文档库 最新最全的文档下载
当前位置:文档库 › 汽轮机数字电液控制(DEH)技术探讨

汽轮机数字电液控制(DEH)技术探讨

汽轮机数字电液控制(DEH)技术探讨
汽轮机数字电液控制(DEH)技术探讨

汽轮机数字电液控制(DEH)技术探讨

发表时间:2019-06-04T15:53:29.007Z 来源:《电力设备》2019年第2期作者:康晓华[导读] 摘要:汽轮机数字电液控制技术是电厂运行中必不可少的控制系统,可以实现对汽轮机精准控制、快速响应的特点。 (山西兴能发电有限责任公司山西省太原市古交市 030206) 摘要:汽轮机数字电液控制技术是电厂运行中必不可少的控制系统,可以实现对汽轮机精准控制、快速响应的特点。另外,随着汽轮机的运行功率越来越大,对参数的控制要求也不断提升,采用先进的热工自动化技术是提高机组安全、经济运行最有效的措施之一。本文对数字电液控制技术进行详细分类描述,便于更好的理解和应用此技术。

关键词:数字电液控制技术汽轮机电液伺服控制 1引言

随着电子技术和计算机技术的发展,电厂汽轮机的调节方式也发生了重大的变化,汽轮机最初的调节模式是机械液压调节,逐渐过渡到基于电子模拟技术的模拟电调模式,最后发展到如今的基于计算机技术的数字电液调节模式。数字电液调节模式以汽轮机为控制对象,运用计算机技术、自动控制技术、液压控制技术完成对汽轮机的控制过程。

2 DEH控制系统概述

数字式电液控制技术(DEH)是由两个部分组成,分别为计算机控制技术和EH电液控制技术。由于DEH基于上述两个组成部分,因此其控制技术也就依赖于计算机控制技术(数字控制技术、网络技术)和液压伺服控制技术。随着集成电路技术的快速发展,计算机及网络技术的发展,使得数字电子技术的安全性和可靠性有了较大的发展。另外,液压伺服控制技术也有了快速发展,其中包括电液比例阀、伺服阀等的广泛使用。综合计算机技术和液压伺服控制技术,形成了适合电厂汽轮机运行控制的技术-数字式电液控制技术。

2.1计算机控制系统

通过DEH技术,可以实现汽轮机高中压阀门的控制精度,能够实现机组的协调控制,并且提升整个机组的运行稳定性和安全性。

2.2EH液压系统

EH油系统包括供油系统、执行机构和危急遮断系统,供油系统的功能是提供高压抗燃油,并由它来驱动伺服执行机构,执行机构响应从DEH送来的电指令信号,以调节汽轮机各蒸汽阀开度。危急遮断系统由汽轮机的遮断参数控制,当这些参数超过其运行限制值时,该系统就关闭全部汽轮机进汽门或只关闭调速汽门。 DEH 是汽轮机的数字化电液调节系统是汽轮机组的心脏和大脑。DEH 汽轮机综合控制系统是结合先进的计算机软、硬件技术,吸取了国内外众多同类系统的优点, 系统结构充分考虑了系统的先进性、易用性、开放性、可靠性、可扩展性、兼容性和即插即用等特性,结构完整、功能完善。数字电液控制系统可以实现自动系统控制。随着大容量汽轮机的发展和电网峰谷差的不断增大,对机组的调峰和调频要求越来越高。因此,降低成本,改善机组运行的经济性、可靠性、可调性。数字电液控制系统可以部分完成各种控制回路、控制逻辑的运算。随着大型联合电网和现代大功率汽轮发电机组的发展,为了适应电站自动化的需要,要求装备比以往采用的液压机械式调节系统更为迅速,更加精确的控制系统。同时大容量汽轮机的发展,使老机组将面临调峰和调频,加上原来纯液压调节系统存在控制精度低、稳定性差等陷已不能满足电站自动化的需要。 3汽轮机电液伺服技术电液伺服技术可以分为高压抗燃油系统自容式系统,两种控制技术都有各自的适用性和特点。

