文档库 最新最全的文档下载
当前位置:文档库 › 高考数学一轮复习:第2章 函数、导数及其应用 第9讲

高考数学一轮复习:第2章 函数、导数及其应用 第9讲

高考数学一轮复习:第2章 函数、导数及其应用  第9讲
高考数学一轮复习:第2章 函数、导数及其应用  第9讲

第二章 第九讲

A 组 基础巩固

一、选择题

1.如图是张大爷晨练时所走的离家距离(y )与行走时间(x )之间函数关

系的图象,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是 ( )

[答案] D

[解析] 由图可知,张大爷开始匀速离家直线行走,中间一段离家距离不变,说明在以家为圆心的圆周上运动,最后匀速回家,故选D .

2.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( )

A .x =60t

B .x =60t +50

C .x =?

????

60t 0≤t ≤2.5 ,

150-50t t >3.5

D .x =

????

?

60t 0≤t ≤2.5 ,150 2.5<t ≤3.5 ,150-50 t -3.5 3.5<t ≤6.5

[答案] D

3.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.

在这段时间内,该车每100千米平均耗油量为 ( ) A .6升 B .8升 C .10升 D .12升

[答案] B

[解析] 因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升,选B .

4.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲、乙商品所获利润分别为P 和Q (万元),且它们与投入资金x (万元)的关系是p =x 4,Q =a

2x (a >0),若不管资金

如何投放,经销这两种商品或其中一种商品所获利润总数不小于5万元,则a 的最小值为 ( )

A .5

B . 5

C .3

D . 3

[答案] B

[解析] 设经销乙商品投入资金x 万元,由题意得

20-x 4+a 2x ≥5(0≤x ≤20),整理得-x 4+a

2x ≥0.显然,当x =0时,不等式恒成立;当0<x ≤20时,由-x 4+a 2x ≥0,得a ≥x 2恒成立.因为当0<x ≤20时,0<x

2≤5,所以a ≥5,即a 的

最小值为 5.故选B .

5.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:mg/L)与过滤时间t (单位:h)之间的函数关系为P =P 0e

-kt

(k ,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还

需过滤( )才可以排放.

A .1

2 h

B .59 h

C .5 h

D .10 h

[答案] C

[解析] 设原污染物数量为a ,则P 0=a .由题意有10%a =a e

-5k

,所以5k =ln10.设t h 后

污染物的含量不得超过1%,则有1%a ≥a e -

tk ,所以tk ≥2ln10,t ≥10.因此至少还需过滤10-5=5(h)才可以排放.

6.一水池有两个进水口,一个出水口,每个进水口的进水速度如图甲所示.出水口的出水速度如图乙所示,某天0点到6点,该水池的蓄水量如图丙所示.

给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的是 ( )

A .①

B .①②

C .①③

D .①②③

[答案] A

[解析] 由甲、乙两图可知进水速度为1,出水速度为2,结合丙图中直线的斜率,只进水不出水时,蓄水量增加速度是2,故①正确;不进水只出水时,蓄水量减少速度是2,故②不正确;两个进水一个出水时,蓄水量减少速度也是0,故③不正确.

二、填空题

7.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e

-bt

(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过

________min ,容器中的沙子只有开始时的八分之一.

[答案] 16

[解析] 当t =0时,y =a ,当t =8时,y =a e -8b

=12

a , ∴e -8b

=12,容器中的沙子只有开始时的八分之一时,即y =a e -bt =18a ,e -bt =18

=(e -

8b )3

=e

-24b

,则t =24,

所以再经过16 min.

8.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.

[答案] 9

[解析] 设出租车行驶x km 时,付费y 元, 则y =????

?

9,0<x ≤3,8+2.15 x -3 +1,3<x ≤8,

8+2.15×5+2.85 x -8 +1,x >8,

由y =22.6,解得x =9.

9.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=1

2n (n +1)(2n +1)吨,但如果年产量超过150吨,

将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年.

