文档库 最新最全的文档下载
当前位置:文档库 › 03概率论第三章练习答案

03概率论第三章练习答案

03概率论第三章练习答案
03概率论第三章练习答案

《概率论》第三章 练习答案

一、填空题:

1.设随机变量ξ与η相互独立且具有同一分布律:

则随机变量ηξζ+=的分布律为: 。

2.随机变量ξ服从(0,2)上均匀分布,则随机变量ξ

η

2

=在(0,4)的密度函数为

???

??=0

41

)(y

y f η

其他

4??y o

)

()()

()()()()()()

(,0)

20(,2

1

)(),2,0(~2y F y F y p y p y y p y p y p y F f U --=-≤-≤

=≤≤-=≤=≤=?????<<=ξξηξξξξηξξξ其他y

y O y y F y f 41212121)()(/=?+?=

=ηη

3.设x 表示10次独立重复射击命中目标的次数,每次射中的概率为0.4,则x 2的数学期望E (x 2) = DX+(EX )2=2.4+16=18.4 。

4.2,4),4.0,10(~===npq DX EX b X 则

4.设随机变量x 服从 [1, 3 ] 上的均匀分布,则E (

X

1

)=?=?32

121113Ln dx x

5.设DX =4,DY =9,P XY =0.5,则D (2x – 3y) =4Dx+9Dy-2cov(2x,3y)=61 。

3),cov(,3

2)

,cov(5.0=∴?=

=Y X Y X ρ

6.若X 与Y 独立,其方差分别为6和3,则D(2X -Y)=___27_______。

),cov(44)2(Y X DY DX Y X D -+=-

二、单项选择:

1.设离散型随机变量(ηξ,)的联合分布律为:

若ξ与η独立,则α与β的值为: ( A ) A .α=

92,β=91 B .α=

91,β=92

C .α=

6

1

,β=6

1

D .α=185,β=18

1

3

1

)311819161(1=+++-=+βα

还原为(ηξ,):

2. 设(X ,Y )是一个二元离散型随机向量,则X 与Y 独立的充要条件是:( D ) A 、 cov (X,Y )= 0 B 、)()(i j i ij X Y P X P P = C 、 P = 0 D 、j i ij P P P ?=

3.已知(X ,Y )的联合密度为=)

(x ?

4xy

其它1,0≤≤y x ,则F (0.5,2)=( B )

A 、0

B 、0.25

C 、0.5

D 、0.1

{})

(4

1

442,5.025.01

05

.00

5.00

1

0利用图像),(===≤≤=??

?

?ydy xdx xydxdy Y X P F

4.如果X 与Y 满足D (X +Y )=D (X -Y ),则必有 ( )

A .X 与Y 独立

B .X 与Y 不相关

C .

D (Y )=0

D .D (X )D (Y )=0

B

EY Y EX X E 故选),())((00cov 0=?=?=--ρηξ

5.对任意两个随机变量X 和Y ,若EXY =E (X )E (Y ),则 ( B )

A .D (XY )=D (X )D (Y )

B .D (X +Y )=DX +DY

C .X 和Y 独立

D .X 与Y 不独立

6.设DX =4,DY =9,P XY =0.5,则D (2X -3Y )=____。 ( C ) A .97

B .79

C .61

D .29

7.设已知随机变量

ξ 与η的相关系数0=ρ,则ξ与η之间的关系为: ( D )

A. 独立

B. 相关

C. 线性相关

D. 线性无关

8. 设X, Y 为两个独立的随机变量, 已知X 的均值为2, 标准差为10, Y 的均值为4, 标准差为20, 则与Y X -的标准差最接近的是[ D ]

A 10

B 15

C 30

D 22

30

50020,900500400500400100<<∴<<=+=+=- DY DX X Y D )(

9.设随机变量X ~N (-3,1),Y ~N (2,1),且X 与Y 独立,设Z =X -2Y +7,则Z ~

( A ) A .N (0,5) B .N (0,-3)

C .N (0,46)

D .N (0,54)

DZ=D (X —2Y+7)=5, EZ=E (X —2Y+7)=0

10.设两个相互独立的随机变量X 和Y ,分别服从正态分布N (0,1)和N (1,1),则

( B )

A .P (x + y ≤0) = 21

B .P (x + y ≤1) = 21

C .P (x -y ≤0) = 21

D .P (x -y ≤1) = 2

1

)2,1(~),2,1(~--+N Y X N Y X

E (X+Y )= EX + EY = 1,以1为中心的正态分布大于1小于1各为1/2 三、计算题:

1. 设(X ,Y )~

),(y x ?=

)

(y x ce +- 其它0,0>>y x 求:

① 确定C ② F (x ,y )

③ 验证X 与Y 的独立性

解:① 根据二元随机变量密度函数的性质:

1

110

=?==????∞

+∞

++-+∞∞-+∞

-c dxdy ce dxdy y x y x )

(即),(?

