文档库 最新最全的文档下载
当前位置:文档库 › 第4章 电路的网络拓扑分析方法

第4章 电路的网络拓扑分析方法

电力系统动态潮流计算及网络拓扑分析

分 类 号: 单位代码: 10422 密 级: 学 号: 200413208 硕 士 学 位 论 文 论文题目:电力系统动态潮流计算及网络拓扑分析 作者姓名 张国衡 专业 电路与系统 指导教师姓名 专业技术职务 王良 副教授 2007 年 5 月 15 日 TM734

目录 摘要 (1) Abstract (2) 第1章绪论 (3) 1.1 课题背景 (3) 1.2 潮流计算的基本要求和要点 (3) 1.3 潮流计算程序的发展 (4) 1.4 动态潮流算法的提出 (5) 第2章潮流计算的数学模型 (6) 2.1 节点网络方程式 (6) 2.2 电力网络方程的求解方法 (8) 2.3 潮流计算的定解条件 (11) 第3章P-Q分解法的基本潮流算法 (13) 3.1 牛顿—拉夫逊法的基本原理 (13) 3.2 极坐标下的牛顿-拉夫逊法潮流计算 (15) 3.3 P-Q分解法的原理 (18) 3.4 P-Q分解法的特点 (20) 3.5 P-Q分解法的潮流计算步骤 (21) 第4章基于电网频率计算的动态潮流 (22) 4.1电力系统的频率特性和一次调频 (23) 4.2频率计算 (27) 4.3微分方程的求解 (28) 4.4频率计算和潮流计算的联合 (30) I

第5章基于面向对象的动态潮流程序 (32) 5.1 面向对象的编程思想 (32) 5.2 对象模型的建立 (32) 5.3 类的处理和实现 (34) 5.4 生成应用程序 (40) 5.5 算例分析 (42) 5.5 一次调频的手工算例 (46) 5.6 结论 (48) 第6章电力系统的网络拓扑分析 (49) 6.1 离线数据准备 (49) 6.2 网络拓扑分析 (50) 6.3 电网拓扑分析的例题 (53) 6.4 拓扑分析和潮流计算的接口 (56) 第7章动态潮流综合算例分析 (57) 7.1 程序流程图 (57) 7.2 Ⅰ型考题综合算例 (59) 7.3 华北电网综合算例 (63) 7.4结束语 (65) 参考文献 (66) 附录 (67) 致谢 (78) 攻读硕士学位期间发表的学术论文 (79) II

网络拓扑和电路的矩阵形式

第十五章网络拓扑和电路方程的矩阵形式 第一节网络的拓扑图 一、网络的图:1、拓扑图: 在电路的分析中,不管电路元件的性质差别,只注意连接方式即网络拓扑的问题。若将每一条支路用一条线段(线段的长短、曲直不限)来表示,就组成拓扑图。如图15-1-1(a)对应电路的拓扑图为(b)。图15-1-2(a)对应电路的拓扑图为(b)。图15-1-3(a)对应电路在低频下的拓扑图为(b)。 此拓扑图是连通图。 (b) 是互感 电路的 分离图。 (b)是在低频下的拓扑图,是分离图,包括自环(自回路)、悬支、孤立结点。

2、有向图:如果标以支路电压、电流的(关联)参考方向,即成有向图。 3、子图:如果图G1的所有结点和支路是图G的结点和支路,则G1是G的子图。子图可以有很多。 第二节树、割集 一、树: 1、定义:连通图G的树T是G的一个子图。(1)它是连同的。(2)包括G中的所有结点。(3)不包含任何回路。树是连接图中所有结点但不包含回路的最少的支路集合。同一拓扑图可以有不同的树。对于一个有n个结点的全连通图可以选择出n n-2种不同的树。 2、树支和连支:当树确定后,凡是图G的支路又属于T的,称为树支,其它是连支。树支数T=n-1;连支数L=b-(n-1)。 二、割集: 定义:对连通图来说,割集C是一组支路的集合,如果把C的全部支路移去,将使原来的连通图分成两个分离部分,但在C的全部支路中,只要少移去一条支路,剩下的拓扑图仍是连通的。因此割集是把连通图分成两个分离部分的最少支路集合。 三、独立回路组的确定: 可以通过树确定一组独立回路,称为单连支回路组。如图15-2-1。 选择支路1、2、3、7为树支,4、5、6、 8为连支,则单连支回路组为: {1、2、4},{2、3、5},{2、3、6、7}, {1、3、7、8}。 又称为单连支回路组。 四、独立割集组的确定: 可以通过树确定一组独立割集,称为单树支割集组。如图15-2-2。 选择支路1、2、3、7为树支,4、5、 6、8为连支,则单树支割集组为: {1、4、8},{2、4、5、6},{3、5、6、 8},{6、7、8}。 又称为单树支割集组。 第三节关联矩阵、回路矩阵、