[答案] 7

[解析] 设第n (n ∈N *)年的年产量为a n ,则a 1=1

2×1×2×3=3;当n ≥2时,a n =f (n )-f (n

-1)=12n (n +1)(2n +1)-1

2

n (n -1)(2n -1)=3n 2.又a 1=3也符合a n =3n 2,所以a n =

3n 2(n ∈N *).令a n ≤150,即3n 2≤150,解得-52≤n ≤52,所以1≤n ≤7,n ∈N *,故最长的生产期限为7年.

10.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =(116

)t -

a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:

(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为____________.

(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.

[答案] (1)y =????

?

10t ,0≤t ≤0.1, 116 t -0.1,t >0.1

(2)0.6

[解析] (1)设y =kt ,由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1). 由y =(116)t -a 过点(0.1,1),得1=(116)0.1-a ,解得a =0.1,∴y =(116)t -

0.1(t >0.1).

(2)由(116)t -0.1≤0.25=1

4

,得t ≥0.6.

故至少需经过0.6小时学生才能回到教室.

三、解答题

11.某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)(元)成反比例.又当x =0.65时,y =0.8.

(1)求y 与x 之间的函数关系式;

(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]

[答案] (1)y =15x -2 (2)0.6元

[解析] (1)∵y 与(x -0.4)成反比例, ∴设y =k

x -0.4

(k ≠0).

把x =0.65,y =0.8代入上式, 得0.8=k

0.65-0.4,k =0.2.

∴y =0.2x -0.4=1

5x -2

即y 与x 之间的函数关系式为y =1

5x -2.

(2)根据题意,得(1+1

5x -2)·(x -0.3)

=1×(0.8-0.3)×(1+20%).

整理,得x 2-1.1x +0.3=0,解得x 1=0.5,x 2=0.6. 经检验x 1=0.5,x 2=0.6都是所列方程的根. ∵x 的取值范围是0.55~0.75,

故x =0.5不符合题意,应舍去.∴x =0.6.

∴当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.

12.某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.

(1)分别写出国外市场的日销售量f (t )与上市时间t 的关系及国内市场的日销售量g (t )与上市时间t 的关系;

(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.

[答案] (1)f (t )=?

????

2t ,0≤t ≤30,-6t +240,30<t ≤40

g (t )=-3

20t 2+6t (0≤t ≤40)

(2)当上市后的第30天满足题意

[解析] (1)图①是两条线段,由一次函数及待定系数法,

得f (t )=?

????

2t ,0≤t ≤30,

-6t +240,30<t ≤40.

图②是一个二次函数的部分图象, 故g (t )=-3

20

t 2+6t (0≤t ≤40).

(2)每件样品的销售利润h (t )与上市时间t 的关系为

h (t )=?

????

3t ,0≤t ≤20,60,20<t ≤40.

故国外和国内的日销售利润之和F (t )与上市时间t 的关系为

F (t )=?????

3t -3

20

t 2+8t ,0≤t ≤20,

60 -3

20t 2+8t ,20<t ≤30,

60 -320

t 2

+240 ,30<t ≤40.

当0≤t ≤20时,F (t )=3t (-320t 2+8t )=-9

20t 3+24t 2.

∴F ′(t )=-2720t 2+48t =t (48-27

20t )≥0.

∴F (t )在[0,20]上是增函数.

∴F (t )在此区间上的最大值为F (20)=6 000<6 300. 当20<t ≤30时,F (t )=60(-

320

t 2

+8t ). 由F (t )=6 300,得3t 2-160t +2 100=0. 解得t =70

3(舍去)或t =30.

当30<t ≤40时,F (t )=60(-

320

t 2

+240). 由F (t )在(30,40]上是减函数,得F (t )<F (30)=6 300.

故国外和国内的日销售利润之和可以恰好等于6 300万元,为上市后的第30天. [点拨] (1)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.

(2)构造分段函数时,要力求准确、简洁,做到分段合理不重不漏.