3.1高压抗燃油系统

随着西屋汽轮机技术的引进,高压抗燃油系统逐渐被认知和使用。对于传统的液压调节控制技术的缺陷,高压抗燃油系统利用灵活的控制策略以应对多种不同工况自动化控制要求,从而实现汽轮机机炉协调控制。在300MW及以上的大型机组控制系统上,高压燃油控制系统主要有以下控制特点:

(1)控制精度高,反映速度快。

(2)系统复杂,体积较大,制造和运行成本高。

(3)对于油质的清洁度要求高,油品需循环再生使用,运行成本高。

(4)能够实现对阀门的管理。

高压抗燃油系统主要包含供油系统、伺服执行机构、危急遮断保护系统组成,其中供油系统主要负责为控制系统提供高压抗燃油,其压力可达到14Mpa,高压抗燃油驱动伺服执行机构,执行机构响应从DEH送来的电控指令信传输到各个阀门,控制阀门的相应动作。危急遮断保护系统由汽轮机的遮断参数进行控制,如果运行参数超过上限值,该系统直接对阀门进行控制,以保证机组运行的安全性。

3.2自容式系统

通过将油源站和伺服系统集成在一起,形成了自容式液压伺服控制系统,通过优化技术,实现了油动机的动态性能与高压抗燃油系统相当,采用小流量容积泵和蓄能器满足了油动机稳态流量很小和动态流量大的特点。伺服系统主要由伺服器、液控单向阀、油缸和电磁阀等构成。

伺服机构主要由油缸、伺服阀、液控单向阀、电磁阀和插装阀等组成。油源站过来的压力油进入集成块直接作用在油动机的上腔,这形成一个固定的油压和一个作用面积。活塞的下腔通过伺服阀进行控制,这样形成一个差动回路,压力油通过伺服阀引入到活塞下腔因为上下腔面积不同,压力不同,会把油动机往上推。

4 DEH电控技术

4.1伺服方法技术

在DEH电控技术中,要完成对某些电液伺服器的控制,需要对电液伺服信号进行放大处理,使用专门的伺服控制模块。早期的伺服控制模块采用模拟放大的电路,采用比例P、积分I来实现电位器的调节控制,存在调试不便的情况。随着数字技术的不断发展,逐渐可以通过数字伺服控制模块来实现控制,采用可编程阵列来管理转换器,通过转换器,传输信号功率被放大后传输到伺服器,达到控制目的。此方法具有响应速度快、控制精度高等特点。

