文档库 最新最全的文档下载
当前位置:文档库 › 路面强度

路面强度

路面强度
路面强度

强度检测和评价

评价方法

路面结构强度采用路面结构强度指数(PSSI )评价,计算公式如下:

……………………(3-1) ……………………(3-2)

式中:SSI -路面结构强度系数,为路面设计弯沉与实测代表弯沉之比;

d l -路面设计弯沉(mm ); 0l -实测代表弯沉(mm )

。 弯沉代表值的计算,公式如下:

……………………(3-3)

式中:o l - 1个评定路段的代表弯沉(0.01mm );

l - 1个评定路段内各项修正后的各测点弯沉的平均值(0.01mm );

S –1个评定路段内各项修正后的全部测点弯沉的标准差(0.01mm );

a Z - 与保证率有关的系数,取1.645。

路面结构强度指数(PSSI )分优、良、中、次和差五个等级。当PSSI 值≥90时,评价为优;当PSSI 值≥80,<90时,评价为良;当PSSI ≥70,<80时,评价为中;当PSSI 值≥60,<70时,评价为次;当PSSI 值<60时,评价为差。

3.3 检测结果和评价

3.3.1 弯沉检测结果

将落锤式弯沉仪测试值换算成贝克曼梁弯沉仪的回弹弯沉值,并进行温度修正,得到每20m 的弯沉检测值,详见附件。

以每公里为评定单元,检测路段的弯沉统计见表3-1。可以看出: (1)弯沉值代表值普遍较大,高于设计弯沉值22.1(0.01mm )。 (2)路面弯沉值波动性较大。

评定单元的弯沉值标准差在2.73~14.65(0.01mm )之间,该值较大,也是造成检测路段弯沉代表值偏大的主要原因。 (3)部分路段弯沉值衰减较大。

将评定路段内的弯沉代表值与设计弯沉值绘制图(见图3-1、图3-2),可以明显的看出:全段K13+000~K15+000、K18+000~K19+000弯沉代表值较大;行车

S S I

e PSSI ?-?+=19

.571.151100

o

d l l S S I =

S

Z l l a o +=

道的弯沉代表值普遍大于超车道,路面病害调查中,我们也发现弯沉值较大的地段容易产生龟裂病害,尤其是行车道范围内的龟裂病害数量远远高于超车道。

3.3.2 弯沉评价

对检测结果进行统计、评价(见表3-2表3-3)

(1)对检测结果进行统计

左幅行车道评价为“优”占10%,评价为“差”的占了70%、超车道评价为“优”的占20%,评价为“中”的占30%,评价为“次”的占20%;

右幅行车道评价为:“优”的占20%,评价为“差”的占了70%、超车道评价为“优”的占40%,评价为“中”的占40%。

(2)对检测结果进行评价

全路段行车道评价为“差”的占有率普遍大于超车道,这可能是由于行车道上重型车辆比较集中,交通荷载较大等原因造成的。

(3)由于路面病害发生原因较为复杂,不能单纯依靠作为路面整体强度指标的弯沉值指标进行路面评价,还需增加其他指标进行综合评价。

表3-1 甬金高速公路沥青路面弯沉检测结果汇总表(k10+000~k20+000路段)序

号路段里程

左幅右幅

行车道超车道行车道超车道测

平均值

0.01mm

标准差

0.01mm

代表值

0.01mm

平均值

0.01mm

标准差

0.01mm

代表值

0.01mm

平均值

0.01mm

标准差

0.01mm

代表值

0.01mm

平均值

0.01mm

标准差

0.01mm

代表值

0.01mm

1 K10+000~K11+000 13 10.9 3.40 16.5 13 9.6 4.21 16.6 13 8.9 2.73 13.4 13 6.3 2.74 10.8

2 K11+000~K12+000 47 23.7 9.68 39.7 46 17.8 5.36 26.7 46 18.

3 8.2

4 31.9 46 19.0 7.58 31.5

3 K12+000~K13+000 40 22.3 8.2

4 35.9 40 17.1 4.43 24.4 40 27.0 12.14 47.1 40 12.6 6.23 22.9

4 K13+000~K14+000 29 35.3 11.58 54.

5 28 18.1 7.13 29.9 29 32.

6 14.65 56.8 29 19.0 6.81 30.3

5 K14+000~K15+000 33 46.1 13.73 68.8 34 22.0 8.51 36.1 34 26.5 13.55 48.9 34 14.3 4.5

6 21.8

6 K15+000~K16+000 23 19.3 6.22 29.6 2

7 20.0 6.00 29.9 23 13.5 3.49 19.3 23 12.1 3.56 18.0

7 K16+000~K17+000 49 25.2 13.39 47.3 46 16.1 4.45 23.5 50 21.4 10.24 38.3 50 15.7 5.38 24.6

8 K17+000~K18+000 47 32.6 10.40 49.8 47 16.9 3.06 22.0 48 34.5 10.62 52.1 47 19.1 6.05 29.1

9 K18+000~K19+000 47 41.7 10.99 59.9 46 24.5 7.01 36.1 46 38.8 12.74 59.9 45 18.3 5.66 27.7

10 K19+000~K20+000 48 29.6 11.29 48.3 44 19.2 6.65 30.2 51 32.1 10.56 49.6 47 17.9 6.04 27.9

注:沿线隧道和桥梁不做弯沉检测

浙江省交通规划设计研究院试验中心13

图3-1 甬金高速公路左幅(K10+000~K20+000)沥青路面弯沉代表值分布图

浙江省交通规划设计研究院试验中心14

图3-2 甬金高速公路右幅(K10+000~K20+000)沥青路面弯沉代表值分布图

浙江省交通规划设计研究院试验中心15

表3-2 甬金高速公路沥青路面(左幅)弯沉检测结果评价表(k10+000~k20+000路段)序

号路段里程

左(右)

行车道超车道

实测

代表弯沉

mm

路面

设计弯沉

mm

路面结构

强度系数

SSI

路面结构

强度指数

PSSI

路面结构

强度等级

评价

实测

代表弯沉

mm

路面

设计弯沉

mm

路面结构

强度系数

SSI

路面结构

强度指数

PSSI

路面结构

强度等级

评价

1 K10+000~K11+000

左幅0.165 0.221 1.337 98.5 优0.166 0.221 1.334 98.5 优

2 K11+000~K12+000 0.397 0.221 0.557 53.4 差0.267 0.221 0.829 82.5 良

3 K12+000~K13+000 0.359 0.221 0.615 60.8 次0.24

4 0.221 0.90

5 87.5 良

4 K13+000~K14+000 0.54

5 0.221 0.40

6 34.4 差0.299 0.221 0.739 74.

