形梁,M σ按初等梁 理论计算,当肋距较大时,会出现所谓“剪力滞效应”。 即翼板中的M σ分布不均匀,近肋翼板处产生应力高 βα+= 刚性扭转 横向挠曲 图2-4 箱形梁在偏心荷载 作用下的变形状态

峰,而远肋翼板处则产生应力低谷,这称为“正剪力滞”;反之,如果近肋翼板处产生应力低谷,而远肋翼板处则产生应力高峰,则为“负剪力滞”。对于肋距较大的宽箱梁,这种应力高峰可达相当大比例,必须引起重视。 2、刚性扭转 刚性扭转即受扭时箱形的周边不变形。扭转产生扭转角θ。分自由扭转与约束扭转。 (1)自由扭转:箱形梁受扭时,截面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纵维无伸长缩短,能自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力K τ。 (2)约束扭转:受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲。约束扭转在截面上产生翘曲正应力w σ和约束扭转剪应力w τ。 产生约束扭转的原因:支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,使截面各点纤维变形不协调也将产生约束扭转。如等厚壁的矩形箱梁、变截面梁、设横隔板的箱梁等,即使不受支承约束,也将产生约束扭转。 3、畸变(即受扭时截面周边变形) 畸变的主要变形特征是畸变角γ。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力dw σ和畸变剪应力dw τ。 4、横向弯曲:畸变还会引起箱形截面各板的横向弯曲,在板内产生横向弯曲应力dt σ (纵截面上)。 5、局部荷载的影响:箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还应考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其它各部分也产生横向弯曲。图2-5表示箱形截面在顶板上作用车辆荷载,在各板中产生横向弯矩图。这些弯矩在各板的纵截面上产生横向弯曲正应力c σ及剪应力。 综合箱形梁在偏心荷载作用下产生的应力有: 在横截面上:纵向正应力:dw w M z σσσσ++= 剪应力:dw w M K τττττ+++= 在纵截面上;横向弯曲正应力:c dt s σσσ+= 在预应力混凝土梁中,跨径越大,恒载占总荷载比例就越大。一般地,由于恒载产生的对称弯曲应力是主要的,而由于活载偏心所产生的扭转应力是次要的。如果箱壁较厚,或沿梁的纵向布置一定数量的横隔板,限制箱形梁的畸变,则畸变应力也是不大的。但对于少设或不设横隔板的宽箱薄壁梁,畸变应力不可忽视。板的横向应力对于顶板、肋板及底板的配筋具有重要意义,必须引起重视。 图2-5 局部荷载作用下 横向弯矩图

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

计算机操作系统典型例题解析之三

计算机操作系统典型例题解析之三 【例1】分配到必要的资源并获得处理机时的进程状态是(B )。A、就绪状态B、执行状态 C、阻塞状态D、新状态 分析:进程有三种基本状态:就绪状态、执行状态和阻塞状态。当进程已分配到除CPU以外的所有必要的资源后,只要能再获得处理机便可立即执行,这时的状态称为就绪状态;处于就绪状态的进程如果获得了处理机,其状态转换为执行状态;进程因发生某种事件(如I/O请求、申请缓冲空间等)而暂停执行时的状态,亦即进程的执行受到阻塞,故称这种状态为阻塞状态;而新状态是指创建了进程但尚未把它插入到就绪队列前的状态。所以本题的答案是B。 【例2】挂起的进程被激活,应该使用(C)原语。 A、Create B、Suspend C、Active D、Wakeup 分析:在不少系统中,进程除了三种基本状态外,又增加了一些新的状态,其中最重要的是挂起状态。“挂起”的实质是使进程不能继续执行,即使挂起后的进程处于就绪状态,它也不能参加对CPU的竞争,进程的挂起调用Suspend()原语。因此,被挂起的进程处于静止状态,相反,没有挂起的进程则处于活动状态。而且,处于静止状态的进程,只有通过“激活”动作,调用Active()原语,才能转换成活动状态,调入内存。所以本题的答案是C。 【例3】任何时刻总是让具有最高优先数的进程占用处理器,此时采用的进程调度算法是(D)。A非抢占式的优先数调度算法B、时间片轮转调度算法C、先来先服务调度算法D、抢占式的优先