4.2快速反馈调节技术

汽轮机数字电液控制(DEH)技术探讨

汽轮机数字电液控制(DEH)技术探讨 发表时间:2019-06-04T15:53:29.007Z 来源:《电力设备》2019年第2期作者:康晓华[导读] 摘要:汽轮机数字电液控制技术是电厂运行中必不可少的控制系统,可以实现对汽轮机精准控制、快速响应的特点。 (山西兴能发电有限责任公司山西省太原市古交市 030206) 摘要:汽轮机数字电液控制技术是电厂运行中必不可少的控制系统,可以实现对汽轮机精准控制、快速响应的特点。另外,随着汽轮机的运行功率越来越大,对参数的控制要求也不断提升,采用先进的热工自动化技术是提高机组安全、经济运行最有效的措施之一。本文对数字电液控制技术进行详细分类描述,便于更好的理解和应用此技术。 关键词:数字电液控制技术汽轮机电液伺服控制 1引言 随着电子技术和计算机技术的发展,电厂汽轮机的调节方式也发生了重大的变化,汽轮机最初的调节模式是机械液压调节,逐渐过渡到基于电子模拟技术的模拟电调模式,最后发展到如今的基于计算机技术的数字电液调节模式。数字电液调节模式以汽轮机为控制对象,运用计算机技术、自动控制技术、液压控制技术完成对汽轮机的控制过程。 2 DEH控制系统概述 数字式电液控制技术(DEH)是由两个部分组成,分别为计算机控制技术和EH电液控制技术。由于DEH基于上述两个组成部分,因此其控制技术也就依赖于计算机控制技术(数字控制技术、网络技术)和液压伺服控制技术。随着集成电路技术的快速发展,计算机及网络技术的发展,使得数字电子技术的安全性和可靠性有了较大的发展。另外,液压伺服控制技术也有了快速发展,其中包括电液比例阀、伺服阀等的广泛使用。综合计算机技术和液压伺服控制技术,形成了适合电厂汽轮机运行控制的技术-数字式电液控制技术。 2.1计算机控制系统 通过DEH技术,可以实现汽轮机高中压阀门的控制精度,能够实现机组的协调控制,并且提升整个机组的运行稳定性和安全性。 2.2EH液压系统 EH油系统包括供油系统、执行机构和危急遮断系统,供油系统的功能是提供高压抗燃油,并由它来驱动伺服执行机构,执行机构响应从DEH送来的电指令信号,以调节汽轮机各蒸汽阀开度。危急遮断系统由汽轮机的遮断参数控制,当这些参数超过其运行限制值时,该系统就关闭全部汽轮机进汽门或只关闭调速汽门。 DEH 是汽轮机的数字化电液调节系统是汽轮机组的心脏和大脑。DEH 汽轮机综合控制系统是结合先进的计算机软、硬件技术,吸取了国内外众多同类系统的优点, 系统结构充分考虑了系统的先进性、易用性、开放性、可靠性、可扩展性、兼容性和即插即用等特性,结构完整、功能完善。数字电液控制系统可以实现自动系统控制。随着大容量汽轮机的发展和电网峰谷差的不断增大,对机组的调峰和调频要求越来越高。因此,降低成本,改善机组运行的经济性、可靠性、可调性。数字电液控制系统可以部分完成各种控制回路、控制逻辑的运算。随着大型联合电网和现代大功率汽轮发电机组的发展,为了适应电站自动化的需要,要求装备比以往采用的液压机械式调节系统更为迅速,更加精确的控制系统。同时大容量汽轮机的发展,使老机组将面临调峰和调频,加上原来纯液压调节系统存在控制精度低、稳定性差等陷已不能满足电站自动化的需要。 3汽轮机电液伺服技术电液伺服技术可以分为高压抗燃油系统自容式系统,两种控制技术都有各自的适用性和特点。 3.1高压抗燃油系统 随着西屋汽轮机技术的引进,高压抗燃油系统逐渐被认知和使用。对于传统的液压调节控制技术的缺陷,高压抗燃油系统利用灵活的控制策略以应对多种不同工况自动化控制要求,从而实现汽轮机机炉协调控制。在300MW及以上的大型机组控制系统上,高压燃油控制系统主要有以下控制特点: (1)控制精度高,反映速度快。 (2)系统复杂,体积较大,制造和运行成本高。 (3)对于油质的清洁度要求高,油品需循环再生使用,运行成本高。 (4)能够实现对阀门的管理。 高压抗燃油系统主要包含供油系统、伺服执行机构、危急遮断保护系统组成,其中供油系统主要负责为控制系统提供高压抗燃油,其压力可达到14Mpa,高压抗燃油驱动伺服执行机构,执行机构响应从DEH送来的电控指令信传输到各个阀门,控制阀门的相应动作。危急遮断保护系统由汽轮机的遮断参数进行控制,如果运行参数超过上限值,该系统直接对阀门进行控制,以保证机组运行的安全性。 3.2自容式系统 通过将油源站和伺服系统集成在一起,形成了自容式液压伺服控制系统,通过优化技术,实现了油动机的动态性能与高压抗燃油系统相当,采用小流量容积泵和蓄能器满足了油动机稳态流量很小和动态流量大的特点。伺服系统主要由伺服器、液控单向阀、油缸和电磁阀等构成。 伺服机构主要由油缸、伺服阀、液控单向阀、电磁阀和插装阀等组成。油源站过来的压力油进入集成块直接作用在油动机的上腔,这形成一个固定的油压和一个作用面积。活塞的下腔通过伺服阀进行控制,这样形成一个差动回路,压力油通过伺服阀引入到活塞下腔因为上下腔面积不同,压力不同,会把油动机往上推。 4 DEH电控技术 4.1伺服方法技术 在DEH电控技术中,要完成对某些电液伺服器的控制,需要对电液伺服信号进行放大处理,使用专门的伺服控制模块。早期的伺服控制模块采用模拟放大的电路,采用比例P、积分I来实现电位器的调节控制,存在调试不便的情况。随着数字技术的不断发展,逐渐可以通过数字伺服控制模块来实现控制,采用可编程阵列来管理转换器,通过转换器,传输信号功率被放大后传输到伺服器,达到控制目的。此方法具有响应速度快、控制精度高等特点。 4.2快速反馈调节技术