7 中

5 K14+000~K15+000 0.688 0.221 0.321 25.2 差0.361 0.221 0.613 60.5 次

6 K15+000~K16+000 0.296 0.221 0.74

7 75.5 中0.299 0.221 0.739 74.7 中

7 K16+000~K17+000 0.473 0.221 0.467 41.8 差0.235 0.221 0.942 89.4 良

8 K17+000~K18+000 0.498 0.221 0.444 38.9 差0.220 0.221 1.006 92.2 优

9 K18+000~K19+000 0.599 0.221 0.369 30.2 差0.361 0.221 0.612 60.4 次

10 K19+000~K20+000 0.483 0.221 0.458 40.7 差0.302 0.221 0.732 74.0 中

注:路面结构强度等级评价为“差”的单元格背景涂为阴影

浙江省交通规划设计研究院试验中心16

表3-3 甬金高速公路沥青路面(右幅)弯沉检测结果评价表(k10+000~k20+000路段)序

号路段里程

左(右)

行车道超车道

实测

代表弯沉

mm

路面

设计弯沉

mm

路面结构

强度系数

SSI

路面结构

强度指数

PSSI

路面结构

强度等级

评价

实测

代表弯沉

mm

路面

设计弯沉

mm

路面结构

强度系数

SSI

路面结构

强度指数

PSSI

路面结构

强度等级

评价

1 K10+000~K11+000

右幅0.134 0.221 1.647 99.7 优0.108 0.221 2.046 100.0 优

2 K11+000~K12+000 0.319 0.221 0.692 69.8 次0.315 0.221 0.702 70.9 中

3 K12+000~K13+000 0.471 0.221 0.469 42.1 差0.229 0.221 0.965 90.5 优

4 K13+000~K14+000 0.568 0.221 0.389 32.4 差0.303 0.221 0.729 73.7 中

5 K14+000~K15+000 0.489 0.221 0.452 39.9 差0.218 0.221 1.014 92.5 优

6 K15+000~K16+000 0.193 0.221 1.14

7 96.1 优0.180 0.221 1.22

8 97.4 优

7 K16+000~K17+000 0.383 0.221 0.576 55.9 差0.246 0.221 0.898 87.1 良

8 K17+000~K18+000 0.521 0.221 0.424 36.5 差0.291 0.221 0.759 76.6 中

9 K18+000~K19+000 0.599 0.221 0.369 30.2 差0.277 0.221 0.798 80.0 良

10 K19+000~K20+000 0.496 0.221 0.446 39.2 差0.279 0.221 0.792 79.5 中

注:路面结构强度等级评价为“差”的单元格背景涂为阴影

浙江省交通规划设计研究院试验中心17

沥青路面结构强度评价方法

沥青路面结构强度评价方法 作者:李淼龙 作者单位:青海路桥建设机械工程有限公司 刊名: 科技信息(学术版) 英文刊名:SCIENCE 年,卷(期):2008,(12) 引用次数:0次 相似文献(10条) 1.会议论文成鸿才.霍雨佳石灰土基层对沥青路面强度的影响分析2004 本文通过对石灰土基层的沥青路面竣工初期和使用2年后2次弯沉强度测定,分析了路面强度增长幅度和规律,对公路路面工程竣工验收和使用具有借鉴作用. 2.学位论文隋向辉沥青路面温度场预测及应用2007 沥青路面强度设计所要达到的优先目标是选择合适的沥青混合料,以使路面结构在最不利的温度条件下仍具有足够的高温稳定性和低温抗裂性。道路结构长期处于自然环境的影响中,经受着持续变化着的各种环境因素综合作用影响,因此道路结构不仅要满足行车荷载的要求,还要适应所处的自然环境,只有如此才能保证其长期使用性能,否则,道路结构势必产生早期破坏。因此本文选取道路结构温度场为研究对象,建立了环境与道路结构温度之间的关系,准确预测沥青路面温度场的分布状况,为路面长期性能研究提供基础和支持。 本文收集了自2003年以来在陕西、甘肃等地试验路实测的温度场数据资料。通过对数据的详细整理、分析,得出了西北地区在夏季高温季节和冬季低温季节沥青路面温度场的日变化规律、结构内温度随深度变化的规律,绘制了各种用于说明规律的图表;从数值上分析了夏季最高温度时刻和冬季最低温度时刻气温与路表温度的关系、结构内部各深度处的温度与路表温度的关系,得出了适合这些地方的路面最高温度与最低温度的预测公式,并应用于路面高温稳定性研究。本文还详细介绍了温度场现场测试的详细规程。 本文在路面高温预测时提出了以当地30年地温数据为主要参考值的路面高温预测方法:在温度场应用方面,提出了高温一车辙指数用于评价、预测车辙。 3.期刊论文魏建军.关彦斌.张新.孔永健.WEI Jian-jun.GUAN Yan-bin.ZHANG Xin.KONG Yong-jian透水性沥青路面降低路表温度的研究与分析-交通科技与经济2007,9(5) 通过对透水性沥青路面降低路表温度的研究,为透水性沥青路面的结构设计提供指导和借鉴.在对透水性沥青路面降温分析的基础上,建立透水性路面厚度与蒸发强度的计算式,并通过对透水性沥青混合料试件的蒸发试验,验证在相同孔隙率下透水性沥青混合料试件的厚度与试件表面温度之间具有相关联系. 4.学位论文陈忠排水性沥青路面粘层材料性能与防反射裂缝的研究2004 随着中国高速公路建设步伐的不断加快,伴随出现的沥青路面早期损害现象较为普遍,而水损害是造成路面早期破坏的重要原因之一.针对这种水损害而提出的一种有别于常规沥青混凝土路面的新颖路面结构.其结构组合的特点是沥青路面表层采用大空隙率的沥青混凝土(空隙率在15﹪~25﹪左右),层厚一般为4~5cm,中面层则采用密级配沥青混凝土,并在基傅面设置粘层,以加强与表层的粘结,同时也为了更好地防止雨水继续下渗.由于此种路面结构能将渗入表层的雨水及时、迅速地排出,故称为排水性沥青路面.然而,中国对排水性沥青路面研究尚处起步阶段,需要研究的问题很多.该文之所以开展对粘层材料性能的研究,是因为在目前可供参考的文献、资料中,对用于排水性沥青路面的粘层材料,及所提出的有关技术指标与标准,只有定性的分析与要求,缺乏定量的依据,也未见到对此进行系统试验的研究报导.鉴于粘层的特殊位置与结构要求,该文对粘层材料进行了一系列试验—包括对材料本身的性能指标试验,重心放在材料的剪切强度和拉拔强度试验以及透水性试验.经过试验比较,选出理想的粘层材料,并对某些指标给予修正,并对今后实践的展开和推广提供一定的依据.此外,该文就反射裂缝对路面的影响也做了进一步的探讨,找出其中的影响因素,并对材料提出一定的要求,用于指导实践. 5.期刊论文冯德成.沙延飞.高群沥青路面结构强度评价方法-公路2000(8) 路面结构强度评价是进行路面养护决策的重要依据,是路面管理系统的重要组成部分.针对有关规范对设计指标的调整,根据迈纳(Miner)假说提出了新的路面强度评价方法,解决了不同体系的过渡问题,并提出了相应的评价标准. 6.学位论文王新友沥青路面强度变化规律及其养护对策研究2000 公路是国民经济建设的重要基础设施,新建公路是一次性的工作,公路养护则是一项长期的工作.养路工作的目的,是认真地维护管理好公路,使公路经常保持良好技术状况,为行人和车辆提供安全舒适的交通环境.该文通过利用世界先进路面检测设备Dynatest8000型FwD落锤式弯沉仪,对该市干线公路若干沥青路面实际路段进行了现场测定,根据检测结果,采用柔性路面反分析软件,逐段找出其技术状况及评价结果,总结了沥青路面强度变化规律,然后采用科学合理的养护对策,达到了延长公路使用寿命,降低养护成本的目的. 7.期刊论文陈忠.陈荣生排水性沥青路面粘层材料性能的试验研究-公路交通科技2004,21(10) 主要介绍对排水性沥青路面粘层材料的试验研究,其中包括粘层的功能、材料的选择;对粘层材料基本性能的测试及使用性能的试验研究,粘层层位的力学分析等.得出了相关的结论,可供排水性沥青路面实际工程以及今后的进一步研究参考. 8.学位论文赵顺根沥青路面不同层位沥青混合料设计研究2006 Superpave体系由沥青胶结料规范、混合料设计与分析系统和计算机软件系统三个部分组成,它从根本上改变了现行试验方法和规范的纯经验性质。我国正着手引进此技术,但由于SHRP试验设备昂贵及我国的具体情况与美国有所不同,因此要结合中国国情加以改进,使之更适合中国的工程实际。 本文结合结合“六盘山地区公路修筑技术研究”课题,首先通过对六盘山地区各地的气候、环境等资料的分析,采用Superpave方法对各地进行了气候分区,并提出了针对不同层位面层的沥青结合料选择办法;采用弹性层状体系理论分析不同路面结构在行车荷载作用及温度影响下,沥青面层内部剪应力随深度的变化规律,从理论上分析了在不同路面结构形式下,沥青面层不同层位对沥青混合料高温性能的不同要求;引入了简化的IDT强度指标来评价Superpave沥青混合料的高温性能,并对Superpave设计空隙率提出了修正意见;分析了IDT强度的适用性及局限性,提出了改进措施。 9.会议论文陈忠.陈荣生排水性沥青路面粘层材料性能的试验研究2003 主要介绍对排水性沥青路面粘层材料的试验研究,其中包括粘层的功能、材料的选择;对粘层材料基本性能的测试及使用性能的试验研究,粘层层位的力学分析等.得出了相关的结论,可供排水性沥青路面实际工程以及今后的进一步研究参考. 10.学位论文李松辉沥青路面材料参数全反演分析及在路面强度评估中的应用1999 该文根据理论分析和现场实测,对由实测弯沉盆反演路面材料参数的实用技术进行了深入的研究,提出了可供工程使用的方法.文中认真分析了沥青路面材料参数反演问题的特点,建立了以实测弯沉盆与理论弯沉盆之均方根误差为目标函数,以限制泊松比范围为约束函数的最优化问题数学模型,并采用内罚函数法求解该不等式约束最优化问题.在求解过程中,应用Powell方向加速法之改进算法求解系列无约束问题.根据上述原理,该文编制了沥青路面材料参全反演程序BCEU.经理论试算表明所编程序正确、可靠.在此基础上,该文提出了沥青路面结构承载能力评价的基本方法.然后,根据FWD实测弯沉盆数据,对山东省数条沥青路面有关路段路面材料数参数进行了反演分析,进而对其承载力做出了评价,评定结果基本与工程实际相吻合.该研究具有良好的开发