B 组 能力提升

1.给出四个函数,分别满足①f (x +y )=f (x )+f (y );②g (x +y )=g (x )·g (y );③φ(x ·y )=φ(x )+φ(y );④ω(x ·y )=ω(x )·ω(y ).又给出四个函数的图象如下

则正确的匹配方案是 ( ) A .①—M ②—N ③—P ④—Q B .①—N ②—P ③—M ④—Q C .①—P ②—M ③—N ④—Q D .①—Q ②—M ③—N ④—P [答案] D

[解析] 图象M 是指数型函数,具有性质②;图象N 是对数型函数,具有性质③;图象P 是幂函数,具有性质④;图象Q 是正比例函数,具有性质①.故选D .

2.在2014年APEC 会议期间,北京某旅行社为某旅行团包机去旅游,其中旅行社的包机费为12 000元,旅行团中每人的飞机票按以下方式与旅行社结算:若旅行团的人数在30人或30人以下,每张机票收费800元;若旅行团的人数多于30人,则给予优惠,每多1人,旅行团每张机票减少20元,但旅行团的人数最多不超过45人,当旅行社获得的机票利润最大时,旅行团的人数是 ( )

A .32

B .35

C .40

D .45

[答案] B

[解析] 设旅行团的人数是x ,旅行社获得的机票利润为y .根据题意,得y =

?

????

800x -12 000,0<x ≤30,-20x 2

+1 400x -12 000,30<x ≤45. 当0<x ≤30时,y 的最大值为800×30-12 000=12 000;当30<x ≤45时,y =-20x 2+1 400x -12 000=-20(x -35)2+12 500,所以当x =35时,有最大值12 500.综上,当旅行社获得的机票利润最大时,旅行团的人数是35.故选B .

3.(改编题)如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y 与乘客x 之间的关系图象,由于目前该条公路亏损,公司有关人员提出了两种调整的建议如图(2)(3)所示.

以下说法:

①图(2)的建议是:提高成本,并提高票价; ②图(2)的建议是:降低成本,并保持票价不变;

③图(3)的建议是:提高票价,并保持成本不变; ④图(3)的建议是:提高票价,并降低成本. 其中正确的序号是 ( ) A .①③ B .①④ C .②③ D .②④

[答案] C

[解析] 根据题意和题图(2)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0,但是支出的变少了,即说明了此建议是降低成本而保持票价不变,故②正确;由题图(3)知,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持成本不变,故③正确.

4.在淘宝网上,某店铺专卖孝感某种特产.由以往的经验表明,不考虑其他因素,该特产每日的销售量y (单位:千克)与销售价格x (单位:元/千克,1<x ≤5)满足:当1<x ≤3时,y =a (x -3)2+b

x -1,a ,b 为常数;当3<x ≤5时,y =-70x +490.已知当销售价格为2元/千

克时,每日可售出该特产600千克;当销售价格为3元/千克时,每日可售出150千克.

(1)求a ,b 的值,并确定y 关于x 的函数解析式;

(2)若该特产的销售成本为1元/千克,试确定销售价格x 的值,使店铺每日销售该特产所获利润f (x )最大.(x 精确到0.1元/千克)

[答案] (1)a =b =300;

y =????? 300 x -3 2+300x -1,1<x ≤3,

-70x +490,3<x ≤5. (2)1.7元/千克 [解析] (1)由题意知当x =2时,y =600,∴a +b =600. 又∵x =3时,y =150,解得a =b =300. ∴y 关于x 的函数解析式为

y =?????

300 x -3 2+300x -1,1<x ≤3,-70x +490,3<x ≤5. (2)由题意f (x )=y (x -1)

=?

????

300 x -3 2 x -1 +300,1<x ≤3, -70x +490 x -1 ,3<x ≤5. 当1<x ≤3,f (x )=300(x -3)2(x -1)+300 =300(x 3-7x 2+15x -8),

f ′(x )=300(3x 2-14x +15)=300(3x -5)(x -3).

∴x =53时有最大值5 9009

.

当3<x ≤5时,f (x )=(-70x +490)(x -1), ∴x =4时有最大值630.