汽轮机数字电液控制系统DEH介绍及控制方式讨论(4)讲解

汽轮机数字电液控制系统DEH 介绍及控制方式讨论 一、DEH系统介绍 1、DEH系统各部分介绍 1.1、DEH系统慨述 汽轮机数字电液控制系统(Digital Electric-Hydraulic Control System,以下简称DEH)是当今汽轮机特别是大型汽轮机必不可少的控制系统,是电厂自动化系统最重要的组成部分之一。现代DEH系统由于采用计算机控制技术为核心的分散控制系统结构,提高了控制精度,并且能够方便地实现各种复杂的控制算法。其执行部分由于采用了液压控制系统,具有响应快速、安全、驱动力强的特点。 1.2 、DEH系统计算机控制部分硬件配置 (1)基本控制计算机柜 主要由电源、1对冗余DPU、3个基本控制I/O站、1个OPC超速保护站及1个伺服控制系统站组成,完成对汽轮机的基本控制功能。转速测量卡(MCP卡)、模拟量测量卡(AI卡)、开关量输入卡(DI卡)、回路控制卡(LC卡)、开关量输出卡(DO卡)组成基本控制的信号输入部分。输入I/O卡件及重要信号均采用三选二冗余配置。由三块测速卡(MCP卡)和OPC卡组成超速保护控制功能块,基本控制DPU软件中,同时也具有OPC控制功能,达到硬件、软件的双重保护。由多块阀门控制卡(VCC卡)组成阀门伺服控制系统部分,每一块VCC卡用于一个阀门的控制,相互独立,在VCC卡件的设计上保证了即使在主机故障情况下,也能通过后备手操盘,手动控制机组阀门开度。 DPU主控制机是2台完全相同的、互为冗余的计算机组成。 DPU的整机面板如下图所示: 每台计算机有五个指示灯和一个电源钥匙开关,说明如下: 电源指示灯:接上电源,该灯亮,否则暗。 主控指示灯:当系统正常运行时,此时电源灯和运行灯都亮,如该机处于主控状态,主控灯亮;如处于跟踪和初始状态,主控灯暗。 运行指示灯:当计算机正在运行应用程序时,该灯亮。