电力系统网络拓扑结构识别

学院 毕业设计(论文)题目:电力系统网络拓扑结构识别 学生姓名:学号: 学部(系):机械与电气工程学部 专业年级:电气工程及其自动化 指导教师:职称或学位:教授

目录 摘要 (3) ABSTRACT (4) 一绪论 (6) 1.1课题背景及意义 (6) 1.2研究现状 (6) 1.3本论文研究的主要工作 (7) 二电力系统网络拓扑结构 (7) 2.1电网拓扑模型 (7) 2.2拓扑模型的表达 (9) 2.3广义乘法与广义加法 (10) 2.4拓扑的传递性质 (11) 三矩阵方法在电力系统网络拓扑的应用 (13) 3.1网络拓扑的基本概念 (13) 3.1.1规定 (13) 3.1.2定义 (14) 3.1.3连通域的分离 (14) 3.2电网元件的等值方法 (15) 3.2.1厂站级两络拓扑 (15) 3.2.2元件级网络拓扑 (16) 3.3矩阵方法与传统方法的比较 (16) 四基于关联矩阵的网络拓扑结构识别方法研究 (17) 4.1关联矩阵 (17) 4.1.1算法 (17) 4.1.2定义 (17) 4.1.3算法基础 (18)

4.2拓扑识别 (19) 4.3主接线拓扑辨识原理 (20) 4.4算法的简化与加速 (24) 4.5流程图 (25) 4.5.1算法流程图 (25) 4.5.2节点编号的优化 (26) 4.5.3消去中间节点和开关支路 (26) 4.5.4算法的实现 (27) 4.6分布式拓扑辨识法 (27) 4.7举例和扩展 (28) 五全文总结 (29) 参考文献 (30) 致 (31) 摘要 电力系统拓扑分析是电力能量流(生产、传输、使用)流动过程中,对用于转换、保护、控制这一过程的元件(在电力系统分析中认为阻抗近似为0的元件)状态的分析,目的是形成便于电网分析与计算的模型,它界于EMS底层和高层之间。就调度自动化而言,底层信息(如SCADA)是拓扑分析的基础,高层应用(如状态估计、安全调度等[1])是拓扑分析的目的。可见,电力系统在实时运行中,这些元件的状态变化决定了运行方式的变化。如何依据厂站实时信息,快速、准确地跟踪这些变化,是实现电力系统调度自动化过程中基础而关键的工作[2]。拓扑分析在电力系统调度自动化中如此重要的地位,至少应该作到如下几点。 (1)拓扑分析的正确性:对任何情形下的运行方式,由元件状态的状况,针对各种电气接线关系,如单、双母线接线及旁路母线、3/2接线、角型接线等,均能

几种网络拓扑结构及对比

局域网的实验一 内容:几种网络拓扑结构及对比 1星型 2树型 3总线型 4环型 计算机网络的最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。计算机网络的拓扑结构是把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构:分为逻辑拓扑和物理拓扑结构这里讲物理拓扑结构。总线型拓扑:是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但是它的缺点是所有的PC不得不共享线缆,优点是不会因为一条线路发生故障而使整个网络瘫痪。环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点是布局灵活但是故障检测较为复杂,PC环不会影响全局。星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星型拓扑可以看成一层的树型结构不需要多层PC的访问权争用。星型拓扑结构在网络布线中较为常见。 编辑本段计算机网络拓扑 计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。最基本的网络拓扑结构有:环形拓扑、星形拓扑、总线拓扑三个。 1. 总线拓扑结构 是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。拓扑结构 优点:结构简单、布线容易、可靠性较高,易于扩充,节点的故障不会殃及系统,是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。另外,由于信道共享,连接的节点