数调度算法 分析:“让具有最高优先数的进程占用处理器”,我们可以知道,采用的进程调度算法是优先数调度算法,但是我们还要进一步分析是抢占式的还是非抢占式的。“任何时刻总让”,通过这句话我们知道采用的是抢占式的,所以本题的答案是D。 【例4】若P、V操作的信号量S初值为2,当前值为-1,则表示有(B)等待进程。A、0个B、1个C、2个D、3个分析:信号量的初始值表示系统中资源的数目,每次的Wait操作意味着进程请求一个单位的资源,信号量进行减1的操作,当信号量小于0时,表示资源已分配完毕,进程自我阻塞。因此,如果信号量小于0,那么信号量的绝对值就代表当前阻塞进程的个数。所以本题的答案是B。 【例5】发生死锁的必要条件有四个,要预防死锁的发生,可以破坏这四个必要条件,但破坏(A)条件是不太实际的。 A、互斥 B、请求和保 C、不剥夺 D、环路等待 分析:预防死锁是指通过破坏死锁的某个必要条件来防止死锁的发生。四个必要条件中,后三个条件都可以被破坏,而第一个条件,即“互斥”条件,对某些像打印机这样的设备,可通过SPOOLing技术予以破坏,但其他资源,因受它们的固有特性的限制,该条件不仅不能被破坏,反而应加以保证。所以本题的答案是A。 【例6】有m个进程共享同一临界资源,若使用信号量机制实现对临界资源的互斥访问,则信号量值的变化范围是1 至1-m。

桥梁专业设计技术规定07第四章 预应力混凝土连续梁桥

4 预应力混凝土连续梁桥 4.1一般规定 4.1.1 预应力混凝土连续梁桥设计应根据桥长、柱高、地基条件等因素合理分联,每联的长度应以结构合理、方便施工、有利使用为原则,在有条件的情况下应考虑景观要求和桥梁整体布局的一致性。 4.1.2主梁应尽量采用一次浇筑混凝土、两端张拉预应力钢筋的施工方式,主梁长度宜控制在120m左右,当确实需要设置长分联时,可以采用分段浇筑混凝土、使用联接器分段张拉预应力钢筋的施工方案,设计时允许在同一截面全部预应力钢筋使用联接器连接,但对主梁截面及配筋应做加强处理。 4.1.3对于匝道桥,为增大刚度、减小扭矩,有条件时尽可能采用墩梁固结或双支座形式。 4.1.4桥梁截面形式可根据桥宽、跨径、施工条件、使用要求等确定为箱形(简称箱梁)或T形(简称T梁)。箱形截面可设计为单箱单室或单箱多室。箱梁翼板长度的确定应以桥面板正、负弯矩相互协调为原则,T梁悬臂长度宜为1.0~1.5m,箱梁悬臂长度宜为1.5~2.5m。当主、引桥结构形式不同时,悬臂板长度宜取得一致。 4.1.5箱梁腹板宽度应由主梁截面抗剪、抗扭、混凝土保护层、预应力钢筋孔道净距和满足混凝土浇筑等要求确定。预应力钢筋净保护层和净距除满足规范外,应考虑纵向普通钢筋和箍筋的占位以及混凝土浇筑的孔隙等因素。箱梁腹板宽度最小值应符合下列要求:

箱梁腹板宽度最小值一览表 4.1.6 悬臂板厚度应视悬臂长度、桥上荷载及防撞护栏碰撞力验算结果而定。根部厚度宜取0.30~0.55m,悬臂板端部厚度一般不应小于0.12m(对有特殊防撞要求的结构,悬臂板端部厚度适当增加,如使用PL2型防撞护栏时悬臂板端部厚度不应小于0.2m)。当悬臂板长度较长时应适当加强悬臂板沿主梁方向钢筋的配置。 4.1.7主梁翼板和顶、底板厚度应根据梁距和箱宽计算确定。同时应满足箱梁顶板厚度不小于0.2m,底板厚度不小于0.18m;T梁顶板厚度不小于0.16m。 4.1.8中支点横梁和端横梁宽度由计算确定,但中支点横梁宽度不应小于2m,端横梁宽度不应小于1.1m,端横梁宽度还应考虑伸缩缝预留槽等构造要求。 4.1.9主梁腹板与顶、底板相接处应设1︰5加腋,箱形截面与支点横梁相接处应设渐变段加厚。箱梁截面与跨间横梁相接处应设0.15m抹角。 4.1.10箱梁底板必须设置排水孔,腹板必须设置通风孔,直径均宜取D=0.1m左右。配有体外预应力钢筋的箱梁应设置检查换索通道。 4.1.11连续梁桥必须设置端横梁及中支点横梁。直线连续箱梁桥跨径小于30m的桥孔可不设跨间横梁;跨径在30~40m之间的桥孔宜设一道跨间横梁;跨径大于40m时宜设三道跨间横梁。曲线连续箱梁桥应根据曲线半径、跨径大小确定跨间横梁个数。连续T梁桥跨径大于25m