数字电液控制系统在核电厂中的应用

数字电液控制系统在核电厂中的应用 发表时间:2019-05-20T16:37:54.500Z 来源:《电力设备》2018年第32期作者:张夏莲 [导读] 摘要:海南核电1,2号机数字电液控制系统(Digital Electric Hydraulic Control System)采用西屋公司的OV ATION 系统,由冗余的分布式处理单元和一套安装在标准机柜内的输入输出模件组成。为在操作员站CRT 发生故障时能安全停机,还提供了一块手操盘,能够根据用户的要求组成不同的配置。 (中国核电工程有限公司华东分公司浙江嘉兴 314000) 摘要:海南核电1,2号机数字电液控制系统(Digital Electric Hydraulic Control System)采用西屋公司的OVATION 系统,由冗余的分布式处理单元和一套安装在标准机柜内的输入输出模件组成。为在操作员站CRT 发生故障时能安全停机,还提供了一块手操盘,能够根据用户的要求组成不同的配置。 关键词:数字电液控制;原理;功能;控制。 DEH控制系统能按操纵员或自动启动装置给出的指令来控制主汽阀、主汽调节阀、再热主汽阀和再热调节阀,使机组按一定要求升、降转速、负荷、停机等。DEH装置接受转速、功率及第一级前汽压的实际信号,对机组的转速、功率、蒸汽流量实行闭环调节。此外,DEH还能监测显示参数、超速保护、自启停控制等。 1.工作原理 DEH采取一对一的方式来实现对机组的控制,即DEH发出的阀位控制指令通过4块伺服卡分别送到4个调节汽门(GV)的电液伺服阀(MOOG阀)上;MOOG阀将电气信号转换成液压信号,由安装在油动机上的高压抗燃油执行机构直接带动调节汽门的蒸汽阀头开启和关闭。2个主汽阀(MSV)、6个再热主汽阀(RSV)、6个中压调节阀为开/关型,DEH通过控制与其对应的电磁阀使其开启/关闭。 2. 功能 DEH控制系统主要有两种功能:一个是当发电机断路器“打开”时控制汽机转速;另一个是当发电机断路器“关闭”时控制汽机负荷,而这些都是通过4个高压调节阀(GV)开度实现的,高压调节阀受控于专门设计的带自诊断和自动校验的伺服卡。同时,机组还配有开/关型的主汽阀(MSV)2个、再热主汽阀(RSV)6个、中压调节阀6个。一个独立的高压油源系统为机组上所有阀门提供原动力。DEH根据不同的运行工况,如启动,停机,变负荷和Runback而自动产生转速/负荷设定值。 3.控制方式 3.1 手动这是一种开环运动方式,控制各个阀门的开度,操作员在操作盘上通过按键直接改变阀门的开度,各按钮之间由逻辑互锁,该方式作为自动方式的备用,在手动方式下具备OPC功能。DEH硬操盘上主要有阀位增减按钮和阀位指示等,它通过硬件的方式直接操作阀门控制卡(VCC卡),其阀位指示也由硬件卡给出,因而,只要VCC卡及直流电源正常,在DPU等计算机故障或停电,无法实现自动控制时,仍能通过硬操盘对汽轮机进行手动控制。 3.2操作员自动(OA)在该方式下,可实现汽轮机的转速和负荷的闭环控制,具有各种保护功能。目标转速、目标负荷、升速速率和升负荷速率等均可由操作人员设置。因本系统采用的是双机系统,因而,该方式下可分为A机控制和B机控制两种情况,两者之间的切换可以手动也可做到自动,如两机都发生故障,则自动转至手动方式运行。 3.3自动汽机控制(ATC)启动过程中,ATC模式自动将目标值从0 rpm增加到3000 rpm,同时监视所有振动和金属温度信号。当满足保持条件时,自动保持当前转速。转速升至约2/3额定转速时自动进入暖机状态。当转速进入同期范围时,自动将控制切换到自动同期装置。断路器初始闭合时控制自动切回OA模式,ATC仅监视。 当阀门控制卡故障,需在线更换时;一只LVDT故障,在线更换故障的LVDT时;DPU(主控站)故障时;操作员站故障时,机组可暂时切至手动控制;在线更换BC站控制板时,DEH系统必须由自动控制切至手动控制。 4.DEH控制环节 4.1 整定值生成整定值用来和过程值比较,产生的偏差信号经过调节器作用后去调节阀门动作。在OA模式下,整定值= 当前值+ 升降速率* 时间。操纵员输入目标值以及升降速率,按下启动后,程序就会按照操纵员设定好的速率使整定值增加或减少,直到整定值达到目标值,DEH将整定值自动保持,在这个过程中操纵员可以根据情况使用“hold”按钮手动使整定值保持在当前值。 4.2 转速控制 DEH处于转速控制或功率控制取决于发电机是否并网,通过断路器状态来自动判断。在转速控制模式下,整定值与转速测量值比较,产生的偏差信号经过PID调节器作用后产生输出动作阀门。 4.3 频率校正操纵员可根据电网要求将频率校正回路投入或者切除,这种投切在操纵员终端手动实现。频率校正的作用是在电网频率偏离额定频率时,调整发电机功率,使发电机功率符合电网频率要求。当电网频率过高时降低功率整定值,反之则增加功率整定值。校正量的大小由频率偏差量来决定,符合一定的比例关系并设置有死区。 4.4 MW(电功率)反馈并网以后,操纵员在操纵员终端上手动投入MW反馈回路。MW反馈回路的作用是使控制回路成为闭环回路,从而实现对功率的准确控制,MW反馈回路上设置有PID调节器。MW反馈的测量信号来自于发电机出口断路器前,同样使用3个信号,经过中选器处理,进行信号判断并将故障信号排除。汽机发生RUNBACK时,MW反馈回路被自动切除,避免闭环控制方式下汽机功率的过度超调。 4.5 IMP(冲动级压力)反馈冲动级压力与汽轮机发电机组功率之间有固定的对应关系,当蒸汽压力发生变化,引起冲动级压力变化,IMP反馈回路快速响应调整阀门开度而使发电机功率快速返回到初始水平。IMP反馈回路上的PID参数设置使得该反馈回路对冲动级压力变化能够快速响应。由于在10%功率以后冲动级压力IMP与功率之间才会有较好的线性对应关系,所以一般在10%功率以后才可以投运IMP反馈回路。 4.6 阀门流量修正曲线控制信号、阀门开度以及蒸汽流量之间如果具有很好的线性关系,即使在开环控制模式下(所有反馈回路切除),汽机调阀也能准确地将功率控制在功率整定值上。但是实际的调阀开度与蒸汽流量之间并不是纯粹的线性关系。因此要使阀门控制信号与蒸汽流量成线性对应关系,就必须对阀门控制信号进行修正,修正方法就是设定阀门流量修正曲线。 4.7 超速保护控制(OPC) OPC的主要功能是当汽轮机甩负荷时(电网故障),发出OPC信号使EH油回路中的OPC电磁阀带电开启,卸去OPC母管中的油压,使调节阀和再热调节阀快速关闭,OPC信号消失后,调节阀和再热调节阀重新开启,从而防止汽轮机超速跳