互联网拓扑结构及其绘制

网络拓扑结构及其绘制 教学内容:网络拓扑结构及其绘制 一、教学目标 1. 能使用VISIO软件进行网络拓扑结构的绘制 2. 能判断小型局域网的网络拓扑结构 3. 能根据网络拓扑结构特点和组网条件进行网络结构的选型 二、学习内容分析 1.本节的作用和地位 计算机网络拓扑结构是计算机网络学习的基础,也是学习的重点和难点内容之一。 2.本节主要内容 网络拓扑是指网络中各个端点相互连接的方法和形式。网络拓扑结构反映了组网的一种几何形式。局域网的拓扑结构主要有总线型、星型、环型以及混合型拓扑结构。本课首先通过设定特殊的任务情境引发学生的学习兴趣和对于任务的思考。通过设计实际的拓扑结构图,促使学生应用知识。通过“实地考察”进一步激发其感知,加深对计算机网络拓扑结构的感性认知。 3.重点难点分析 教学重点:计算机网络几种拓扑结构概念及其各自优缺点、应用比较。 教学难点:根据实际情况选择计算机网络拓扑结构。 三、学情分析 在开始本门课程学习之前,学生已经对网络技术有所应用,并初步了解关于计算机网络的基本知识,但是缺乏系统的学习过程,对于应用中碰到的很多问题存在疑惑。同时在整个社会大环境下,网络应用带来的方便性以及网络技术的神秘性对学生有着非常大的吸引力,学生对网络技术具有天生的兴趣,充分培育和利用好学生的这些兴趣,将使教学更轻松。 学生初次接触拓扑概念,并且这一概念本身比较抽象,不容易理解,因此拓扑结构这一内容的学习对于学生来说存在一定的难度。因此,首先要解决的问题是如何使学生更好理解这一概念。针对这一问题,可以采用日常生活中最常见的

交通地图进行类比教学。拓扑概念建立起来之后,网络的拓扑结构就比较好理解。本课设计了一个课堂任务,要求学生画出一个校园网络拓扑结构图,对于怎样去表达网络的拓扑结构,要给学生以适当的引导,这里可以适当的演示一些简单的网络拓扑效果图,以便学生轻松上手。 四、教学方法 本节课通过校园网络的实地考察和任务驱动(网络拓扑图的制作)教学方式,促进实践与理论的整合,培养学生探究、解决问题的兴趣和能力。 通过小分组的教学组织,降低个体学习的难度,对于技术水平较高的同学,教师要鼓励其在分组内或分组之间充分发挥起技术应用特长,带动技术水平相对较低的同学,将学生的个体差异转变为教学资源,让学生在参与合作中互相学习并发挥自己的优势和特长,各有所得。 五、教学过程

搜索法电力系统网络拓扑算法设计(申波)