② 根据二元随机变量分布函数:

??

?>>--=--===----+-∞-∞

-?

?

?

?

,其它

,),)(()

)((),(),()

(00

011110

y x e e e e dxdy e dxdy y x y x F y x y x x

y

y x x

y

?

③ 先求X 的密度函数:

一样。

的密度函数与对称地,时,当,

时,当X Y x x e x x x e e e dy e x x x X X x y

x y x X ,)

0(,0)

0(,)(0

)(0)(*)(00

)(???≤>=∴=≤===>--+∞

∞+--+-????

分别求出X 与Y 的边缘密度函数满足:

相互独立。

与故),()

()(Y X y x y x Y X ???=?

2. 离散型二维随机变量(X ,Y )的分布为:

Y\X 1 2 3 0 3/16 3/8 a 1 b 1/8 1/16 问:a ,b 分别取什么值时,X 与Y 是相互独立的? 解:先补充边缘概率分布, 依据独立的充分必要条件得:

??????

?=?=+=?=+??????

?=

?+=?+1614116

316343169818416

38384169

b b a a b a )()(

3.二维随机变量(X ,Y )的联合分布如下:

求:(1)EX ,EY ,DX ,DX (2)xy ρ

(3)D (X +Y ),并说明X 与Y 是否独立。

解:联合分布如下:

(1)EX=0

EY=0 DX=

43

DX=

4

3

(2)Pxy=

DY

DX Y X ),cov(

0),cov(=-=EXEY EXY Y X

∴Pxy=o

(3)2

304343),cov(2)(=++=

++=+

y x Dy Dx y x D 8

1)1,1(649)1()1(=-=-=≠=

-=-=Y X p Y P X P 由于 ∴X 与Y 不独立。

4.设二维随机向量(X,Y )~ U(D), 其中D={ (x, y) | 0 ≤x ≤1,0≤y ≤1}, 求X 与Y 的边缘密度函数()

x f X 与

()x f Y .

解:??

?≤≤=?

??≤≤=∴=><===

≤≤??

?

??≤≤≤≤==??∞

+∞

-)

(,0)

10(,1)()(,0)

10(,1)(;

0)(1011),()(10)(,0)10,10(,1)

(1

),(1

其他的密度函数如下:对称地,,

其他时,或当,

时,当其他x x f Y x x f x f x x

dy dy y x f x f x y x D S y x f Y X X X

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12 (34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k (1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}. 【解】(1)由性质有

概率论习题第三章答案

第三章连续型随机变量 3、1设随机变量 ξ 的分布函数为F(x),试以F(x)表示下列概率: 。 )()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。 )(解:)0(1)()4(); (1)()3(); 0()(P 2); ()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ 3、2函数x 211 F(x)+=就是否可以作为某一随机变量的分布函数,如果 在其它场合恰当定义。 在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞ <<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能就是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能就是随机变量的分布函数; (3)F(x)在) ,(-0∞内单调上升、连续且,若定义 ???≥<<∞=01 0)()(~x x X F x F - 则)(~ x F 可以就是某一随机变量的分布函数。 3、3函数 sinx 就是不就是某个随机变量ξ的分布函数?如果ξ的取值范围为 []。,);(,);(,)(?? ??????????πππ230302201 解:(1)当?? ????∈2,0πx 时,sinx 0≥且1sin 20=?πxdx ,所以 sinx 可以就是某个随机变量的分布密度; (2) 因为12sin 0≠=?πxdx ,所以sinx 不就是随机变量的分布密度; (3) 当 ?????? ∈23, ππx 时,sinx<=0所以sinx 不就是随机变量的分布密度。 3、4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有

概率论与数理统计习题及答案第三章

习题3-1 1. 而且12{P X X =. 求X 1和X 2的联合分布律. 解 由12 {0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布必形 于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律