DEH数字电液控制系统

第1章数字电液控制系统 1.1概述 汽轮机的启动运行及安全保护是通过汽轮机控制系统实现的,作为汽轮机的脑袋,控制系统是汽轮机不可分割的一部分。 汽轮机的控制系统是从单纯的调节系统发展起来的,早期的液压调节系统,由主油泵提供整个系统的动力油和控制油,与润滑油系统共用一个供油系统,启动是靠人工操纵主汽门来控制汽轮机转速。在升速过程中,整个控制过程处于开环运行状态,由人工监视控制。当转速达到一定转速时,旋转阻尼感受到转速信号,产生一次油压反馈信号,再通过放大器放大为二次油压,控制油动机驱动进汽调节阀进一步提升转速,以达到同步、并网、带负荷,从而完成整个汽轮机的控制过程。 由于控制信号和反馈信号都是由机械或液压部件产生,在信号的产生和执行过程中,这些部件难免存在着摩擦迟缓,以至准确性差,迟缓率大,造成控制精度不高,不可避免地影响汽轮机控制性能。同时缺少合适的控制接口,很难使机组满足整个系统的协调控制要求,阻碍了控制系统自动化程度的进一步提高。 为了使汽轮机能更准确、更协调、更安全、更可靠地实现控制,使电厂用户能更方便、更灵活地使用和维护,同时为提高整台机组的控制水平,与世界接轨,增强产品的竞争力,汽轮机控制系统的发展也应与世俱进。随着科学技术的发展,国内汽轮机控制系统经过电子管、晶体管、模拟电路几个阶段的发展,通过二代人的努力,已具备实现数字控制的能力。 80年代初,引进国外先进技术,通过不断地消化和实践,使我们的设计技术和生产制造能力有了质的飞跃。以引进技术为借鉴,一种以数字技术为基础的电液控制系统控制汽轮机的愿望得以实现。数字式电液控制系统,简称DEH,它将现场的信号转化成数字信号,代替原有机械液压信号。通过计算机的运算,控制汽轮机的运行,使运行人员可以通过DEH来完成对汽轮机的控制和监视。 1.2调节保安系统 调节保安系统由调节系统和保安系统组成。调节系统是汽轮机控制的主要环节,全面控制汽轮机的启停、升速、带负荷及电厂的协调控制,采集各种汽轮机的运行信息,显示汽轮机的运行状态;保安系统是汽轮机保护的重要部分,它全方位监视汽轮机的各个危害安全运行的参数,保护汽轮机安全可靠的运行。 每个系统都是由电气部分和液压部分组成。 1.2.1调节系统 1.2.1.1电气部分 数字式电液控制系统(DEH)是电气部分中最主要组成部分,也是整个调节系统中的大脑,它把所有汽轮机的运行参数都收集起来,经过逻辑判断、数据计算处理,最后发出控制指令。DEH主要由操作站、工程师站、控制处理器、I/O输入输出模件、阀位驱动卡、电源组件、通讯接口等电子硬件组成。(图1-1、DEH 硬件配置图),由于电子产品生产厂家较多,使得DEH的硬件类型也较多,目前,已投入使用的DEH有西屋公司的WDPF II、FOXBORO公司的I/A’S,MOORE公司的APACS、ABB公司的INFI90、WOODWARD公司505等电子产品。 1.2.1.1.1电调控制系统(DEH)简述 DEH通过现场一次仪表的数据采集,如磁阻发送器采集汽轮机转速,压力开关采