关于预应力混凝土简支箱梁桥设计分析

关于预应力混凝土简支箱梁桥设计分析 [摘要]桥梁作为公路的重要组成部分之一,在工程项目中,设计方案的合理性与规划指标的正确性是衡量整个道路工程施工质量、成本控制和使用功能的关键。本文就预应力混凝土简支箱梁桥设计要点分析,结合工程实例进行了全面的探讨和阐述。 【关键词】桥梁;预应力混凝土;简支箱梁桥 伴随着时间的不断推移,国民经济发展不断加快,各类交通荷载也在逐年增加。我国现有运营的早期设计修建的预应力混凝土桥梁和钢筋混凝土桥梁,受到过去国情、经济水平和人类认识水平的限制,在投入使用之后经常出现无法满足使用要求,出现了较为严重的裂缝、耐久性不足等重要问题,同时桥梁老化、陈旧和荷载能力不足的现象也日益凸显。结合现有工程中存在的这些问题,我们在工作中应当注重对混凝土简支箱梁桥设计的相关重点探讨,结合先进科学技术水平合理提高设计方法和观念,进而确保工程项目的质量和耐久性,提高工程效益。 1、工程概况 本工程项目位于某高速公路中段,桥梁在建设中总体长度为35m,桥面宽9.5m。在设计的过程中是对桥梁采用C40的混凝土进行施工的,而桥栏杆和桥面在铺设中是通过采用C20的混凝土。预应力在控制和设计中分别采用的是ASTM270级1524的底松弛钢绞线,在这设计过程中钢绞线的选择为12mm和R235的热轧光圈钢筋。在桥梁桥面施工的过程中是采用5cm厚的C20钢筋混凝土进行铺设和施工的,而最后又铺设了5cm厚的沥青混凝土。在设计的过程中,对桥梁的等级和应力化进行计算和分配,桥梁等级设置为1级,而汽车等相关荷载要求为3.535kN/m2,梯度温度引起的效按照T1=20℃,T2=6.7℃进行考虑。这种设计方法和手段的应用有效的确保了桥梁的使用寿命和耐久性。 2、桥梁总体设计 在桥梁设计的过程中,应当以安全、经济、实用、美观和环保为基础原则进行总体规划,以可持续发展和功能的良好发挥为最终目标进行全面设计。在桥梁设计的过程中,其设计方案的选择要具备相应的合理性,并且对其中存在的相关环节要严肃处理,要做到在设计中毫厘不差的设计要求。对于桥梁结构构造的处理,应当遵循相关的设计规范和国家的法律制度来全面协调和规范,同时合理的控制桥梁各个细小部位的尺寸和构造细节,使得桥梁设计能够满足强度、刚度.稳定性和耐久性的要求。 2.1在桥梁设计的过程中对线条的选择一般都选选择直线和标准跨径,这样能够提高桥梁工程的施工效率和降低施工成本。 2.2桥面净空应确保保证车辆、行人安全通过桥梁上方的空间界限。在该净

部分预应力混凝土梁预应力筋用量的计算方法

部分预应力混凝土梁预应力筋用量的 计算方法 1 前言 使用高强度的混凝土和钢材,并与能准确估计构件承载力的现代设计方法相结合,可以实现很大程度上的节约。 虽然部分预应力混凝土染比全预应力混凝土梁的预应力筋总量要少,但仍必须保持适量的安全度,以及达到必要的受弯承载力,所以一般都需要在部分预应力梁中附加普通的非预应力钢筋。事实上,部分预应力梁经常定义为具有下列特点的梁:1)在使用荷载下允许有弯曲裂缝;2)主要弯曲受拉钢筋包括预应力筋和非预应力筋。为更加经济合理的在部分预应力混凝梁中配置预应力筋和非预应力筋,下文将探讨确定部分预应力梁中预尖力筋数量的各种方法,其中包括公路桥梁设计中常用的PPR法,名义拉应力控制裂缝宽度法和平衡荷载估算法等。 2 预应力筋用量的估算方法 2.1 预应力度λ法 预应力度λ法是印度学者G.S.Ramaswamy提出的。λ表示预应力度,即 λ=M o /M (1) 式中:M o——消压弯矩,由外荷载引起的使构件控制截面受拉边缘应力抵消至零时的弯矩。 M——使用茶载(不包括预加力)短期组合作用下控制截面的