(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04 P X P X =?== ≠, 所以X 1和X 2 不独立. 2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律. 解 从7只球中取4球只有354 7 =C 种取法. 在4只球中, 黑球有i 只, 红 球有j 只(余下为白球4i j -- 只)的取法为 4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4. 于是有 022 322 1{0,2}35 35 P X Y C C C ====,111322 6{1,1}35 35 P X Y C C C ====, 121322 6 {1,2}35 35 P X Y C C C ====,202322 3 {2,0}35 35 P X Y C C C ==== , 211 322 12{2,1}35 35P X Y C C C ==== ,220 322 3{2,2}35 35P X Y C C C === = , 301 322 2 {3,0}3535P X Y C C C === =, 310 322 2 {3,1}3535 P X Y C C C ====, {0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============. 3. (,)(6),02,24, 0,.f x y k x y x y =--<<<

概率论与数理统计总结之第三章

第三章 多维随机变量及其分布 第一节二维随机变量的概念 1.二维随机变量 定义:设(X,Y)是二维随机变量,记为: (,){()()}=≤?≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y 称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数 }}(){{(,lim (,)→+∞ =≤=≤≤+∞=X y F x P X x P X x Y F x y }}(){{,lim (,)→+∞ =≤=≤+∞≤=Y x F y P Y y P X Y y F x y 分布函数(,)F x y 性质: 1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数). 3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续, 4)对于任意11221212(,),(,),,,<

概率统计第三章答案

概率统计第三章答案 概率论与数理统计作业8 (§ 3.1?§ 3.3 ) 一、填空题 1.X,Y 独立同分布X L03 2:3,则P(X+YW1)=?E(XY)=4? 2.设X的密度函数为5= 2(10x) 0其它1,则 2 E(X) = 1/3,E(X ) = 1/6 . 3.随机变量X的分布率为P|0;00303,则E(X) = -0.2 ________ , 2 E(3X 5)= 13.4 ________________ 。 4.已知随机变量X的分布列为P ( X=m )= 1 , m = 2,4,…,18,20 ”则 E( X ) = ___________

5.对两台仪器进行独立测试,已知第一台仪器发生故障的概率为P I,第二台仪器发生故障的概率为P2 ?令X表示测试中发生故障的仪器数,则 E x A P1 P2 二、计算题 1.连续型随机变量X的概率密度为 a f(x)= kx穿",「0)又知 E(X)=0.75 ,求k 和 a 的值。 0 其它 解:由[3 (x dx = Jkx a dx = 1,得_^=1, . o a 1 又E(X)匚0.75,则有xf xdx 二:x kx a dx =0?75,得—= 0.75, 0 a 2 故由上两式解得k=3,a=2?

2.对某工厂的每批产品进行放回抽样检查。如果发现次品,则立即停止检查而认为这批产品不合格;如果连续检查5个产品,都是合格品,则也停止检查而认为这批产品合格。设每批产品的次品率为p,求每批产品抽查样品的平均数。解:设随机变量X表示每批产品抽查的样品数,则:P( X =m ) = pq m」(m =1,2,3,4); P( X = 5) = pq4 q5二q4 ( p q = 1) ???X的概率分布表如下: EX = p 2pq 3pq2 4 pq3 5q4 = 5 TO p 10 p2_5p3 p4 3 ?设二维随机变量X, Y的联合密度函数为I 21 2 2 . f(x,y)J匸x y X —y —1 [0其它 1)求EX,EY 及EXY ;

概率论与数理统计修订版第三章练习答案郝志峰,谢国瑞

概率论与数理统计第三章习题 率分布。 ,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1 。 出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2

11880 54 99101112123)3(132054 109112123)2(132 27 119123)1(12 9 )0(3 210191911011111121121311019111121121311119112131121 9= ???=???=== ??=??=== ?=?=== ==C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令 .1188054132054132271293210 ??? ? ??的分布列为 所以,ξ 废品数的概率分布。 况,求出取得)取后放回两种不同情)取后不放回;(个,试分别就(件,每次取个废品,现从中任取混有个同类型的一堆产品内设在2113210.3 .008.0096.0384.0512.03210 008.0)3(096.0)2(384.0)1(512.0)0(32102210)2()1()0(2 1013 1101 22 1101211018231101 22 1101 8133 1101831022183101228310383 10 2 2 18310122831038??? ? ??=??? ? ??===???? ?????? ??===??? ? ????? ? ??===???? ??==???? ? ?????==?====的分布列为 所以,,,,有 ,,,,则可能取值有:)设废品数为(的分布列为 所以,,,,,的可能值有:代表废品数,则)令解:(ηηηηηηξξξξξξC C P C C C C C P C C C C C P C C P C C C C C C C C C C C P C C C P C C P