汽轮机数字电液控制系统(DEH)复习要点(精编版)

汽轮机数字电液控制系统(DEH)复习要点(精编版) 第一章 1、汽轮机调节系统经历的阶段:机械液压调节系统MHC、电气液压调节系统AHC、模拟电液调节系统AEH、数字电液控制系统DEH。 2、一个完善的汽轮机控制系统包括:监视系统、保护系统、控制系统、热应力在线监视系统、汽轮机自启停控制系统、液压伺服系统。 3、一次调频:在电网负荷变化以后,机组按其静态特性曲线改变自己的实发功率,以减小电网频率波动的幅度,从而达到新的平衡,并且将电网频率的变化限制在一定的限度之内。二次调频:在机组并网运行时,通过改变负荷目标值可以改变汽轮机的功率使各台机组承担给定负荷,调整电网频率以维持电网周波稳定。区别:①一次调频是按并列运行机组的静态特性自动分配负荷,快速,有差,存在于电网周波变动的动态过程之中。而二次调频要靠同步器人为地进行;手动,慢,无差,从时间上看是始终存在的。②并列运行的机组通常都参与一次调频,但一次调频通常不能保持电网周波不变而只能减小周波变化的程度。③一次调频可以认为是暂态的。即当电网负荷变化后,二次调频来不及立即保证电网有功功率的供求平衡,暂时由一次调频来维持电网周波不致有过大变化而造成严重后果,当二次调频使周波恢复正常后,一次调频作用便消失。 4、中间再热机组的调节特点:①中低压缸功率滞后:负荷变化时,由于中低压缸功率的滞后,降低了一次调频能力,可以采用高压气门动态过开来补偿;②甩负荷是超速:甩负荷时,为防止再热器蓄汽量使汽轮机超速,应同时关闭高中压汽门;③机炉动态特性不同,机快炉慢:采用协调控制;④只能单元制运行:旁路系统解决机炉流量不匹配的问题。 第二章 1、DEH系统运行方式:二级手动、一级手动、操作员自动、汽轮机自动。 2、根据再热汽轮机DEH系统的调节原理图说明①特点:转速回路:实现一次调频功能,切除转速回路后,限制一次调频的能力;功率回路:保证了输出严格等于给定值,细调。调节过程慢,具有对外扰迅速响应的能力;调压回路:促进控制过程的快速性,受扰时反应较快,不能使功率严格等于给定值,起粗调作用,具有对内外扰迅速响应的能力。②如何抗内扰:DEH在抗内扰是,例如主汽参数降低,则输出功率下降,由于功率给定与功率反馈输出正偏差,要求调节汽阀开大,使输出功率等于功率给定值,系统达到平衡,因此,系统具有很强的抗内扰能力。内外回路均具有抗内扰能力。③如何实现高调门动态过开:通过PI1调节器实现过调,当外界负荷变化时,由于中低压缸的功率滞后。调节器的输入偏差不为零,则不断地发出开阀信号,是高调门动态过开,直至偏差为零。 3、负荷控制阶段调节汽阀自动方式:操作员自动控制方式OA(在该方式下,系统接受操作员输入的目标负荷及其速率,并进行控制)、遥控方式REMOTE(在该方式下,系统接受协调控制CCS或负荷调度中心ADS输入的目标负荷及其速率,并进行控制)、自动汽轮机控制方式ATC(计算机按照预定程序自动给出转速和负荷目标值和其变化率)、电厂计算机控制方式PLANT COMP、电厂限制控制方式。 4主汽压力控制方式TPL:该方式在主汽压力下降时限制汽轮机的负荷,避免锅炉汽压急剧下降。外部负荷返回控制方式RB:该方式主要是考虑辅机故障。如:在给水泵和风机跳闸的情况下,系统将以一定的速率去关小调节汽阀,知道故障消除为止。 5、反调现象及消除:甩负荷时进汽阀在关闭过程中还有蒸汽进入汽轮机,这些剩余蒸汽的热能将全部变为动能,使机组仍有超速的危险。若功率给定未同时切除,在该情况下,转速