弯矩。 M o=c hy W o(2) σhy=N y A h (1+e y〃y x r2 )(3) 式中:σhy——有效预加力N产生的梁下缘混凝土的预压应力; W o——换算截面对受拉国的弹性抵抗距; e y——预应力钢筋合力作用点至构件重心轴的距离; y x——截面受拉边缘至构件重心轴的距离; A h——构件截面面积; r——截面回转半径; 由(1)、(2)和(3)式可得 Ny=λM W o 〃Ah 1+e y〃y x r2 ∴Ay=Ny σy =Ny α〃σk 式中:σk——预应力钢筋的张拉控制应力; α——使用阶段的预应力有效系数,对高强粗钢筋取0.7,对高强钢丝和纲绞线取0.6~0.65。 在设计中,预应力度的选择很重要。采用这种方法时,不易看出预应力度λ的大小和裂缝宽度之间的关系,所以造成选择的困难。根据窑预应力钢筋和非预应务钢筋用量之和较小的原则,λ=0.6~0.8(非抗震),0.55~0.70(抗震)。 2.2 PPR法 在建筑设计中,预应力度常用强度比来表示: PPR=A p f py A p f py+A s f y

操作系统例题讲解

操作系统例题讲解 一、调度算法 对如下表所示的5个进程: 采用可剥夺的静态最高优先数算法进行调度(不考虑系统开销)。 问 题: ⑴ 画出对上述5个进程调度结果的Gantt 图; ⑵ 计算5个进程的平均周转时间、平均带权周转时间。 解: ⑴ 调度结果的Gantt 图如下: 0 2 4 5 7 9 10 12 14 (2) 时间计算: 二、存储管理 某系统采用虚拟页式存储管理方式,页面大小为2KB ,每个进程分配的页框数固定为4页。采用局部置换策略,置换算法采用改进的时钟算法,当有页面新装入内存时,页表的时钟指针指向新装入页面的下一个在内存的表项。设当前进程P 的页表如下(“时钟”指针指向逻辑页面3的表项): 逻辑页号 0 1 2 3 4 5 问 题: ⑴ 当进程P 依次对逻辑地址执行下述操作: ① 引用 4C7H ; ② 修改 19B4H ; ③ 修改 0C9AH ; 写出进程P 的页表内容; ⑵ 在 ⑴ 的基础上,当P 对逻辑地址27A8H 进行访问, 该逻辑地址对应的物理地址是多少?

解:页面大小为2KB,2KB=2×210=211, 即逻辑地址和物理地址的地址编码的低11位为页内偏移; ⑴①逻辑地址4C7H=0100 1100 0111B,高于11位为0,所以该地址访问逻辑页面0; 引用4C7H,页表表项0:r=1; ②逻辑地址19B4H=0001 1001 1011 0100B,高于11位为3,所以该地址访问逻辑页面3; 修改19B4H,页表表项3:r=1, m=1; ③逻辑地址0C9AH=0000 1100 1001 1010B,高于11位为1,所以该地址访问逻辑页面1; 逻辑页1不在内存,发生缺页中断; ①、②两操作后,P的页表如下: 逻辑页号 1 2 3 4 5 按改进的时钟算法,且时钟指针指向表项3,应淘汰0页面, 即把P的逻辑页面1读到内存页框101H,页表时钟指针指向表项2。 并执行操作:修改0C9AH。 经上述3个操作后,P的页表如下: 逻辑页号 1 2 3 4 5 ⑵逻辑地址27A8H=0010 0111 1010 1000B,高于11位为4,所以该地址访问逻辑页面4; 页面4不在内存,发生缺页中断;按改进的时钟算法,淘汰页面2,页面4读到110H页框, 所以,逻辑地址27A8H对应的物理地址为: 0001 0001 0000 111 1010 1000B=887A8H。 三、设备与I/O管理 设系统磁盘只有一个移动磁头,磁道由外向内编号为:0、1、2、……、199;磁头移动一个磁道所需时间为1毫秒;每个磁道有32 个扇区;磁盘转速R=7500r/min. 系统对磁盘设备的I/O请求采用N-Step Look (即N-Step Scan,但不必移动到磁道尽头),N=5。设当前磁头在60号磁道,向内移动;每个I/O请求访问磁道上的1个扇区。现系统依次接收到对磁道的I/O请求序列如下: 50, 20, 60, 30, 75, 30, 10, 65, 20, 80,15, 70 问题: ⑴写出对上述I/O请求序列的调度序列,并计算磁头引臂的移动量; ⑵计算:总寻道时间(启动时间忽略)、总旋转延迟时间、总传输时间和总访问处理时间。 解:⑴考虑序列中有重复磁道的I/O请求,调度序列为: 60→75→50→30→20→15→10→65→70→80 磁头移动量=(75-60)+(75-50)+(50-30)+(30-20)+ (20-15)+(15-10)+(65-10)+(70-65)+(80-70) =15+25+20+10+5+5+55+5+10=155(磁道)