大连海事大学 毕 业 论 文 二○一〇年六月 ┊┊┊┊┊┊┊装┊┊┊┊┊┊┊订┊┊┊┊┊┊┊线┊┊┊┊┊┊┊

搜索法电力系统网络拓扑算法设计 专业班级:06港电一班 姓名:申波 指导教师:姚玉斌 轮机工程学院

摘要 网络拓扑分析是能量管理系统和配电管理系统的重要组成部分,对其研究具有重要的理论价值和应用价值。它是能量管理系统和配电管理系统中其它高级应用软件的基础,作为一个公用的基础模块,其可靠性和快速性直接影响能量管理系统和配电管理系统的性能。 本文介绍了网络拓扑分析中常用的三种方法:矩阵法,搜索法和方程就求法。详细阐述了搜索法的特点,原理与算法设计。搜索法是目前网络拓扑分析中应用最广泛的拓扑分析方法之一。该方法是通过搜索节点的相邻节点的方法来进行网络拓扑分析的。拓扑分析是从某一个节点开始,搜索通过闭合开关和该节点连接在一起的节点,将他们划分为一条母线。电气岛分析是搜索通过支路连接在一起的母线,将这些母线以及连接在这些母线上的支路划分为一个电气岛。 搜索法根据搜索方法的不同,有深度优先搜索DFS(Depth First Search)和广度优先搜索BFS(Breadth First Search )。基于深度(或广度)优先搜索的方法是电力系统拓扑分析的基本算法。该算法对数据安排和结构设计合理,运算速度快,对大规模电网,此方法相对于其他两种算法速度优势更明显。

Abstract This article first has made the brief outline to the development of the electrical power system load flow computational method and to its research vital significance , then in has analyzed the power distribution network and in the electric transmission network structure difference foundationcin , in view of the electric transmission network ring-like structure characteristic , introduced briefly restraining performance good Newton abdicates the law and the PQ decoupled mothod .While in view of the distribution network radiation structure characteristic , as well as considered in the electrical power system voltage model , we have used the load flow computational method which is called back/forward sweep method . Back/forward sweep method request network the analysis topology must reflect the iterative variable the recursion computation order .Starts from the root node , first searches the traversal leg according to the breadth the order for the leg serial number .This serial number method has the systematic characteristic front , it can satisfy the request of back/forward sweep method , but its flaw lies in works as when network architecture change , the leg number must disrupt arranges , insufficiently nimble .But , for all this , back/forward sweep method still was one kind quite suitably in the distribution network load flow computation .Because this method principle quite is simple , and it does not need to form the node admittance matrix , and uses the line impedance rated output loss and the node voltage directly , the request digital computer memory quantity quite is also small , the restraining precision is also good . Then the article has done the detailed research to the distribution network analysis topology , and proposed the power distribution network algorithm design .Through showed to the example analysis, back/forward sweep method indeed is one fast simple practical good method which suits the distribution network. . Key word: distribution load flow , transmission load flow , back/forward sweep method

网络总体建设目标

第三章网络总体建设目标 3.1网络建设目标 本项目的目标是:“建立一个设计规范、功能完备、性能优良、安全可靠、有良好的扩展性与可用性并且具备可管理易维护的网络及系统平台,以高效率,高速度,低成本的方式提高公司员工的工作效率与执行效率”。搭建公司核心网络及服务器,以实现生产运营系统的运行, 各公司用户能够进行资源共享,并能够进行上网查资料,电子邮件,对外发布网站等等。按照“高效能、低成本”的要求,采用两层网络结构,按要求实现网络安全的需求。网络设备主要以核心交换区设备为主。要求计算机网络系统满足系统集成的网络平台需求,并考虑对设备投资保护,保证未来几年的系统扩展。组建一个高效、稳定、可靠、易管理、安全的企业网. 3.2网络及系统建设内容及要求 我们把整个网络分为内部交换网络设计、网络出口设计,网络安全设计三大部分: 对于内部交换网络我们采用分层设计。内部交换网络分成核心层和接入层两大部分。核心层作为整个网络系统的核心,其主要功能是高速、可靠的进行数据交换。为加速数据的快速转发,我们在核心层采用以太通道技术,增加网络带宽,提高数据转发效率。为提高网络链路的冗余性,采用HSRP技术做热备份,STP技术,保证链路的冗余性等。接入层主要提供最终用户接入网络的途径。主要进行vlan的划分等。 对于边界网络,网络的安全是一个需要考虑的重要因素,所以应部署相应的安全策略以防止黑客攻击,边界设备的冗余设计也是需要考虑的,防止单点故障。对于服务器,采用Raid5磁盘阵列,数据除第一次用完全备份后,以后每天做增量备份,备份的的服务器或设备单独放置其他全安地点。 3.3网络设计原则 作为一家优秀的系统集成商,向用户提供的不仅仅是设备,而是整套的技术与服务。我们始终坚持“高标准,高性能”的原则。在方案设计时,我们将严格遵循以下设计原则:高可靠性----网络系统的稳定性是应用系统正常运行的关键保证,在网络设计中选用高可靠性网络产品,合理设计网络结构,制定可靠地网络备份策略,保证网络具有故障自愈的能力,最大限制地支持各个系统的正常运行。 灵活性及可扩展性-----根据未来业务的增长和变化,网络可以平滑地扩展和升级,最