∵630<5 9009,∴当x =53时,f (x )有最大值5 9009,

即当销售价格为1.7元/千克时,店铺所获利润最大.

5.一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用.已知每服用m (1≤m ≤4且m ∈R )个单位的药剂,药剂在血液中的含量y (克)随着时间x (小时)变化的函

数关系式近似为y =mf (x ),其中f (x )=???

10

4+x

,0≤x <6,4-x

2,6≤x ≤8.

(1)若病人一次服用3个单位的药剂,则有效治疗时间可达多少小时?

(2)若病人第一次服用2个单位的药剂,6个小时后再服用m 个单位的药剂,要使接下来的2小时中能够持续有效治疗,试求m 的最小值.

[答案] (1)203 (2)6

5

[解析] (1)因为m =3,所以y =???

30

4+x

,0≤x <6,12-3x

2,6≤x ≤8.

当0≤x <6时,由30

4+x

≥2,解得x ≤11,此时0≤x <6;

当6≤x ≤8时,由12-3x 2≥2解得x ≤203,此时6≤x ≤203,综上所述,0≤x ≤20

3,故一次服用3

个单位的药剂,则有效制疗时间可达20

3

小时.

(2)方法一:当6≤x ≤8时,y =2×(4-12x )+m [104+ x -6 ]=8-x +10m

x -2

因为8-x +10m

x -2≥2对6≤x ≤8恒成立,

即m ≥x 2-8x +1210对6≤x ≤8恒成立,

等价于m ≥(x 2-8x +12

10

)max,6≤x ≤8.

令g (x )=x 2-8x +1210,则函数g (x )= x -4 2-4

10在[6,8]上是单调增函数,

当x =8时,函数g (x )=x 2-8x +1210取得最大值6

5

所以m ≥65,所以所求m 的最小值为6

5

.

方法二:当6≤x ≤8时,y =2×(4-12x )+m [104+ x -6 ]=8-x +10m

x -2,

注意到y 1=8-x 及y 2=

10m

x -2

(1≤m ≤4且m ∈R )均关于x 在[6,8]上单调递减, 则y =8-x +10m

x -2关于x 在[6,8]上单调递减,

故y ≥8-8+10m 8-2=5m 3,由5m 3≥2,得m ≥6

5.

所以所求m 的最小值为6

5.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

k52006年高考第一轮复习数学:14.1 导数的概念与运算

知识就是力量
本文为自本人珍藏
版权所有 仅供参考
※第十四章
●网络体系总览
导 概 数 念 的 导 数
导数
的 性 导 求 函 单 数 法 数 调 的 的 导 应 函 极 数 用 数 值 的 函 最 数 大 的 值 小 与 值 最
●考点目标位定位 要求: (1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率 等) ,掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念. (2)熟记基本求导公式〔C,xm(m 为有理数) ,sinx,cosx,ex,ax,lnx,logax 的导数〕 ,掌握 两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. (3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条 件和充分条件(导数在极值点两侧异号) ,会求一些实际问题(一般指单峰函数)的最大值 和最小值. ●复习方略指南 深入理解和正确运用极限的概念、法则是本章学习的基础,能对简单的初等函数进行求 导是本章学习的重点,能把实际问题转化为求解最大(小)值的数学模型,应用导数知识去解 决它是提高分析问题、解决问题能力,学好数学的关键. 1.熟练记忆基本求导公式和函数的求导法则,是正确进行导数运算的基础. 2.掌握导数运算在判断函数的单调性、求函数的极大(小)值中的应用,尤其要重视导数 运算在解决实际问题中的最值问题时所起的作用.
14.1
●知识梳理
导数的概念与运算
1.导数的概念: (1)如果当Δ x→0 时,
?y 有极限,我们就说函数 y=f(x)在点 x0 处可 ?x
导 , 并 把 这 个 极 限 叫 做 f ( x ) 在 点 x0 处 的 导 数 , 记 作 f ′ ( x0 ) 即 f ′ ( x0 ) = ,
?x ?0
lim
f ( x0 ? ?x) ? f ( x0 ) ?y = lim . ?x ?x?0 ?x
(2)如果函数 f(x)在开区间(a,b)内每一点都可导,就说 f(x)在开区间(a,b)内 可导.这时对于开区间(a,b)内每一个确定的值 x0,都对应着一个确定的导数 f′(x0),这样 就在开区间(a,b)内构成一个新的函数,这一新函数叫做 f(x)在开区间(a,b)内的导函 数,记作 f′(x),即 f′(x)= lim
?x ?0
f ( x ? ?x) ? f ( x) ,导函数也简称导数. ?x
2.导数的几何意义:函数 y=f(x)在点 x0 处的导数的几何意义,就是曲线 y=f(x)在点 P(x0,f(x0) )处的切线的斜率. 3.几种常见的导数: - C′=0(C 为常数);(xn)′=nxn 1;(sinx)′=cosx;(cosx)′=-sinx;(ex)′=ex;