概率论答案第三章测试题

第三章测试题 1箱子里装有12件产品,其中两件是次品.每次从箱子里任取1件产品,共取两次(取后不放回).定义随机变量X Y ,如下: 0X=1???,若第一次取出正品,若第一次取出次品 0Y=1??? ,若第二次取出正品,若第二次取出次品 (1)求出二维随机变量X Y (,)的联合分布律及边缘分布律; (2)求在Y=1的条件下,X 的条件分布律。 解 (2) 2 设二维随机变量 X Y (,)的概率密度Cy(2-x),0x 1,0y x, f(x,y)=0,.≤≤≤≤??? 其他 (1)试确定常数C ;(2)求边缘概率密度。 解 (1)1)(=??+∞∞-+∞∞-dy dx x f 即1)2(100=??-x dxdy x Cy x ,5 12 = ∴C 3设X Y (,)的联合分布律为: 求(1)Z X Y =+的分布律;(2)V min(X ,Y )=的分布律 (2)

4设X 和Y 是两个相互独立的随机变量,X 服从(0,1)上的均匀分布,Y 的概率密度为: y 212Y e ,y 0 f (y )0,y 0 -??>=? ≤?? (1)求X 和Y 的联合概率密度; (2)设含有a 的二次方程为2 a 2Xa Y 0++=,试求a 有实根的概率。 解 (1)X 1,0x 1 f (x )0,other <<<==∴-other y x e y f x f y x f y Y X , 00,10,21)()(),(2 (2)2 a 2Xa Y 0++=有实根,则0442≥-=?Y X ,即求02 ≥-Y X 的概率 ?-=??=??=≥---≥-1 01 00 20 2 2 22 121),(}0{dx e dy e dx dxdy y x f Y X P x x y y x 3413.0)0()1(211 2 2=Φ-Φ=?- dx e x π ,π23413.010 22=?∴-dx e x

概率统计第三章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第三章 多维随机变量及其分布 教学要求: 一、了解多维随机变量的概念,了解二维随机变量的分布函数; 二、了解二维离散型随机变量分布律的概念,理解二维连续型随机变量概率密度的概念; 三、理解二维随机变量的边缘概率分布; 四、理解随机变量的独立性概念; 五、会求两个独立随机变量的简单函数的分布(和、极大、极小). 重点:二维离散型随机变量的联合分布律及二维连续型随机变量的边缘概率密度,随机变 量的独立性. 难点:边缘分布,随机变量的独立性,随机变量的函数的分布. 练习一 二维随机变量及其分布 1.填空题 (1)设二维随机变量),(Y X 的分布函数为),(y x F ,且d c b a <<,,则 =≤}{a X P ()+∞,a F ; =≥}{d Y P ()d F ,1∞+-; =≤<≤<},{d Y c b X a P ),(),(),(),(c a F c b F d a F d b F +--. (2)设二维连续型随机变量),(Y X 的概率密度为),(y x f ,则其分布函数),(y x F = ?? +∞∞-+∞ ∞ -dxdy y x f ),(;若G 是xoy 平面上的区域,则点),(Y X 落在G 内的概率,即 }),{(G Y X P ∈??=G dxdy y x f ),( (3)若二维随机变量),(Y X 的概率密度为 ) 1)(1(),(22y x A y x f ++= )0,0(>>y x , 则系数A = ,4 2 π= <}1{X P 2 1. (4)设二维随机变量),(Y X 的分布函数(),3arctan 2arctan ,?? ? ??+??? ? ?+=y C x B A y x F