用新规范计算预应力混凝土连续梁

用新规范计算预应力混凝土连续梁 谢宝来 【摘要】本文为用新规范进行桥梁结构设计的一个算例,其重点讨论了预应力混凝土构件纵向受力性能的计算方法和计算过程,以及对新规范的一些理解,其中包括汽车冲击系数、上下缘正负温差、翼缘有效宽度、极限承载能力(塑性)和应力(弹性)计算等,同时也说明了一些构造方面的要求。 【关键词】规范预应力混凝土冲击系数有效宽度 一、设计概况 该桥为京津高速公路跨越永定新河的一座特大桥,单幅桥宽16.5米,特大桥是因为长度超过了1000米,以永定新河的交角为45度,跨越河流时采用三联3x55米,用PZ造桥机施工的预应力混凝土连续箱梁,此处平曲线半径为5000米,当然小半径也可以采用此施工工艺。第一阶段施工为简支单悬臂,施工长度为55米简支加11米(悬臂为跨径的五分之一,此处弯矩最小,为施工缝的最加位置)悬臂,平移模板,第二阶段施工长度为44米加11米悬臂,最后施工剩下的44米。主要预应力钢束均为单向张拉,最大单向张拉长度为66米。按预应力砼A 类构件设计。 二、设计参数 (一)桥宽:16.5m(1+0.75+3x3.75+3+0.5); (二)跨径:3x55m; (三)梁高:3.0m; (四)荷载标准:公路-I级;计算车道数:3;横向折减系数:0.78; (五)二期荷载:100mm厚沥青混凝土;80mmC40防水混凝土;两侧栏杆20kN/m。 (六)采用的主要规范: 《公路桥涵设计通用规范》(JTG-D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG-D62-2004); (七)选用材料: ①混凝土C50:f cd =22.4MPa,f td =1.83MPa,E c =3.45x104MPa;

浅谈预应力混凝土连续箱梁桥设计中的问题

浅谈预应力混凝土连续箱梁桥设计中的问题 摘要桥梁设计是一项综合的工程,设计过程中会遇到一些问题,如桥位选择、桥面标高的确定、确定桥梁分孔、主梁截面选择、确定墩台基础形式、墩台基础埋置深度、结构尺寸的拟定,以及有关桥梁的其他问题,如主梁截面普通钢筋及预应力钢筋的布置、桥墩、桥台和桩基的配筋设计、桥面系的布置等。 关键词桥梁设计,预应力结构,连续箱梁桥,总体布置,结构计算 相对于简支梁桥,连续梁桥结构体系和受力特点具有明显的优势,其跨中正弯矩降低很多,同时支点出现负弯矩。混凝土材料耐久性较好,能够适应桥梁结构后期运营使用过程中产生的磨损,钢结构在使用过程中,应做好防腐措施,工程造价过高。在桥梁结构形式选择过程中,大多数设计单位会优先考虑混凝土连续箱梁桥,设计过程中遇到的问题,可以通过查阅桥梁规范,或者借鉴相似工程在设计过程中的经验取值,能够对设计具有指导作用。 1.桥梁总体布置 1.1 桥位设计 桥位的选择常与桥梁结构体系、原有或新建道路线形及周围环境等众多方面。桥位设计应能够保证原有或既定交通的正常运营,能够通过设计的洪水流量,满足通航要求,并与桥址周围的工农业、自然环境等相协调。桥位选择需要注意保护文物、保护生态环境,同时要注意尽量少占用耕地和农田,尽量做到对有意义及有价值的建筑物的保护。 桥位确定后,应进行桥孔布置。桥孔的大小和长度,应与天然状态桥下河槽或河滩流量分配相协调,并能满足泄洪排沙的要求。桥孔的布置,应该针对不同桥位进行不同的设计,河槽稳定不会扩宽或河槽不稳定时,桥孔布置需考虑以上因素。桥孔布置后桥墩的选择也应满足一定的要求,尽可能小的减小对河流的影响,充分考虑桥墩阻水的影响。 桥面标高的确定,应该根据该桥的使用要求进行选择,注意与既定道路之间的衔接。若桥面标高与既定道路高差过大,可以考虑设置引桥以克服高差。且河流通过设计水位时,须保证支座不受水流侵袭,同时还需要考虑桥墩阻水等各种因素引起的各类升高值,若桥梁结构有通航要求,还应该满足通航净空的要求。 1.2结构形式