公路水泥混凝土路面设计规范标准

1总则 1.0.1 为适应交通运输发展和公路建设的需要,提高水泥混凝土路面的设计质量和技术水平,保证工程安全可靠、经济合理,制定本规范。 1.0.2 本规范适用于新建和改建公路和水泥混凝土路面设计。1.0.3 水泥混凝土路面设计方案,应根据公路的使用任务、性质和要求,结合当地气侯、水文、土质、材料、施工技术、实践 经验以及环境保护要求等,通过技术经济分析确定。水泥混 凝土路面设计应包括结构组合、材料组成、接缝构造和钢筋 配制等。水泥混凝土路面结构应按规定的安全等级和目标可 靠度,承受预期的荷载作用,并同所处的自然环境相适应, 满足预定的使用性能要求。 1.0.4 水泥混凝土路面设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语、符号 2.1 术语 2.1.1 水泥混凝土路面cement concrete pavement 以水泥混凝土做面层(配筋或不配筋)的路面,亦称刚性路面。 2.1.2 普通混凝土路面plain concrete pavement 除接缝区和局部范围外面层内均不配筋的水泥混凝土路面,亦称素混凝土路面。

2.1.3 钢筋混凝土路面jointed reinforced concrete pavement 面层内配置纵、横向钢筋或钢筋网并设接缝的水泥混凝土路面。 2.1.4 连续配筋混凝土路面continuous reinforced concrete pavement 面层内配置纵向连续钢筋和横向钢筋,横向不设缩缝的水泥混凝土路面。 2.1.5 钢纤维混凝土路面steel fiber reinforced concrete pavement 在混凝土面层中掺入钢纤维的水泥混凝土路面。 2.1.6 复合式路面composite pavement 面层由两层不同类型和力学性质的结构层复合而成的路面。 2.1.7 水泥混凝土预制块路面concrete block pavement 面层由水泥混凝土预制块铺砌成的路面。 2.1.8 碾压混凝土roller compected concrete 采用振动碾压成型的水泥混凝土。 2.1.9 贫混凝土lean concrete 水泥用量较低的水泥混凝土。 2.1.10 设计基准期限design reference period 计算路面结构可靠度时,考虑各项基本度量与时间关系所取用的基准时间。 2.1.11 安全等级safety classes