数字电液控制系统

临沂发电厂5#机组控制工程 数字电液控制系统(D E H)设计及操作使用说明 上海汽轮机有限公司 2003.1

临沂电厂5#机DEH设计及操作使用说明书 临沂电厂5#机DEH控制系统为纯电调系统,采用FOXBORO公司I/A 硬件,液压部分为高压抗燃油,调节汽阀直接由DEH通过电液转换器进行控制。 DEH控制系统具有下列功能: ·转速控制 ·超速保护控制 · ATC控制 ·自动同期控制 ·功率控制 ·遥控控制功能 ·阀位限制 ·主汽压力低限制 ·遥控主汽压力低限制 ·高负荷限制 ·抽汽控制 ·一次调频 ·手动控制 一. 工作原理 DEH控制系统主要由两部分组成 ·DEH控制柜 ·液压系统 DEH控制柜接受现场输入如OPS(转速),MW(功率),TP(主汽压力)等信号,及运行人员通过CRT发出的指令,经过内部计算,送出GVSPT1-4,IVSPT1-2(调门控制信号),OPCO(电超速信号)等信号去控制电液转换器,电磁阀等现场设备,再通过液压执行机构—油动机,去控制各蒸汽阀门。 DEH控制信号详见输入输出I/O清单,液压系统、DEH控制柜详见控制逻辑图及传递图。 二.DEH的控制方式: 1.操作画面简介

正常运行时可以不使用键盘,用鼠标直接对CRT画面上的按键进行操作,供操作员监视操作的画面共有十三幅: ·总画面显示图 ·主操作画面(主控画面) ·轴承回油温度和轴振显示画面 ·热力分布画面 ·手操画面 ·模拟量IO画面(3福) ·数字量IO画面(2幅) ·趋势图Trend ·画面可以通过画面主菜单调用,也可在画面之间相互切换。 另外还有其它的试验画面。 2.控制方式简介 DEH有四种控制方式: ·手动控制方式(TM) ·自动控制方式(OA) ·ATC控制方式(ATC) ·遥控控制方式(ADS) ·同期控制方式(AS) 在自动控制方式下,可投入如下几种限制模式: ·主汽压力限制(TPL) ·遥控主汽压力限制(RTPL) ·阀门限制(VPL) ·高负荷限制(HLL) 手动控制方式时运行人员通过手操面板上的手动增减按键直接改变DEH输出(转速或负荷),是一种开环的控制方式;自动控制方式则通过CRT画面操作,改变转速/负荷设定值,对DEH输出进行闭环控制。各个方式相互切换均无扰动出现。 三.DEH控制及操作说明 自动控制方式(OA) 运行人员通过按手操面板上的复位按钮,进行复位。汽机复置后,主控画面上会显示“已挂闸”。 点击主控画面左上方的控制方式按钮,会弹出控制方式子画面,这时可选择采用何种控制方式。点击自动按钮,并在3秒内点击投入

相关文档