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

全国百所名校高考数学一轮复习试卷:函数与导数(详解答案)

全国百所名校高考数学一轮复习试卷 专题四:函数与导数 满分150分,考试用时120分钟。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.函数( )sin f x x = 的导数为( ) A .( )'sin cos f x x x = B .( )'sin cos f x x x = C .( )' cos f x x = D .( )' cos f x x = 2.已知函数f (x )的图象如图所示,下列数值的排序正确的是( ) A .(2)(3)(3)(2)f f f f <'<-' B .(3)(3)(2)(2)f f f f <-'<' C .(3)(2)(3)(2)f f f f <'<-' D .(3)(2)(2)(3)f f f f ''-<< 3.设函数()f x 可导,则()() 11lim 3x f f x x ?→-+??等于( ) A .()1f -' B .()31f ' C .()113f - ' D .()1 13 f ' 4.函数3()31f x x x =-+,[3,0]x ∈-的最大值.最小值分别是( ) A .3,-17 B .1,-1 C .1,-17 D .9,-19 5.函数()21 x x f x x =+ +的图象大致为( ) A . B .

C . D . 6.函数()f x 是定义在区间(0,)+∞上的可导函数,其导函数为()f x ',且满足 2()()0f x f x x '+ <,则不等式(2020)(2020)5(5)52020 x f x f x ++<+的解集为( ) A .{} 20202015x x -<<- B .{} 2015x x <- C .{}20200x x -<< D .{} 2015x x >- 7.若函数()()ln 01f x x x =<≤与函数()2 g x x a =+有两条公切线,则实数a 的取值范围是( ) A .1,2??-+∞ ??? B .13ln ,24? ?-- ??? C .3ln 4 ??-- ?? ? D .13ln ,24??-- ?? ? 8.设函数()1x x e f x e =-,下列说法中正确的是( ) A .()f x 的单调递增区间为(,0)(0,)-∞+∞ B .()f x 图象的对称中心为10,2??- ??? C .()f x 图象的对称中心为1,02?? - ??? D .()f x 的值域为(1,0)- 9.若对任意()0,x ∈+∞,不等式22ln ln 0x e a a a x --≥恒成立,则实数a 的最大值为( ) A B .e C .2e D .2e 10.已知函数()21(1)2 x x f x x e ae ax =--+只有一个极值点,则实数a 的取值范围是( ) A .(﹣∞,0]∪[ 1 2 ,+∞) B .(﹣∞,0]∪[ 1 3 ,+∞)