电源设计之拓扑结构

电源设计之拓扑结构 单端反激变换器 1、电路拓扑图 2、电路原理 其变压器T1起隔离和传递储存能量的作用,即在开关管Q开通时Np 储存能量,开关管Q关断时Np向Ns释放能量。在输出端要加由电感器Lo 和两Co电容组成一个低通滤波器,变压器初级需有Cr、Rr和Dr组成的RCD漏感尖峰吸收电路。输出回路需有一个整流二极管D1。由于其变压器使用有气隙的磁芯,故其铜损较大,变压器温相对较高。并且其输出的纹波电压比较大。但其优点就是电路结构简单,适用于200W以下的电源且多路输出交调特性相对较好。 3、变压器计算 单端反激式变压器设计的方法较多,但对于反激式设计来说最难的也就是变压器的设计和调整。一般须视具体工作状态而定,这里我结合自己的调试经验介绍一种快捷的近似计算方法。反激变换器可工作于电流连续模式(CCM)和电流断续模式(DCM),同样输出功率时,工作于电流断续模式具有较大的峰值电流,此时开关晶体管、整流二极管、变压器和电容上损耗会增加,所以一般效率较低,工作于电流连续模式下,效率较高,但输出二极管反向恢复时易引起振荡和噪声;另外,工作于电流断续模式时,由于变压器电感量较小,体积可以做得小一些,而工作于电流连续模式,变压器体积一般会较大。变压器参数的选取应结合整个电路设计和实际应用情况,在最初的设计中,为取得比较适中的性能,可考虑使电路工作于电流临界连续状态。

反激式变压器的设计可分为以下几个步骤: a、初选磁芯型号。 b、确定初级电感量。 c、确定初级峰值电流。 d、确定初级线圈匝数和气隙。 e、计算并调整初、次级匝数。 f、计算并确定导线线径 g、校核窗口面积和最大磁感性强度 ★ 初选磁芯型号 反激变压器的体积主要决定于传递功率的大小,可依据经验或磁芯厂家手册中提供的速选图表,初选一磁芯型号代入以后的步骤进行计算。 ★ 确定初级电感量 若考虑低端满载时,电路工作于电流临界连续状态,此时初级电感量计算公式如下: L1=(Vinmin×Dmax)∧2/(2×f×Po) (Vinmin为输入电压最小值,Dmax为设定的最大占空比,f为开关频率,P0为输出功率。)增大L1取值时,电路开始工作于电流连续模式,原边电感量的选择可在L1计算值基础上,视具体情况作调整。 ★ 确定初级峰值电流 设计时仍应考虑低端满载的情况。 电路工作于电流不连续或临界连续时,初级峰值电流 I1max=2×Po/(Vinmin×h×Dmax)(h为预测效率值)  电路工作于电流连续模式时,初级峰值电流: I1max=2×Po/(Vinmin×h×Dmax)+(2×Vinmin×T×Dmax)/L1 ★ 确定初级峰值电流确定初级线圈匝数和气隙 首先作出两点假设: a、由于磁芯开气隙后剩磁Br减小很多,认为Br=0。 b、 由于气隙磁阻远大于磁路其他部分磁阻,认为磁势全部降于气

网络拓扑图

网络拓扑图 图1 数据网络拓扑结构图 本网络模拟一个实际的校园网络,包括教学网、行政网、网络中心等几个部分。其中,虚线框内部分由组委会提供,不需要参赛选手进行配置。RTA 的Fa0/0使用子接口,其中有一个子接口和ISP在一个VLAN,另外一个和RTB在一个VLAN。校内的主机全部使用私有地址,通过在出口路由器上使用地址转换技术访问公网。请根据以上要求在网络设备上进行实际操作,完成网络搭建、IP地址规划,路由协议、网络安全与冗余等配置任务,并进行网络维护和排错。