(技术规范标准)水泥混凝土路面技术规范

公路水泥混凝土路面设计规范(JTJ D40-2002) 1总则 1.0.1 为适应交通运输发展和公路建设的需要,提高水泥混凝土路面的设计质量和技术水平,保证工程安全可靠、经济合理,制定本规范。 1.0.2 本规范适用于新建和改建公路和水泥混凝土路面设计。 1.0.3 水泥混凝土路面设计方案,应根据公路的使用任务、性质和要求,结合当地气侯、水文、土质、材料、施工技术、实践经验以及环境保护要求等,通过技术经济分析 确定。水泥混凝土路面设计应包括结构组合、材料组成、接缝构造和钢筋配制等。 水泥混凝土路面结构应按规定的安全等级和目标可靠度,承受预期的荷载作用,并 同所处的自然环境相适应,满足预定的使用性能要求。 1.0.4 水泥混凝土路面设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语、符号 2.1 术语 2.1.1 水泥混凝土路面cement concrete pavement 以水泥混凝土做面层(配筋或不配筋)的路面,亦称刚性路面。 2.1.2 普通混凝土路面plain concrete pavement 除接缝区和局部范围外面层内均不配筋的水泥混凝土路面,亦称素混凝土路面。2.1.3 钢筋混凝土路面jointed reinforced concrete pavement 面层内配置纵、横向钢筋或钢筋网并设接缝的水泥混凝土路面。 2.1.4 连续配筋混凝土路面continuous reinforced concrete pavement 面层内配置纵向连续钢筋和横向钢筋,横向不设缩缝的水泥混凝土路面。2.1.5 钢纤维混凝土路面steel fiber reinforced concrete pavement 在混凝土面层中掺入钢纤维的水泥混凝土路面。 2.1.6 复合式路面composite pavement 面层由两层不同类型和力学性质的结构层复合而成的路面。 2.1.7 水泥混凝土预制块路面concrete block pavement 面层由水泥混凝土预制块铺砌成的路面。 2.1.8 碾压混凝土roller compected concrete 采用振动碾压成型的水泥混凝土。 2.1.9 贫混凝土lean concrete 水泥用量较低的水泥混凝土。 2.1.10 设计基准期限design reference period 计算路面结构可靠度时,考虑各项基本度量与时间关系所取用的基准时间。2.1.11 安全等级safety classes 根据路面结构的重要性和破坏可能产生后果的严重程度而划分的设计等级。2.1.12 可靠度reliability 路面结构在规定的时间内和规定的条件下完成预定功能的概率。 2.1.13 目标可靠度objective reliability 作为设计依据的可靠度。 2.1.14 可靠指标reliability index 度量路面结构可靠性的一种数量指标。

浅谈水泥混凝土路面施工

浅谈水泥混凝土路面施工 【摘要】就当前混凝土路面施工特点和存在问题,从施工过程和控制手段方面阐述一下混凝土路面施工方法。 【关键词】水泥混凝土;施工过程;控制 1 准备工作 1.1 测量放样 按照设计图纸现场放样出道路中线及边桩,直线段每20米设一桩,平曲线每10米设一桩,报监理工程师复核,同时填好放样记录,并在两侧路肩边缘外设指示桩,每道工序施工前在两侧指示桩上用明显标记标出其边缘的设计高。同时加设平曲线五要素点和竖曲线变化点,放样中把缓和曲线、圆曲线作为重点,做到“计算精确无误,放线一丝不苟”确保放样质量。 1.2 模板安装 在放样好的中桩及边桩上弹出墨线,作为模板的安装线,模板按预先标定的位置安装在基层上,两端用钢钎打入基层,以固定位置。模板安装长度不小于150m,要求在纵向长度紧贴基层不漏浆,如有缝隙用水泥砂浆填塞。槽钢纵向之间采用锁接方式,接缝处用胶带粘接紧密,做到不漏浆,接缝在任何方向不活动。两端之外模板支撑采用钢筋或角钢制成的水平支撑和斜支撑相联接,然后再用钢钎打入基层,将水平与斜支撑固定,以此安装模板。在施工中严格控制槽钢顶面标高及水平位置,不符合立即调整。模板的平面位置和标高控制非常重要(标高和横坡度允许误差±15mm、±0.25%),上部机械的整平及饰面作业下不位移且不妨碍各项作业,稍有歪斜和不平都会反映到面层,避免出现边线不齐、厚度不准和表面波浪不平的现象。 1.3 传力杆和拉杆安设 模板安装好后,在横向胀缝或缩缝位置上需要设置传力杆,本设计横向传力杆采用Φ30,传力杆长40cm设计间距30cm,胀缝或缩缝的传力杆的做法一般在嵌缝8mm钢板上按设计间距和高度用电钻钻Φ35圆孔,模板安装好后,在需要设传力杆的胀缝或缩缝位置上安设传力杆。胀缝传力杆的做法是一般在嵌缝板上预留圆孔以便传力杆穿过,传立杆两端固定在钢筋支架上,支架插入基层内。对于混凝土板不连续浇筑结束时设置的胀缝,宜用顶头槽钢固定传力的安装方法。传力杆和拉杆上涂刷一层防锈漆。 注意:传力杆涂刷时,只涂刷传力杆的一半再加3cm,拉杆只涂刷中间的10cm。在横向胀缝位置的传力杆,一端安置长10cm的塑料套管,塑料套管一端封闭,一端套入传力杆7cm,预留3cm空隙填海绵。塑料套管内径宜比传力杆大1—1.5mm,塑料套管壁厚不小于2mm。 2 混凝土拌和与运输 2.1 混凝土采用有自动计量装置的混凝土拌和机集中拌和,各种计量仪器经计量局鉴定后使用,对骨料的含水率经常进行检测,并相应调整骨料和水的用量。上料程序为:砂→石→水泥→水,拌和时间应满足设计及规范要求。成品的混合料以石子表面砂浆饱满、拌和颜色均匀为标准。在整个拌和过程中,严格控制拌和速度、混凝土水灰比和混凝土坍落度。 2.2 运输由混凝土罐车运送到施工现场,运送至现场的混凝土安排专人检测混凝土的坍落度,出机时坍落度控制在70—90mm,摊铺时坍落度控制在

二级路沥青路面结构计算书

织金县青山至城关公路改扩建 新建路面设计 1. 项目概况与交通荷载参数 该项目位于贵州省,属于二级公路,起点桩号为0,终点桩号为16000,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。

水泥混凝土路面抗弯拉强度配合比

检验报告 委托单位:牡丹江市大东建筑总公司 检测项目: 4.5Mpa路面混凝土配合比设计 报告日期:2014年7月18日 中心实验室名称:呼伦贝尔市公路勘测规划设计有限公司中心实验室地址:呼伦贝尔市海拉尔区扎兰屯路71号 邮编:021008 电话:(0470)3998512