概率论第三章习题答案

第三章练习题 一、单项选择题 1.设二维随机变量(X ,Y )的分布律为 Y X 1 2 3 1 2 101 103 102 101 102 101 则P{XY=2}=( C )A .5 B .10 C .2 D .5 2.设二维随机变量(X ,Y )的概率密度为 ? ??≤≤≤≤=,,0; 10,10,4),(其他y x xy y x f 则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y ) 1 =(,)4f x y dx xydx +∞ -∞ ==? ?= ( D ) A .x 21 B .2x C .y 21 D .2y 3.设随机变量X ,Y 相互独立,其联合分布为 1+9 α 12 1 +9 α 1+18β 116=+9918 α?? ??? 则有( B ) A .92 ,91==βα B .91,92==βαC .32,31==βα D .3 1,32==βα 二、填空题 1.设随机变量X ,Y 相互独立,且P{X ≤1}=21,P{Y ≤1}=3 1 , 则P{X ≤1,Y ≤1}=_ 1 6 __. 2.已知二维随机变量(X ,Y )的分布律为 0 2 5 0 0.1 0.1 0.3 Y X

1 0.25 0 0.25 则P (X ≤0,Y =2)=___0.1___. 3.设二维随机变量(X ,Y )的分布律为 Y X 1 2 3 1 2 61 121 81 81 41 4 1 则P{Y=2}=____ 4 _______. 4.设随机变量(X,Y)的概率密度为f(x,y)=? ??≤≤≤≤其他02 y 0,1x 0xy , 则X 的边缘概率密度f x (x)= 2 (,)f x y dy xydy +∞ -∞ ==? ?_____2x___________. 三、计算题 1.设二维随机变量(X ,Y )只能取下列数组中的值:(0,0),(-1,1),(-1,3 1 ),(2,0), 且取这些值的概率依次为61,31,121,12 5 .(1)写出(X ,Y )的分布律; (2)分别求(X ,Y )关于X ,Y 的边缘分布律. (1) {} {} 1351112 3 121166551212 71112 12 3 01-10 00020 1 j i X Y P Y y P X x == (2) 13711 12 12 3 1 X P 5 5112 6 12 10 2 Y P - 2.设二维随机变量(X ,Y )的概率密度为?? ???>>=+.,0;0,0,e ),()-(其他y x y x f y x (1)分别求(X ,Y )关于X 和Y 的边缘概率密度; f x (x)= ()0 (,),0x y x f x y dy e dy e x +∞ ∞ -+--∞ ==>? ? f Y ( y ) ()0 = (,),0x y y f x y dx e dx e y +∞ ∞ -+--∞ ==>? ? (2) 问:X 与Y 是否相互独立,为什么? () ()()(,)x y x y X Y f x y e e e f x f y -+--==?=?,因此相互独立 3.设二维随机变量(X ,Y )的分布律为 0.7 0.4 0.2 0.4 (1)求(X ,Y )分别关于X ,Y 的边缘分布律;(2)试问X 与Y 是否相互独立,为什么?

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布 习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律. (X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }= 35147 2222=C C C P {X=1, Y=1 }=356 47 221213=C C C C P {X=1, Y=2 }= 3564 7 1 2 2213=C C C C P {X=2, Y=0 }=353 472 223=C C C P {X=2, Y=1 }= 35124 712 1223=C C C C P {X=2, Y=2 }=353 47 2 223=C C C P {X=3, Y=0 }= 35247 1233=C C C P {X=3, Y=1 }=352 47 1233=C C C P {X=3, Y=2 }=0 习题3-2 设随机变量),(Y X 的概率密度为 ?? ?<<<<--=其它 , 0, 42,20), 6(),(y x y x k y x f (1) 确定常数k ; (2) 求{}3,1<

?? ????????<<<<=42,20),(y x y x D o 解:(1)∵??? ? +∞∞-+∞ ∞ ---= = 20 12 )6(),(1dydx y x k dy dx y x f ,∴8 1= k (2)8 3 )6(8 1)3,1(32 1 ? ?= --= <

概率论第三章

概率论: 概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。 事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。 发展过程: 起源 概率论是研究随机现象数量规律的数学分支,是一门研究事情发生的可能性的学问。但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolamo Cardano)开始研究掷骰子等赌博中的一些简单问题。 概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从

而产生了概率论,并使之逐步发展成一门严谨的学科。概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。 发展 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和拉普拉斯又导出了第二个基本极限定理(中心极限定理)的原始形式。 拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。 19世纪末,俄国数学家切比雪夫、马尔可夫、李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面柯尔莫哥洛夫、维纳、马尔可夫、辛钦、莱维及费勒等人作了杰出的贡献。