高三数学一轮复习导数导学案

课题: 导数、导数的计算及其应用 2课时 一、考点梳理: 1.导数、导数的计算 (1).导数的概念:一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =__________,称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=. (2).导函数: 记为f ′(x )或y ′. (3).导数的几何意义: 函数y =f (x )在x =x 0处的导数f ′(x 0)的几 何意义是曲线y =f (x )在x =x 0处的切线的斜率.相应地,切线方程为______________. ! (4).基本初等函数的导数公式 (5).导数的运算法则 (1)[f (x )±g (x )]′=__________;(2)[f (x )·g (x )]′=__________;(3)??? ?f x g x ′ =__________(g (x )≠0). (6).复合函数的导数: 2.导数与函数的单调性及极值、最值 (1)导数和函数单调性的关系: (1)对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的________;如果在某区间上f ′(x )<0,那么f (x )为该区间上的________. (2)若在(a ,b )的任意子区间内f ′(x )都不恒等于0,f ′(x )≥0?f (x )在(a ,b )上为____函数,若在(a ,b )上,f ′(x )≤0,?f (x )在(a ,b )上为____函数. [ (2)函数的极值与导数 (1)判断f (x 0)是极值的方法: 一般地,当函数f (x )在点x 0处连续时, ①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 : ①____________ ;②________________ ;③_________________________. (3)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: (1)求函数y =f (x )在(a ,b )上的________; (2)将函数y =f (x )的各极值与______________比较,其中最大的一个是最大值,最小的一个是最小值. ` 二、基础自测: 1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( ). A .4 B .4x C .4+2Δx D .4+2Δx 2 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) ; f ′(x )=________ f (x )=sin x f ′(x )=________ f (x )=cos x f ′(x )=________ f (x )=a x f ′(x )=________ f (x )=e x > f ′(x )=________ f (x )=lo g a x f ′(x )=________ f (x )=ln x f ′(x )=________

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

高二数学 几种常见函数的导数

高二数学 几种常见函数的导数 一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=??? ??.x x 21 )'(= 二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数. 三、教学过程: (一)公式1:(C )'=0 (C 为常数). 证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0, ,0=??x y .0lim ')('0=??==∴→?x y C x f x 也就是说,常数函数的导数等于0. 公式2: 函数x x f y ==)(的导数 证明:(略) 公式3: 函数2)(x x f y ==的导数 公式4: 函数x x f y 1)(==的导数 公式5: 函数x x f y ==)(的导数 (二)举例分析 例1. 求下列函数的导数. ⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='?? ? ??21x )(2'-x 32--=x 32x -= ⑶=')(x )(2 1'x 12121-=x 2121-=x .21x = 练习

求下列函数的导数: ⑴ y =x 5; ⑵ y =x 6; (3);13x y = (4).3x y = (5)x x y 2= 例2.求曲线x y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。 例3.已知曲线2x y =上有两点A (1,1),B (2,2)。 求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率; (3)点A 处的切线的斜率; (4)点A 处的切线方程 例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离. (三)课堂小结 几种常见函数的导数公式 (C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=?? ? ??.x x 21)'(= (四)课后作业 《习案》作业四

高考数学第一轮复习导数概念和几何意义

第1讲 变化率与导数、导数的运算 【2014年高考会这样考】 1.利用导数的几何意义求曲线在某点处的切线方程. 2.考查导数的有关计算,尤其是简单的函数求导. 【复习指导】 本讲复习时,应充分利用具体实际情景,理解导数的意义及几何意义,应能灵活运用导数公式及导数运算法则进行某些函数求导. 基础梳理 1.函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1 . 若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx . 2.函数y =f (x )在x =x 0处的导数 (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0Δy Δx = li m Δx →0f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0Δy Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数 称函数f ′(x )=li m Δx →0f (x +Δx )-f (x )Δx 为f (x )的导函数,导函数有时也记作y ′. 4.基本初等函数的导数公式 若f (x )=c ,则f ′(x )=0; 若f (x )=x α(α∈R ),则f ′(x )=αx α-1; 若f (x )=sin x ,则f ′(x )=cos x ;

高考数学函数与导数

回扣2 函数与导数 1.函数的定义域和值域 (1)求函数定义域的类型和相应方法 ①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围; ②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域 ①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为????4ac -b 2 4a ,+∞,当a <0时,值域为? ???-∞,4ac -b 2 4a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R |y ≠0}. 2.函数的奇偶性、周期性 (1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性 ①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ), 则f (x )的图象关于直线x =a 对称.