水泥混凝土路面抗弯拉强度 4.5MPa配合比设计书 一、材料说明: 原材料: 水泥采用海拉尔蒙西复合硅酸盐(P.C 32.5)水泥;砂采用海拉尔河砂场中砂,细度模数为 2.87,表观密度为 2.496g/cm3;碎石采用哈克南碎石场( 4.75-31.5mm)合成级配,其中:碎石 10-20mm 掺量为 40%,20-40mm 掺量为60%;水采用自来水;原材料检测详见试验报告。 编制依据:《公路水泥混凝土路面施工技术规范》JTG F30-2003及《公路水泥混凝土路面设计规范》JTGD40-2002,设计抗折强度 4.5Mpa中等交通。 二、计算水泥混凝土配制强度(fc) 1) fc=fr/1-1.04cv+ts =4.5/1-1.04ⅹ0.15+0.46ⅹ8% =5.12Mpa Fc-配制 28 天弯拉强度的均值(Mpa) Fr-设计弯拉强度标准值(Mpa) cv-按表取值 0.15 s-无资料的情况下取值 8% t- 按表取值 0.46 2)水灰比(W/C)的计算 W/C=1.5684/(fc+1.0097-0.3595fs)= 0.44

Fs-水泥实测 28 天抗折强度(Mpa) 3)查表确定砂率(βs )= 34% 4)确定单位用水量(mwo) 根据施工条件出机坍落度宜控制在 10―50mm 查表mwo =170 kg/m3 5)确定单位水泥用量(mco) C0=(c/w)wo=170/0.44=386 kg/m3 6)计算粗集料用量(mgo)、细集料用量(mso)将上面的计算结果带入式中 mco+mwo+mso+ mgo=2450 βs=mso÷(mso+ mgo)×100 砂(mso)用量为 644 kg/m3,碎石(mgo)用量 1250 kg/m3; (1)初步配合比为: 水泥:碎石:砂=386:1250:644: =1:3.24:1.67 水灰比=0.4 4 (2)调整工作性,提出基准配合比 1)计算水泥混凝土试拌材料用量: 按初步配合比试拌水泥混凝土拌和物 30 L 各种材料用量为: 水泥=386ⅹ0.03= 11.58 kg 水=170ⅹ0.03=5.1kg

水泥混凝土路面基层

水泥混凝土路面基层的作用是什么[工程施工技术]收藏转发 至天涯微博 悬赏点数10该提问已被关闭6个回答 匿名提问2009-01-06 23:22:10 水泥混凝土路面基层的作用是什么 防护加固作用,符: 水泥混凝土路面面层混凝土的施工工艺 混凝土板的施工工艺为安装模板、安设传力杆、混凝土拌和与运输、混凝土摊铺和振捣、表面修整、接缝处理、混凝土养护和填缝。 1、安装模板 模板宜采用钢模板,弯道等非标准部位以及小型工程也可采用木模板。模板应无损伤, 有足够的强度,内侧和顶、底面均应光洁、平整、顺直,局部变形不得大于3mm,振捣时模板横向最大挠曲应小于4mm,高度应与混凝土路面板厚度一致,误差不超过±mm,纵缝模板平缝的拉杆穿孔眼位应准确,企口缝则其企口舌部或凹槽的长度误差为钢模板±m m,木模板塑mm。 2、安设传力杆 当侧模安装完毕后,即在需要安装传力杆位置上安装传为杆。 当混凝土板连续浇筑时,可采用钢筋支架法安设传力杆。即在嵌缝板上预留园孔,以便传力杆穿过,嵌缝板上面设木制或铁制压缝板条,按传力杆位置和间距,在接缝模板下部做成倒U形槽,使传力杆由此通过,传力杆的两端固定在支架上,支架脚插入基层内。 当混凝土板不连续浇筑时,可采用顶头木模固定法安设传为杆。即在端模板外侧增加一块定位模板,板上按照传为杆的间距及杆径、钻孔眼,将传力杆穿过端模板孔眼,并直至外侧定位模板孔眼。两模板之间可用传力杆一半长度的横木固定。继续浇筑邻板混凝土时,拆除挡板、横木及定位模板,设置接缝板、木制压缝板条和传力杆套管。 3、摊铺和振捣

对于半干硬性现场拌制的混凝土一次摊铺容许达到的混凝土路面板最大板厚度为 22 24cm ;塑性的商品混凝土一次摊铺的最大厚度为26cm 。超过一次摊铺的最大厚度时, 应 分两次摊铺和振捣,两层铺筑的间隔时间不得超过3Omin ,下层厚度约大于上层,且下层厚度为 3/5 。每次混凝土的摊铺、振捣、整平、抹面应连续施工,如需中断,应设施工缝,其位置应在TRANBBS 设计规定的接缝位置。振捣时,可用平板式振捣器或插入式振捣器。 施工时,可采用真空吸水法施工。其特点是混凝土拌合物的水灰比比常用的增大5%?10% ,可易于摊铺、振捣,减轻劳动强度,加快施工进度,缩短混凝土抹面工序,改善混凝土的抗干缩性、抗渗性和抗冻性。施工中应注意以下几点: 1) 真空吸水深度不可超过30cm 。 2) 真空吸水时间宜为混凝土路面板厚度的1.5 倍(吸水时间以min 计,板厚以cm 计)。 3) 吸垫铺设,特别是周边应紧贴密致。开泵吸水一般控制真空表lmin 内逐步升高到4 00?500mmHg,最高值不宜大于650?700mgHg,计量出水量达到要求。关泵时,亦逐渐减少真空度,并略提起吸垫四角,继续抽吸10?15s,以脱尽作业表面及管路中残余水。 4) 真空吸水后,可用滚杠或振动梁以及抹石机进行复平,以保证表面平整和进一步增强板面强度的均匀性。 4、接缝施工 纵缝应根据设计文件的规定施工,一般纵缝为纵向施工缝。拉杆在立模后浇筑混凝土之前安设,纵向施工缝的拉杆则穿过模板的拉杆孔安设,纵缝槽宜在混凝土硬化后用锯缝机锯切;也可以在浇筑过程中埋人接缝板,待混凝土初凝后拔出即形成缝槽。 锯缝时,混凝土应达到5?10Mpa 强度后方可进行,也可由现场试锯确定。横缩缝宜在混凝土硬结后锯成,在条件不具备的情况下,也可在新浇混凝土中压缝而成。 锯缝必须及时,在夏季施工时,宜每隔3? 4 块板先锯一条,然后补齐;也允许每隔3?4块板先压一条缩缝,以防止混凝土板未锯先裂。 横胀缝应与路中心线成90°,缝壁必须竖直,缝隙宽度一致,缝中不得连浆,缝隙下部设胀缝板,上部灌封缝料。胀缝板应事先预制,常用的有油浸纤维板(或软木板)、海绵橡胶