2、预制预应力T梁预拱度计算及控制

预制预应力T梁预拱度计算及控制 摘要:本文结合***高速公路***桥25m预制T梁的工程实践,介绍了T梁预拱度设置的必要性及设置注意事项,提供了依据结构力学挠曲变形原理及预应力混凝土弹性计算理论计算梁体挠度的方法。 关键词:预制T梁预拱度设置挠度计算 0、桥梁简介 ****桥分左右两幅,左幅桥长483.2m,右幅桥长478.2m。全桥左幅共5联:3*25+4*25+4*30+3*35+3*25,右幅共5联:4*25+4*25+3*30+3*35+3*25,上部结构左幅第1联、左幅第2联、左幅第4联、右幅第1联、右幅第2联采用预应力砼(后张)先简支后连续T梁:其余采用预应力砼(后张)T梁桥面连续结构;全桥共有T梁203片,其中122片25m、41片35m、40片30m。T梁预应力束为钢绞线,锚具为VOM锚。 1、预拱度设置 1.1设置原因 预制T梁设计时,为使梁体具有足够的强度、刚度来承受恒载和活载所产生的弯矩,往往布置预应力筋,通过预应力筋张拉对梁体产生的负弯矩来抵消恒载和活载产生的正弯矩。为了控制梁体张拉时产生的过大的向上反拱,则需通过对预制梁台座(底模)设置一个向下的合适的拱度来抵消反拱,所设的拱度即为“预拱度”。 1.2注意事项 预拱度设置的合理与否十分重要,如设置不合理,将直接影响梁的外观及后续工作的质量。如预拱度设置过大,为保证桥面铺装设计标高,则需增加桥跨中段铺装层的厚度,这样就增加了桥面铺装混凝土的重量,既降低了梁的承载储备又造成了浪费;如预拱度设置过小,受桥面铺装设计标高控制,桥跨中段铺装层厚度将达不到设计厚度,这样就影响了桥面的耐久性及梁体的使用寿命。 预拱度的设置不仅梁底要设,梁顶也要设。如梁顶不设置预拱度,而只有梁底设置,梁片浇注完成后将会出现梁顶平、梁底凹的现象。预应力张拉后,由于预应力筋的作用,向上的拱度抵消了梁底的凹拱,却产生了梁顶的凸拱,预拱度的设置也就失去了意义。故,预拱度设置时,不仅要考虑梁底,也要考虑梁底。 2、梁体挠度计算 根据结构力学挠曲变形原理及预应力混凝土梁弹性计算理论,25m后张预应力预制T梁上拱度

操作系统练习题_及答案解析

操作系统练习题 第一章引言 (一单项选择题 1操作系统是计算机系统的一种( 。A.应用软件 B.系统软件c.通用软件D.工具软件 2.操作系统目的是提供一个供其他程序执行的良好环境,因此它必须使计算机( A.使用方便 B.高效工作 C.合理使用资源 D.使用方便并高效工作 3.允许多个用户以交互方式使用计算机的操作系统是( 。A.分时操作系统 B.批处理单道系统 C.实时操作系统 D.批处理多道系统 4.下列系统中( 是实时系统。A.计算机激光照排系统 B.办公自动化系统 C.化学反应堆控制系统 D.计算机辅助设计系统 5.操作系统是一种系统软件,它( 。A.控制程序的执行 B.管理计算机系统的资源 C.方便用户使用计算机 D.管理计算机系统的资源和控制程序的执行 6.计算机系统把进行( 和控制程序执行的功能集中组成一种软件,称为操作系统 A.CPU管理 B.作业管理 C.资源管理 D.设备管理 7.批处理操作系统提高了计算机系统的工作效率,但( 。 A.不能自动选择作业执行 B.无法协调资源分配 c.不能缩短作业执行时间 D在作业执行时用户不能直接干预 8.分时操作系统适用于( 。A.控制生产流水线B.调试运行程序c.大量的数据处理D.多个计算机资源共享 9.在混合型操作系统中,“前台”作业往往是指( 。A.由批量单道系统控制的作业 B.由批量多道系统控制的作业 c.由分时系统控制的作业D.由实时系统控制的作业