高三数学一轮复习 导数的综合应用

导数的综合应用 一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m<2 (D)m≤2 解析:函数定义域为(0,+∞), 又f'(x)=2x+m+. 依题意有f'(x)=2x+m+≥0在(0,+∞)上恒成立, ∴m≥-恒成立,设g(x)=-, 则g(x)=-≤-2, 当且仅当x=时等号成立. 故m≥-2, 故选B. 2.(2013洛阳统考)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f'(x)>1,则不等式 e x·f(x)>e x+1的解集为( A ) (A){x|x>0} (B){x|x<0} (C){x|x<-1或x>1} (D){x|x<-1或0e x-e x=0, 所以g(x)=e x·f(x)-e x为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A )

解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正 数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0) (D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

届高三数学第一轮复习导数

导 数 第3章 导数及其运用 §3.1导数概念及其几何意义 重难点:了解导数概念的实际背景,理解导数的几何意义. 考纲要求:①了解导数概念的实际背景. ②理解导数的几何意义. 经典例题:利用导数的定义求函数y=|x|(x ≠0)的导数. 当堂练习: 1、在函数的平均变化率的定义中,自变量的的增量x ?满足( ) 2 3 ) 4 5A C 6A .7A .f ′(x0)>0 B .f ′(x0)<0 C .f ′(x0)=0 D .f ′(x0)不存在 8.已知命题p :函数y=f(x)的导函数是常数函数;命题q :函数y=f(x)是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.设函数f(x)在x0处可导,则0 lim →h h h x f h x ) ()(00--+等于 A .f ′(x0) B .0 C .2f ′(x0) D .-2f ′(x0) 10.设f(x)=x(1+|x|),则f ′(0)等于

A .0 B .1 C .-1 D .不存在 11.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___. 12.两曲线y=x2+1与y=3-x2在交点处的两切线的夹角为___________. 13.设f(x)在点x 处可导,a 、b 为常数,则0 lim →?x x x b x f x a x f ??--?+) ()(=_____. 14.一球沿一斜面自由滚下,其运动方程是s=s(t)=t2(位移单位:m ,时间单位:s),求小球在t=5时的 瞬时速度________. 15.已知质点M 按规律s=2t2+3做直线运动(位移单位:cm ,时间单位:s), (1)当t=2,Δt=0.01时,求t s ??. 法则3 2()()v x v x ???? 经典例题:求曲线y=2 1x x +在原点处切线的倾斜角. 当堂练习: 1.函数f (x )=a4+5a2x2-x6的导数为 ( ) A.4a3+10ax2-x6 B.4a3+10a2x -6x5 C.10a2x -6x5 D.以上都不对 2.函数y=3x (x2+2)的导数是( ) A.3x2+6 B.6x2 C.9x2+6 D.6x2+6

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

高中数学一轮复习 第1讲 导数的概念及其运算

第1讲 导数的概念及其运算 1.已知函数3 2 ()32f x ax x =++,若f′(-1)=4,则a 的值等于( ) A.193 B.163 C.133 D.103 【答案】 D 【解析】 f′2 ()36x ax x f =+,′(-1)=3a 10643 a -=,=. 2.设y=-2e x sinx,则y′等于( ) A.-2e x cosx B.-2e x sinx C.2e x sinx D.-2e (x sinx+cosx) 【答案】 D 【解析】 ∵y=-2e x sinx, ∴y′=(-2e )x ′sinx+(-2e )(x sinx)′ =-2e x sinx-2e x cosx =-2e (x sinx+cosx). 3.已知3 270()x m f x mx m <,=+,且f′(1)18≥-,则实数m 等于( ) A.-9 B.-3 C.3 D.9 【答案】 B 【解析】 由于f′2 27()3x mx m =+,故f′27(1)183m m ≥-?+≥ -18 , 由m<0得2 27318318270m m m m +≥-?++≤?2 3(3)m +0≤,故m=-3. 4.设曲线11 x y x +=-在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于( ) A.2 B.12 C.12 - D.-2 【答案】 D 【解析】 因为y′22(1) x -= ,-所以切线斜率k=y′|3 x ==1 2-,而此切线与直线ax+y+1=0垂直, 故有()1k a ?-=-,因此12a k ==-. 5.已知12()f x =sin2x+sinx,则f′(x)是( ) A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数 【答案】 B 【解析】 f′12()x =cos 22x ?+cosx=cos2x+cosx =2cos 21x -+cosx=2(cos 29148)x +-. 故f′(x)是既有最大值2,又有最小值98-的偶函数,选B 项.