浅析混凝土路面的承载力

浅析混凝土路面的承载力 水泥混凝土(素混凝土)路面是山东地区加油站选用的主要硬化地面形式之一,由于公司部分加油站临近煤矿区或物流区,且车辆超载运输现象也较为普遍和严重,因此很多路面在使用初期就发生了严重的结构损坏,路面的使用寿命大大缩短,严重影响了加油站的经营销售、通行能力、行车安全和投资效益。因此,为解决大载重车辆地区的混凝土地面易破损问题,需要在施工开展前分析此地段的极限车辆荷载与混凝土地面的设计方法。 本文主要从混凝土地面承载力的主要影响因素入手,重点分析各因素对地面造成破坏的原因并根据破坏原因进行简单的数据测算,最后针对各破坏因素的极限值进行承载力比对,确定固定厚度的混凝土路面的极限承载力。 目的是简单清晰的确定混凝土的竖向承载力与混凝土厚度的比例关系。 混凝土地面承载力主要有四个影响因素,分别为:基础承载力,混凝土标号,混凝土厚度,及设计形式。 基础承载力(计算目标值):由于重点分析混凝土路面的承载力情况,且设计院设计的三元结构(15CM黄土垫层、15CM砂石垫层)一般情况下符合基础要求,因此计算中的基础一律按无限宽(刚性)基础进行考虑(根据厚度进行求解)。 混凝土标号:混凝土中的标号与刚度是成正比的即标号越大,混凝土的刚度越大,因此路面选择过低标号的混凝土会导致整体路面的网裂,而选择过高标号的混凝土会导致整体路面的刚度过大,呈现脆性即易整体开裂,因此标号的正确选择也是混凝土路面能否长期保持良好情况的重要因素,所以本文中的混凝土标号一律选用设计院设计的C30标号。 混凝土厚度(一般为18CM-30CM):根据公式分别代入25CM、28CM、30 CM。以25CM厚的C30混凝土为例,C30轴心抗压是20.1Mpa=20.1N/mm2=20.1×1000000N/m2,相当于20. 1×100000千克(五个零,除以10,重力加速度),也就是20.1×100吨,2010吨,即2010 吨/m2,因为是25CM厚混凝土,所以需要乘以0.25,因此推算每立方米的,25CM厚的C30混凝土的设计抗压能力约为502.5吨/m3。(初略计算,C30,厚25cm,最大只能承受63.245吨) 设计形式:由于上述影响因素均对混凝土的抗压进行考虑(即垂直地面方向),因此均按设计院提供的素混凝土方案,未进行配筋处理。 根据上述分析可以看出,素混凝土路面的抗压承载力主要取决于混凝土厚度,因此需要根据已知厚度可以通过公式计算出极限承载力。 Fcd=0.7·βh·Ftd·Um·H Fcd——混凝土最大集中返力; βh——对于厚度小于300mm时,取1; Ftd——轴心抗拉应力(C30取1.39mpa); Um——高度换算比=2·(a+b)+4H,a=20cm,b=60cm(a,b分别为轮迹宽、长); H ——厚度。 带入数值即对应关系: C30混凝土25CM 极限车辆承载力:63.245吨; C30混凝土28CM 极限车辆承载力:74.104吨; C30混凝土30CM 极限车辆承载力:81.732吨。 以上计算式只能计算出素混凝土路面在垂直方向上的极限承载力,但实际路面在对大车进行

路面强度

强度检测和评价 评价方法 路面结构强度采用路面结构强度指数(PSSI )评价,计算公式如下: ……………………(3-1) ……………………(3-2) 式中:SSI -路面结构强度系数,为路面设计弯沉与实测代表弯沉之比; d l -路面设计弯沉(mm ); 0l -实测代表弯沉(mm ) 。 弯沉代表值的计算,公式如下: ……………………(3-3) 式中:o l - 1个评定路段的代表弯沉(0.01mm ); l - 1个评定路段内各项修正后的各测点弯沉的平均值(0.01mm ); S –1个评定路段内各项修正后的全部测点弯沉的标准差(0.01mm ); a Z - 与保证率有关的系数,取1.645。 路面结构强度指数(PSSI )分优、良、中、次和差五个等级。当PSSI 值≥90时,评价为优;当PSSI 值≥80,<90时,评价为良;当PSSI ≥70,<80时,评价为中;当PSSI 值≥60,<70时,评价为次;当PSSI 值<60时,评价为差。 3.3 检测结果和评价 3.3.1 弯沉检测结果 将落锤式弯沉仪测试值换算成贝克曼梁弯沉仪的回弹弯沉值,并进行温度修正,得到每20m 的弯沉检测值,详见附件。 以每公里为评定单元,检测路段的弯沉统计见表3-1。可以看出: (1)弯沉值代表值普遍较大,高于设计弯沉值22.1(0.01mm )。 (2)路面弯沉值波动性较大。 评定单元的弯沉值标准差在2.73~14.65(0.01mm )之间,该值较大,也是造成检测路段弯沉代表值偏大的主要原因。 (3)部分路段弯沉值衰减较大。 将评定路段内的弯沉代表值与设计弯沉值绘制图(见图3-1、图3-2),可以明显的看出:全段K13+000~K15+000、K18+000~K19+000弯沉代表值较大;行车 S S I e PSSI ?-?+=19 .571.151100 o d l l S S I = S Z l l a o +=

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

浅谈水泥混凝土路面施工

浅谈水泥混凝土路面施工 本文对路面施工的从原材料选择到接缝养护各个工序分析,介绍水泥混凝土路面的施工工艺。 标签:混凝土路面施工工艺 本文对路面施工的从原材料选择到接缝养护各个工序分析,介绍水泥混凝土路面的施工工艺。 标签:混凝土路面施工工艺 0 引言 水泥混凝土路面以其抗压、抗弯、抗磨损、高稳定性等诸多优势,在各级路面上得到广泛应用,在我国高等级公路中水泥混凝土路面日渐增多,加上一些地域的路基更适合水泥混凝土路面,使得混凝土路面科学化施工摆在许多施工单位面前。本文对路面施工的从原材料选择到接缝养护各个工序分析,介绍水泥混凝土路面的施工工艺。 1 原材料的选择 1.1 水泥:在进行路面施工时,水泥是最基础的原料,所以其选择要特别慎重。首先要选择正规厂家生产的产品,并且产品具有经过国家认证的产品合格证和质量检验。对其各项技术参数也应该详细出具,并经试验合格后,方可使用。如果存储时间过期,在使用之前则应该对水泥质量再次进行严格检测,检测合格后方可按照复验的结果使用使用,不合格不得使用。严禁先用后检或边用边检。不同品种的水泥要分别存储或堆放,不得混合使用。 1.2 砂:在进行公路施工中,砂的使用主要是天然砂,这其中以河砂为主。但随着改革开放以来我国建筑业的快速发展,和各地的大兴土木,河砂的保有量逐渐减少,价格逐渐提高。为了节省成本,很多施工单位在工程中都采用了人工砂以及山砂,的工砂。这些砂的质量和纯度明显不如河砂,所以在选用时要进行严格检测,进行各种检测试验,不可使得混凝土中的砂含有过多有机质。 1.3 石子进场后应做筛分试验、针片状含量试验、含泥量试验。应严格控制各级骨料的超、逊径含量。以原孔筛检验,其控制标准:超径<5%,逊径<10%。当以超、逊径筛检验时,其控制标准:超径为零,逊径<2%。储料场对不同规格、不同产地、不同品种的碎石应分别堆放,并有明显的标示。 1.4 水:洁净、无杂质,饮用水可直接使用。 2 浇筑前准备工作