概率论与数理统计习题及答案 第三章

《概率论与数理统计》习题及答案 第 三 章 1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。 解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 1 1()(1)(1),2,3,.k k P X k p p p p k --==-+-=L 2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个 数X 的分布列。 解 从a b +个球中任取r 个球共有r a b C +种取法,r 个球中有k 个黑球的取法有k r k b a C C -,所以X 的分布列为 ()k r k b a r a b C C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+L , 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。 3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1 (1,2,3)1 i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。 解 设i A =‘第i 个零件是合格品’1,2,3i =。则 1231111 (0)()23424 P X P A A A === ??= , 123123123(1)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1111211136 23423423424 = ??+??+??= , 123123123(2)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424 = ??+???+??=,

概率论第三章习题解答

第三章习题解 1 在一箱子中装有12只开关,其中 2 只就是次品,在其中任取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样。定义随机变量X ,Y 如下: 0,1X ?=??若第一次取出的是正品,,若第一次取出的是次品。 0,Y 1?=?? 若第二次取出的是正品,,若第二次取出的是次品。 试分别就(1),(2)两种情况写出X ,Y 的联合分布律。 解 (1)放回抽样 由于每次抽取时都就是12只开关,第一次取到正品有10种可能,即第一次取到正品的概率为 105{0}126 P X ===, 第一次取出的就是次品的概率为 21{1}126 P X === 同理,第二次取到正品的概率105{0}126 P Y === 第二次取到次品的概率为21{1}126 P Y === 由乘法公式得X ,Y 的联合分布率为 {,}{|}{}{}{}P X i Y j P Y j X i P X i P X i P Y j =========,0,1i =,0,1j =。 具体地有 5525{0,0}6636P X Y ===?=,515{0,1}6636 P X Y ===?=, 155{1,0}6636P X Y ===?=,111{1,1}6636 P X Y ===?= 用表格的形式表示为 (2)不放回抽样 5{0}6P X ==,1{1}6 P X == 因为第二次抽取时,箱子里只有11只开关,当第一次抽取的就是正品,则箱子中有9只正品)。所以 9{0|0}11P Y X === , 2{1|0}11 P Y X === 10{0|1}11P Y X ===, 1{1|1}11P Y X ===

概率论第三章答案

习题三 1. 箱子里装有12只开关,其中只有2 只次品,从箱中随机地取两次,每次取一只,且设随机变量X ,Y 为 ?? ?=?? ?=., 1,0;, 1, 0若第二次取得次品若第二次取得正品若第一次取得次品若第一次取得正品, Y ,X 试就放回抽样与不放回抽样两种情况,写出X 与Y 的联合分布律. 解:先考虑放回抽样的情况: . 361 122122}1,1{, 365 1210122}0,1{, 36 5 1221210}1,0{,362512101210}0,0{=?====?====?====?= ==Y X P Y X P Y X P Y X P 则此种情况下,X 与Y 的联合分布律为 再考虑不放回抽样的情况

. 661 111122}1,1{,3351110122}0,1{,33 51121210}1,0{,22151191210}0,0{=?====?====?====?= ==Y X P Y X P Y X P Y X P 2. 将一硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示在三次中出现正面次数与出现反面次数之差的绝对值,试写出(X,Y )的联合分布律及边缘分布律. 解:由已知可得:X 的取值可能为0,1,2,3;Y 的取值可能为1,3;则由硬币出现正面和反面的概率各为2 1,可知 8 3 212121}1,2{, 0}3,1{,8 3212121}1,1{, 8 1 212121}3,0{(0}0,0{2313= ??=======??====??======C Y X P Y X P C Y X P Y X P Y X P 此种情况不可能发生) . 8 1 212121}3,3{0}1,3{0}3,2{=??=========Y X P Y X P Y X P

概率统计第三章答案

概率论与数理统计作业8(§3.1~§3.3) 一、填空题 1. Y X ,独立同分布 323110//P X ,则()().XY E ,Y X P 9 4 951==≤+ 2. 设X 的密度函数为2(1)01 ()0 x x f x -<=? ?其它 又知()0.75E X =, 求k 和a 的值。 解:由 (),dx kx dx x f a 11 ==?? +∞ ∞ -得 ,a k 11 =+ 又 ()0.75E X =,则有 (),.dx kx x dx x xf a 75010 =?=?? +∞ ∞ -得 ,.a k 7502 =+ 故由上两式解得k =3,a =2.