高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ?? ??0,1a 时,f ′(x )>0; 当x ∈? ?? ??1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ????1a =ln 1a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ??1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性. (2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.

高中数学函数与导数练习题

1、讨论函数在内的单调性 2、作出函数22||3y x x =--的图像,指出单调区间和单调性 3、求函数[]()251x f x x = -在区间,的最大值和最小值 4 、使函数y = 的最小值是 2的实数a 共有_______个。 5、已知函数()f x 的定义域为R ,且对m 、n R ∈,恒有()()()1f m n f m f n +=+-,且1()02f -=,当12 x >-时,()0f x > (1)求证:()f x 是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证. 6、已知()f x 是定义在[1,1]-上的增函数,且(1)(23)f x f x -<-,求x 的取值范围。 四、强化训练 1、已知()f x 是定义在R 上的增函数,对x R ∈有()0f x >,且(5)1f =,设1()()()F x f x f x =+,讨论()F x 的单调性,并证明你的结论。 2、设函数2 ()22f x x x =-+(其中[,1]x t t ∈+,t R ∈)的最小值为()g t ,求()g t 的表达式 3、定义域在(0,)+∞上的函数()f x 满足:(1)(2)1f =;(2)()()()f xy f x f y =+; (3)当x y >时,有()()f x f y >,若()(3)2f x f x +-≤,求x 的取值范围。 4、已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,a b R ∈, 都满足()()()f ab af b bf a =+ (1)求(0)f ,(1)f 的值;(2)判断()f x 的奇偶性,并加以证明 223f(x)x ax =-+(2,2)-

2020-2021学年高三数学一轮复习知识点专题3-3 函数与导数的综合应用(1)

2020-2021学年高考数学一轮复习 专题3.3 函数与导数的综合应用 【考情分析】 1.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题; 2.会利用导数解决某些简单的实际问题。 【典型题分析】 高频考点一 利用导数证明不等式 例1.【2020·江苏卷】已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥. (1)若()()22 2 2()f x x x g x x x D =+=-+=∞-∞+,,, ,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,, ,求k 的取值范围; (3)若() 422342 () 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<≤,,, [] , D m n =???, 求证:n m - 【解析】(1)由条件()()()f x h x g x ≥≥,得222 2x x kx b x x +≥+≥-+, 取0x =,得00b ≥≥,所以0b =. 由22x x kx +≥,得2 2 ()0x k x +-≥,此式对一切(,)x ∈-∞+∞恒成立, 所以22 0()k -≤,则2k =,此时222x x x ≥-+恒成立, 所以()2h x x =. (2) 1 ln ,()()()()0,h g x k x x x x -=--∈+∞. 令() 1ln u x x x =--,则1 ()1,u'x x =-令()=0u'x ,得1x =. 所以min () 0(1)u x u ==.则1ln x x -≥恒成立, 所以当且仅当0k ≥时,()()f x g x ≥恒成立. 另一方面,()()f x h x ≥恒成立,即21x x kx k -+≥-恒成立,

高三数学一轮复习——导数的概念及运算

高三数学一轮复习——导数的概念及运算 考试要求 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y =c ,y =x ,y =x 2,y =x 3,y =1 x ,y =x 的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f (ax +b ))的导数;6.会使用导数公式表. 知 识 梳 理 1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ?→ f (x 0+Δx )-f (x 0)Δx =0lim x ?→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ?→Δy Δx = lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 称为函数y =f (x )在开区间内的导 函数. 3.导数公式表 基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0

相关文档
相关文档 最新文档