水泥混凝土路面优缺点

水泥混凝土路面优缺点 近年来,高等级公路的发展十分迅速,随着公路的高等级化以及较大的交通密度,较多的超大吨位车辆和较高的行车速度势必对路面提出较高的设计标准和更严格的施工质量要求,尤其是水泥混凝土路面,往往造价较高,且维修养护比较困难。拟将水泥混凝土路面的优缺点发表一下个人的观点: 一、水泥混凝土路面的优点 一)刚度大,承载能力强 混凝土路面板弹性模量在(3?5)x 104Mpa之间,标准10t轴载下,实测仅为0.04Mpa压力,这使其对基层的承载力要求相对较低,适应在稳定基层上的大交通量和重载交通的高速公路、国道、省道、机场、厂矿道路上使用。在土基承载力小的轻交通量的乡村道路、停车场可直接将水泥混凝土路面铺筑于土基上。 二)耐久性、耐高温性强 水泥混凝土路面的耐水性好,能够较好的使用在降雨量较大的地区和在短期浸水的过水路面上,在洪水短期淹没条件下,可照常通行。 水泥混凝土路面耐高温性强,不会像沥青路面那样,在持续高温下产生严重影响平整度和行车质量的车辙或壅包。 三)抗弯拉强度高、疲劳寿命长

弯拉强度》5.5Mpa、抗压强度》35Mpa的强度合格混凝土面板在标准轴载的应力强度比下,疲劳寿命长,可达到500?1000万次弯曲疲劳循环。 四)刚性路面耐候性、耐久性优良 在正确设计和保证施工质量条件下,水泥混凝土刚性路面的耐候性、抗冻性、抗滑性和耐磨性等耐久性优良。水泥水化产生的脱贝莫来石是自然自有的岩石品种之一,混凝土全部是无机材料,它仅有风化问题,但没有沥青等有机材料的老化问题,而风化是老化时间的100 倍。 五)刚性路面平整度衰减慢、高平整度维持时间长 刚性路面只要施工平整度好,基层抗冲刷性高,其良好平整度的衰变很慢,优良平整度的保持年限将比柔性路面长得多。 六)粗集料磨光值和磨耗值的要求低、集料易得 除非建造表面裸石路面,水泥混凝土路面对粗集料的磨光值和磨耗值的要求相对较低。可使用的粗集料岩石种类范围广泛、集料易得。 七)水泥混凝土路面更环保 当水流经或渗透过水泥混凝土天然材料时,路面的水对周围土壤和地下水无污染,是环保型路面类型,同时,可在水泥混凝土路面中使用粉煤灰,具有良好的环保效益。 八)可不设路缘石

水泥混凝土路面设计参数(有用)

1、水泥混凝土路面的力学及工作特点 (1)水泥路面的力学特征 ①混凝土的强度及模量远大于基层和土基强度和模量; ②水泥混凝土本身的抗压强度远大于抗折强度; ③板块厚度相对于平面尺寸较小,板块在荷载作用下的挠度(竖向位移)很小; ④混凝土板在自然条件下,存在沿板厚方向的温度梯度,会产生翘曲现象,如受到约束,会在板内产生翘曲应力; ⑤荷载重复作用,温度梯度反复变化,混凝土板出现疲劳破坏。 (2)水泥混凝土路面的力学模式 ①弹性地基上的小挠度薄板模型; ②弹性地基:因为混凝土板下的基层与土基的应力应变很小,不超过材料的弹性区域; ③弹性板:因为板的模量高,应力承受能力强,一般受力不超过弹性比例极限应力,挠度与板厚相比很小 ④水泥混凝土路面设计理论:弹性地基上的小挠度薄板理论。 (3)水泥混凝土路面的工作及设计特点 ①抗弯拉强度低于抗压强度,决定路面板厚度的强度设计指标是抗弯拉强度; ②车轮荷载作用主要的影响是疲劳效应; ③温度差造成板有内应力,出现翘曲变形及翘曲应力,也有疲劳特性; ④板的使用还受限于支承条件,不均匀支承及板底脱空对板内应力的分布影响极大。 2、水泥路面的主要破坏类型与设计标准 (1)水泥路面的主要破坏类型 ①断裂 ②唧泥 ③错台 ④拱起

(2) 水泥路面的荷载作用 重载作用 (3) 水泥路面的设计标准 ①结构承载能力 控制板不岀现断裂,要求荷载应力与温度应力的疲劳综合作用满足材料的设计抗拉强度,即: ②行驶舒适性 控制错台量,要求设置传力杆(基层及结构布置满足) ③稳定耐久性 控制唧泥与拱胀,要求基层水稳定性好,板与基层联结。 3、水泥路面结构设计的主要内容 (1 )路面结构层组合设计; (2)混凝土路面板厚度设计; (3)混凝土面板的平面尺寸与接缝设计

2路面结构及其层次划分

§2路面结构及其层次划分 一.路面断面 路拱平均坡度: 沥青或水泥混凝土路面:1.5% 厂拌沥青碎石等:1.5-2.5% 石砌路面:2-3% 碎石,砾石路面:2.5-3.5% 土路:3-4% 二.层次划分和作用 1.面层: 面层是直接同行车和大气接触的表面层次,它承受较大的行车荷载的垂直力、水平力和冲击力的作用,同时还受到降水的浸蚀和气温变化的影响。因此,同其它层次相比,面层应具备较高的结构强度,抗变形能力,较好的水稳定性和温度稳定性,而且应当耐磨,不透水;其表面还应有良好的抗滑性和平整度。 修筑面层所用的材料主要有:水泥混凝土、沥青很凝土、沥青碎(砾)石混合料、砂砾或碎石掺上或不掺土的混合料以及块料等。