10.在批处理兼分时的系统中,对( 应该及时响应,使用户满意。A.批量作业B.前台作业c.后台作业D.网络通信 11.实时操作系统对可靠性和安全性要求极高,它( 。A.十分注重系统资源的利用率B.不强调响应速度 c.不强求系统资源的利用率 D.不必向用户反馈信息 12.分布式操作系统与网络操作系统本质上的不同之处在于( 。A.实现各台计算机之间的通信B.共享网络个的资源 c.满足较大规模的应用 D.系统中若干台计算机相互协作完成同一任务 13.SPOOL技术用于( 。A.存储管理B.设备管理C.文件管理 D.作业管理 14.( 为用户分配主存空间,保护主存中的程序和数据不被破坏,提高主存空间的利用率。 A处理器管理 B.存储管理 c.文件管理 D.作业管理 (二填空题 1. 计算机系统是按用户要求接收和存储信息,自动进行_______并输出结果信息的系统。 2.计算机是由硬件系统和_______系统组成。 3.软件系统由各种_______和数据组成。 4.计算机系统把进行_______和控制程序执行的功能集中组成一种软件称为操作系统。 5.操作系统使用户合理_______,防止各用户间相互干扰。 6.使计算机系统使用方便和_______是操作系统的两个主要设计目标。 7.批处理操作系统、_______和实时操作系统是基本的操作系统。 8.用户要求计算机系统中进行处理的一个计算机问题称为_______。

4月全国自考操作系统试题及答案解析

全国2018年4月高等教育自学考试 操作系统试题 课程代码:02326 第一部分选择题(共30分) 一、单项选择题(本大题共20小题,每小题1分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设计分时操作系统的主要目标是() A.吞吐量和周转时间B.交互性和响应时间 C.灵活性和可适应性D.可靠性和完整性 2.用户通常利用键盘命令、系统调用命令请求操作系统服务,有时也会用()A.宏指令B.汇编语言 C.作业控制语言D.计算机高级语言 3.操作系统中的中断处理程序很大部分是处理()中断的。 A.程序B.访管 C.I/O D.外部 4.用作业控制语言编写作业控制说明书主要用在()系统。 A.分时B.实时 C.批处理D.多CPU 5.采用多道程序设计能() A.增加平均周转时间B.发挥且提高并行工作能力 C.缩短每道程序执行时间D.降低对处理器调度的要求 6.程序状态字反映了()状态。 A.进程调度B.作业调度 C.与处理器有关的系统D.主存储器分配 7.为了对紧急进程或重要进程进行调度,调度算法应采用() A.先来先服务B.轮转法 C.优先权调度D.短执行时间优先调度 8.单个分区的存储管理不适用于() A.个人计算机B.专用计算机 C.单道程序系统D.多道程序系统 9.页式管理中的地址结构分页号和页内地址两部分,它() A.仍是线性地址B.是个二维地址 C.是个三维地址D.是个四维地址 10.把逻辑文件存放到存储介质上时,如果组织成()文件,则逻辑记录可以按任意次序存放在不相邻的存储块中。 A.流式B.记录式 C.顺序D.链接 11.为了保证存取文件的可靠性,用户要求读一个文件前应首先请求系统执行()文 1

30+45+30m预应力连续梁计算书(桥梁博士)

目录 一、预应力钢筋砼上部结构纵向计算书 (1) (一)工程概况: (1) (二)设计荷载 (2) (三)主要计算参数 (2) (四)计算模型 (3) (五)主要计算结果 (4) 1、施工阶段简明内力分布图和位移图 (4) 2、支承反力 (5) 3、承载能力极限状态内力图 (6) 4、正常使用极限状态应力图 (7) (六)主要控制截面验算 (8) 1、截面受弯承载能力计算 (8) 2、斜截面抗剪承载能力计算 (16) 3、活载位移计算 (17) (七)结论 (17)

30+45+30米连续梁计算书 一、预应力钢筋砼上部结构纵向计算书 (一)工程概况: 本计算书是针对标段中的30+45+30米的预应力混凝土连续梁桥进行。桥宽为9.5m,采用单箱单室,单侧翼板长2.5米;梁高为1.6~2.3米,梁底按二次抛物线型变化。 箱梁腹板采用斜腹板,腹板的厚度随着剪力的增大而从跨中向支点逐渐加大,箱梁边腹板厚度为50~70cm。箱梁顶板厚22cm。为了满足支座布置及承受支点反力的需要,底板的厚度随着负弯矩的增大而逐渐从跨中向支点逐渐加大,厚度为22~35cm。其中跨跨中断面形式见图1.1,支承横梁边的截面形式见图1.2。结构支承形式见图1.3。主梁设纵向预应力。钢束采用?j15.24低松弛预应力钢绞线,标准强度为1860MPa,弹性模量为1.9X105 MPa,公称面积为140mm2。预应力钢束采用真空吸浆工艺,管道采用与其配套的镀锌金属波纹管。纵向钢束采用大吨位锚。钢束为19?s15.24的钢绞线,均为两端张拉,张拉控制应力为1339MPa。 图1.1 中跨跨中截面形式