2. 对某工厂的每批产品进行放回抽样检查。如果发现次品,则立即停止检查而认为这批产品不合格;如果连续检查5个产品,都是合格品,则也停止检查而认为这批产品合格。设每批产品的次品率为p ,求每批产品抽查样品的平均数。 解:设随机变量X 表示每批产品抽查的样品数,则: ∴X 的概率分布表如下: 3.设二维随机变量()Y X ,的联合密度函数为 ()?????≤≤=其它,0 1 42122 y x y x y x f 1)求()X E ,()Y E 及()XY E ; 2)求X 与Y 的边缘密度函数; 解:1)()() ;dx x x dy y x x dx dxdy y ,x xf EX x 08214 2111731 2 112=-=? == ???? ?--+∞ ∞ -+∞∞ - ()() ;dx x x dy y x y dx dxdy y ,x yf EY x 9 7 4742111821 21 1 2=-=? ==???? ? --+∞ ∞ -+∞ ∞ - ()()() ;dx x x dy y x xy dx dxdy y ,x xyf XY E x 0474 2111931 2 11 2=-=? ==???? ? --+∞ ∞ -+∞ ∞ - 2)当时,1≤x ()()() ;x x ydy x dy y ,x f x f x X 62 21 8 214212 -=== ? ? +∞ ∞ - 当时,1≥x ().x f X 0= 当时,10≤≤y ()();y ydx x dx y ,x f y f y y Y 25 22 7 421=== ? ? - ∞ +∞ - 当时,或01<>y y ().y f Y 0= X ) m X (P =4 q 5 21p pq 4 3 2 pq 3 pq ;),,,m (pq )m X (P m 43211===-) q p (1=+4 545q q pq )X (P =+==4 324325101055432p p p p q pq pq pq p EX +-+-=++++=∴()() ?? ? ??>≤-=∴. x ,;x ,x x x f X 10182162

中北大学概率统计习题册第三章完整答案(详解)

1. 设随机变量X 的分布列为 解:()2E X +10.100.220.4=?+?+? 30.140.22+?+?= ()E X 10.120.200.4=?+?+? 10.120.21+?+?= ()22E X +30.160.220.4=?+?+? 30.160.2 3.8+?+?= 2. 设随机变量X 的分布列为: {}Λ3,2,1,1===-k pq k X P k ,其中p 为常 数,01p <<,1q p =-。 求(),()E X D X 。 解:1 1()k k E X kpq +∞ -== ∑()1 11k k k q q +∞ -==-∑ 11 1 k k k k kq kq +∞+∞ -===-∑∑ ()01 1k k k k k q kq +∞+∞ ===+-∑∑ 01111k k q q p +∞ == = =-∑ 2 2 1 1()k k E X k pq +∞ -==∑ ()112 1 1k k k k k k pq kpq +∞ +∞ --===-+∑∑ ()()1 2 2 111k k k k k k q k k q p +∞ +∞ -===---+ ∑∑ ()()1 2 111k k k k k k q k k q p +∞+∞ === +--+ ∑∑ 1 12k k kq p +∞ ==+ ∑ 1121k k q kpq p p +∞-==+∑221q p p =+ 所以,() ()22()D X E X E X =- 222 211q q p p p p = +-= 3.设随机变量X 的概率密度函数为 1 ()exp{}2x f x μλλ -= -,其中0λ>为常数,求()E X 。 解:1e d 2x EX x x μ λ λ --+∞ -∞ = ? ()11e d e d 2211e d e d 22x x t t x x x t t x μ μ λ λ λλμμλ λ μμλλ --- - +∞ +∞ -∞-∞ - -+∞ +∞-∞-∞=-+=+=?? ??注:关于绝对收敛性 01e d 211e d e d 2211e d e d 22x x x t t x x x x x t x t x μ λ μ μ λ λ λλ λ μμ λ λ μμ λλ --+∞ -∞ --- -+∞ +∞ -∞-∞ --+∞ +∞-∞ ≤-+=+=+? ? ? ? ? λμ=+ 或 1e d 2x x x μ λ λ -- +∞ -∞ ? ||1e d ()2t x t t t μ λμλ +∞ --∞ -=+= ? 当0μ≥时 ()|| e d e d t t t t t t μλ λμλμ+∞ - --∞ -∞ +=-+? ? ()()00 e d e d t t t t t t μλ λμλμ+∞-- ++++? ?