2.基层: 基层主要承受由面层传来的车辆荷载的垂直力,并扩散到下面的垫层和土基中去,上基层是路画结构中的承重层,它应具有足够的强度和刚度,并具有良好的扩散应力的能力.基层遭受大气因素的影响虽然比面层小,但是仍然有可能经受地下水和通过面层渗入雨水,所以基层结构应具有足够的水稳定性。基层表面虽不直接供车辆行驶,但仍然要求有较好的平整度,这是保证面层平整性的基本条件。 修筑基层的材料主要有各种结合料(如石灰、水泥或沥青等)稳定土或稳定碎(砾)石、贫水泥混凝土、天然砂砾、各种碎石或砾石、片石、块石或圆石,各种工业废渣(如煤渣、粉煤灰、矿渣、石灰渣等)和土、砂、石所组成的混合料等。 3.垫层: 垫层介于路基与基层之间,它的功能是改善土基的湿度和温度状况,以保证面层和基层的强度、刚度和稳定性不受土基水温状况变化所造成的不良影响。另一方面的功能是将车辆荷载应力加以扩散,以减小土基产生的应力和变形.同时也能阻止路基土挤入基层中,影响基层结构的性能。 修筑垫层的材料,强度要求不一定高,但水稳定性利隔温性能要好。常用的垫层材料分为两类,一类是由松散粒料,如砂、砾石、炉渣等组成的透水性垫层;另一类是用水泥或石灰稳定土等修筑的稳定类垫层。

路面调查检测及计算书

一、弯沉调查及分析 1.1 检测内容 每个测试公里段的代表弯沉和单点弯沉、路面结构强度指数SSI 、评价,弯沉沿里程分布的变化。 1.2 检测方法 采用落锤式弯沉仪(FWD )按照纵向约50m 一个测点进行检测。同时根据FWD 测试所得的动态弯沉,通过EBM 程序反算各结构层动态模量,根据反算结果评价各结构层承载力状况。 1.3 检测结果 数据处理时以每1000米为一个路段计算代表弯沉值,评价及计算方法依据《公路沥青路面养护技术规范》(JTJ 073.2-2001)和《公路技术状况评定标准》(JTJ H20-2007)的规定。代表弯沉值的计算公式为: S Z L L α+平均代= 式中: 代 L —— 代表弯沉值(0.01mm) 平均L ——平均弯沉值(0.01mm) αZ ——保证率系数, 取αZ =1.5 S ——标准差

1.4 结果分析 根据《公路沥青路面养护技术规范》(JTJ 073.2-2001),沥青路面强度采用强度指数(SSI)作为评价指标。 SSI=路面设计弯沉值(L设)/路面代表弯沉值(L代) 根据《公路沥青路面养护技术规范》(JTJ 073.2-2001),三级公路路面强度的评价标准详见下表。 三级公路路面设计弯沉值(L设)取45(0.01mm),计算SSI值及评价结果如下表:

1.5 弯沉调查基本结论 1、路面代表弯沉平均值为159.04(0.01mm),弯沉较大; 2、路面强度指数SSI总平均值为0.28,,路面承载能力总体状况均较差。 二、路面状况调查及分析 2.1 路面取芯调查 从老路外观上看,路面破损较为严重,主要表现为网裂、纵横向裂缝、拥包、坑塘等。本次路面取芯4处,取芯深度至基层底,均选取典型路段,具有一定的代表性,分别取于路面状况较好位置、路面状况一般位置、路面状况较差位置。从芯样情况可初步得出以下结论: 1、芯样结构层厚度不均匀,面层厚度为4.5~6cm,基层厚度为15.5~20cm。 2、大部分芯样面层较差,破损严重,基层基本成型; 3、从面层底部粘结情况判断,芯样面层与基层粘结情况整体较差。 2.2 路面破损状况调查 根据《公路沥青路面养护技术规范》(JTJ 073.2-2001),沥青路面破损状况采用路面状况指数(PCI)进行评价,路面状况指数由沥青路面破损率(DR)计算得出。

水泥混凝土路面做法

水泥混凝土路面施工做法 水泥混凝土路面是一种刚性高级路面,它由水泥、水、粗集料、细集料和外加剂按一定级拌和成水泥混凝土混合料铺筑而成的路面,具有强度高、承载能力强、稳定性好、抗滑等优点。所以,我国对水泥混凝土路面铺筑都非常重视,对路面的修筑施工技术进行了不断研究,使水泥混凝土路面得到了较快的发展。特别是在高等级交通道路上,水泥混凝土路面得到了更广泛的应用。 1、水泥混凝土路面特点分析 1.1水泥混凝土路面概念 (1)常规混凝土路面。我国于20世纪80年代末从国外引进,而且抗冲击、抗冻、抗裂等性能也大大提高,有利于延长路面使用寿命、减小路面截面厚度。 (2)碾压混凝土路面。我国于20世纪80年代末从国外引进,收效较大,目前主要用于低速和重荷载道路、重型汽车停放场等的铺筑。 (3)钢纤维混凝土路面。钢纤维能提高路面强度和韧性,而且抗冲击、抗冻、抗裂等性能也大大提高,有利于延长路面使用寿命、减小路面截面厚度。 (4)接缝钢筋混凝土路面。该种路面的横向接缝的间距较常规混凝土路面大,可大大减少接缝数量,但造价较高。 1.2水泥混凝土路面结构特征 水泥混凝土路面具有良好的使用特性,具体说明如下: (1)刚度大。水泥混凝土具有较高的抗压、抗弯、抗拉和抗磨等力学强度。混凝土路面的抗弯强度达4.0MPa~5.5MPa,抗压力强度达30MPa~40MPa,具有较高的承载力和扩散荷载能力。 (2)稳定性好。水泥混凝土路面的水稳定性好、热稳定性好,特别是其强度能随时间而增长,因而,水泥混凝土路面用于气倏条件急剧变化地区时,不易出现沥青路面的某些稳定性不足的损坏。 (3)耐久性好。由于水泥混凝土路面的强度和稳定性好,无需很多的养护和维修,使用耐久。 (4)抗侵蚀能力强。水泥混凝土对油和大多化学物质不敏感,具有较强的抗侵蚀能力。 (5)养护费用少。在正常设计和施工养护的条件小,水泥混凝土路面的养护工作量和养护费用仅约为沥青路面的1/3~1/4.当然,水泥混凝土路面也存在一些不足之处,具体说明如下: ①筑初期投资大; ②水泥和水的用量大; ③水泥混凝土路面接缝是水泥混凝土路面的薄弱点,一方面增加了施工的复杂性,另一方面在施工和养护不当时易于导致错台和断裂等操作的出现,影响路面平整度; ④修筑时养生时间长(14~21天); ⑤修补困难。水泥混凝土路面的不足之处需要通过良好的施工工艺、合理的管理措施以及高效的资金利用率来逐步解决,而其具有的显著特点,能适应现代汽车运输载重量大、速度高且密度大的要求,决定了水泥混凝土路面具有良好的应用前景。 2、水泥混凝土路面的施工技术 2.1施工前准备 (1)材料准备。 在施工前按设计要求分批备好所需要的各种材料,并按规范要求进行送样试验,满足要求后方可使用。 (2)基层检验。 检查基层的宽度、路拱与标高、表面平整度、厚度和压实度等是否符合规范要求,如有不符之处,应予整修。 2.2测量放样和安设模板

相关文档