预应力混凝土连续箱梁纵向受力分析

预应力混凝土连续箱梁纵向受力分析 摘要:以某三跨预应力混凝土连续箱梁为例,利用有限元分析软件Midas/Civil分别建立了单梁模型和梁格法模型。通过对两种模型计算结果的比较,分析了单梁模型和梁格模型计算结果之间的差异,提出了设计计算分析中的一些建议。结论对同类桥梁的设计计算分析具有一定的参考意义。 关键词:连续箱梁平面杆系梁格法 1引言 对箱型梁桥进行有限元分析时通常可建立三种模型进行计算分析,即平面杆系、空间杆系以及空间实体模型。平面杆系模型方法简便,仅能反映杆系截面的平均力学特征,可用于简单结构的粗略分析;空间实体模型建模工作量大,适用于结构的局部分析;空间杆系模型在合理建模的情况下,能较为全面地反映结构的空间受力特点,具有基本概念清晰、易于理解和使用等特点[1]。本文从适用性和经济性出发,结合具体实例采用梁格法进行结构分析,并与平面杆系模型的计算结果进行比较分析验证梁格法的适用性。 2工程实例概况 本文以某三跨等截面预应力混凝土连续箱梁桥为例,桥跨布置为20m+32m+20m,桥面宽12.0m,为单箱双室截面,如图1所示;两侧翼缘悬臂板长2.0m,箱底宽7.5m,梁高1.45m,连续梁双点支撑,跨间无横隔板,仅在支点处设支座横梁。设计荷载:汽车-15、挂-80。 图1 桥梁简图(单位:cm) 3计算模型及计算结果分析 本文采用桥梁有限元分析软件Midas/Civil分别建立桥梁的单梁模型和梁格模型。 3.1单梁模型 采用Midas/Civil的空间梁单元建立桥梁的单梁模型,共建立节点73个,单元72个,如图2所示。其中汽车荷载的作用通过定义车道偏心加以考虑。

30m预应力混凝土简支箱型梁桥设计

30m预应力混凝土简支箱型梁桥设计 1.1上部结构计算设计资料及构造布置 1.1.1 设计资料 1.桥梁跨径及桥宽 标准跨径:30m;主梁全长:29.96m;计算跨径:28.66m;桥面净宽:净—9+2× 1.5m。 2.设计荷载 车道荷载:公路—I级;人群荷载:3kN/㎡;每侧人行道栏杆的作用力:1.52kN/㎡;每侧人行道重:3.75kN/㎡。 3.桥梁处河道防洪标准为20年一遇设计,50年一遇校核,桥下通过流量1000/s时,落差不超过0.1m。 4.桥下净空取50年一遇洪水位以上0.3m。 5.材料及工艺 混凝土:主梁采用C50混凝土;钢绞线:预应力钢束采用Φ15.2钢绞线,每束6根,全梁配5束;钢筋:直径大于等于12mm的采用HRB335钢筋,直径小于12mm的采用R235钢筋。 采用后张法施工工艺制作主梁。预制时,预留孔道采用内径70mm、外径77mm的预埋金属波纹管成型,钢绞线采用T双作用千斤顶两端同时张拉,锚具采用夹片式群锚。主梁安装就位后现浇600mm宽的湿接缝,最后施工混凝土桥面铺装层。 6.基本计算数据 基本计算数据见表5-1 表5-1 材料及特性 名称项目符号单 位 数据 C40 混凝土立方强度 弹性模量 轴心抗压标准强度 轴心抗拉标准强度 轴心抗压设计强度 轴心抗拉标准强度 f cu,k E c f ck f tk f cd f td MP a MP a MP a MP a MP a 40.00 3.45 ×104 32.40 2.65 22.40 1.83

MP a 短暂状态容许压应力0.7f'ck MP a 20.72 容许拉应力0.7f'tk MP a 1.76 持久状态 标 准荷载 组合 容许压应 力 0.5f ck MP a 16.20 容许主压 应力 0.6f ck MP a 19.44 短 期效益 组合 容许拉应 力 σst - 0.85σpc MP a 0.00 容许主拉 应力 0.6f tk MP a 1.59 名称项目符号单 位 数据 Φ s15.2 钢绞线 标准强度f pk MP a 1860 弹性模量E p MP a 1.95 ×105抗拉设计强度f pd MP a 1260 最大控制应力σcon0.75f pk MP a 1395 持久状态应 力 标准荷载组合0.65f pk MP a 1209 普通钢筋HRB335 抗拉标准强度f sk MP a 335 抗拉设计强度f sd MP a 280 R235 抗拉标准强度f sk MP a 235 抗拉设计强度f sd MP a 195

相关文档
相关文档 最新文档