概率论第三章课后习题答案

第三章 离散型随机变量 率分布。 ,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1 .343.0441.0189.0027.03210 027.0)7.01()()0()0(189 .0)7.01()7.01(7.03) (3)1()1()1()1(441 .0)7.01(7.07.03) (3)2()2()2()2(343.0)7.0()()3()3()(0 )(1 )()()(2)()()(3)(} ,,,{)},,(),,,(),,,(), ,,(),,,(),,,(),,,(),,,{(3 ,2,1332183217653214323321187654321821321321321321321321321321??? ? ??=-======-?-??===+=+====-???===+=+===================Ω==的分布列为 所以,,则 简记为将,,则 代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i Λ 。 出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2

概率统计第三章答案(3)

概率论与数理统计作业 班级 姓名 学号 任课教师 第三章 多维随机变量及其分布 教学要求: 一、了解多维随机变量的概念,了解二维随机变量的分布函数; 二、了解二维离散型随机变量分布律的概念,理解二维连续型随机变量概率密度的概念; 三、理解二维随机变量的边缘概率分布; 四、理解随机变量的独立性概念; 五、会求两个独立随机变量的简单函数的分布(和、极大、极小). 重点:二维离散型随机变量的联合分布律及二维连续型随机变量的边缘概率密度,随机变 量的独立性. 难点:边缘分布,随机变量的独立性,随机变量的函数的分布. 练习一 二维随机变量及其分布 1.填空题 (1)设二维随机变量),(Y X 的分布函数为),(y x F ,且d c b a <<,,则 =≤}{a X P ()+∞,a F ; =≥}{d Y P ()d F ,1∞+-; =≤<≤<},{d Y c b X a P ),(),(),(),(c a F c b F d a F d b F +--. (2)设二维连续型随机变量),(Y X 的概率密度为),(y x f ,则其分布函数),(y x F = ?? +∞∞-+∞ ∞ -dxdy y x f ),(;若G 是xoy 平面上的区域,则点),(Y X 落在G 内的概率,即 }),{(G Y X P ∈??=G dxdy y x f ),( (3)若二维随机变量),(Y X 的概率密度为 ) 1)(1(),(2 2y x A y x f ++= )0,0(>>y x , 则系数A = ,4 2 π= <}1{X P 2 1. (4)设二维随机变量),(Y X 的分布函数(),3arctan 2arctan ,?? ? ??+??? ? ?+=y C x B A y x F 则常数 A = 2 1 π, B = 2π, C =2 π .

概率论第三章习题参考答案与提示

第三章 随机变量的数字特征习题参考答案与提示 1.设随机变量X 的概率分布为 X -3 0 1 5 0.1 0.2 0.3 0.4 k p 试求EX 。 答案与提示:2EX =。 2.已知随机变量X 的分布列为 X 0 1 2 3 0.1 k P p 0.4 0.2 求:(1)常数p ;(2)数学期望EX ;(3)方差。 DX 答案与提示:(1)由归一性,3.0=p ; (2); 1.7EX =(3) 0.81DX = 3.已知随机变量X 的分布列为 X 0 1 2 0.3 0.5 k p p 求:(1)数学期望;(2)方差。 2)1(?X E 2)1(?X D 答案与提示:由归一性,2.0=p ; (1); 2(1)0.E X ?=8 (2) 2(1)0.16D X ?=4.已知连续型随机变量X 的概率分布为 ???<<=其它,08 0,8/1)(x x f 求X 的数学期望。 答案与提示:4EX = 5.设随机变量X 服从拉普拉斯分布,其分布密度为 α β α /21)(??= x e x f ,0>α(+∞<<∞?x )。 求X 的数学期望。 答案与提示:该题要求熟练掌握计算连续型随机变量的数学期望的公式。 EX β=。

6.设随机变量X 的概率密度为 ?? ? ??≤,可见A 仪器的测量误差要比B 仪器的测量误差大,故B 仪器要优良些。 10.设X 的概率分布为 ???≤>=?0 ,00 ,)(x x e x f x

相关文档
相关文档 最新文档