任务要求 1、网络搭建 在上述网络拓扑图中:RTA的Fa0/0连接到交换机SW1的接口Fa0/1;RTB 的Fa0/0连接交换机SW1的Fa0/2;RTC的Fa0/1连接交换机SW1的Fa0/3;SW1和SW2之间使用各自的Fa0/24连接。根据图1的网络拓扑及上述要求,完成网络搭建工作。 另外,每一组提供两台计算机,为后面的数据配置和网络测试提供终端,参赛选手可以根据实际需要,与相应的网络设备连接。 2、IP地址规划 校园网内用户使用172.16.0.0/22地址段,其中各个子网内主机数如下:教学网:360台 行政网:150台 网络中心:100台 在满足整个网络需求的情况下,使用VLSM进行地址划分,行政网两个冗余网关分别使用该网段的第一个和第二个可用IP地址,其余子网网关均使用该网段第一个可用IP地址,并要求对所有网络设备可以进行远程管理。 网络中心安装有一个FTP和一个WWW服务器,为校内用户及公网用户提供FTP下载服务和HTTP访问服务,其IP地址分别为其网段内可用的最大和第二大IP地址。 表1:网络地址规划表

电力系统分析论文

电力系统分析论文 电力系统网络拓扑分析算法概述 [摘要]随着电网状态估计技术的发展和使用计算机进行实时监控日益得到的广泛应用,无论是实时监控、在线潮流计算、状态估计都离不开对电力接线图的结构进行分析。本文重点概述了计算出网络的实时结构拓扑所采用的算法。 [关键词]算法搜索关联矩阵OSPF协议分电压等级有色Petri法 引言 拓扑结构不仅是潮流分析、状态估计等高级应用的基础, 它是电力系统网络分析其他应用软件的基础,它的任务是根据电力网络中开关的开断状况,通过一定的算法计算出网络的实时结构拓扑,进而进行更高级运算以了解电力网络的运行状态和安全稳定性,或者得到拓扑数据供电力系统应用程序使用。同时拓扑分析的效果直接影响着工作人员进行故障估计、诊断和其他应用程序的使用效果。 一、深度或广度搜索法 早期的网络拓扑分析是利用堆栈技术进行搜索。一般是将拓扑结构表述为链表关系,用图论中的搜索技术,如深度优先搜索法和广度优先搜索法分析节点的连通性。这种方法一般需要建立反映拓扑结构

的链表,通过处理链表实现拓扑分析,然后以搜索回溯的框架, 利用堆栈记录划分。由于其基本算法采用“堆栈”原理——先进后出的搜索逻辑,程序不可避免采用递归的实现形式,因此编程和维护较复杂,效率较低。况且当应用于实时网络分析时, 在运算时间上不能满足要求。 二、面向对象(OO)的启发式搜索算法 由于在电网的实际运行过程中,状态频繁发生变化的开关占少数,因此将追踪技术引入拓扑分析中,仅在开关状态发生改变时进行局部拓扑分析,可以减少拓扑分析的计算量。在完成网络的初始拓扑分析并构筑了电网的结点树之后,当电网发生开关变位事件时,根据开关变位只造成局都电网拓扑发生变化的特点,采用启发式搜索算法进行电网结点树拓扑的跟踪。针对不同的变位事件,分开关“开”和“合”两种情况进行分析。实现拓扑跟踪OO模型的启发式拓扑分析方法,利用OO技术可扩展拓扑算法的适用范围。 三、基于关联矩阵的集合划分算法 文献[4]是以SVG图形模型为基础,再结合CIM 和XML的特点,采用改进的集合划分方法---基于关联矩阵的网络拓扑分析方法,将拓扑分析与代数分析有机结合,这样可进一步提高计算效率。在改进方法中,先将连接点都新建成各个独立的拓扑点,其中连接点中包含了与拓扑点的关联信息,这样在归并拓扑点时就避免了遍历比较;在拓

智能电网与低压电网网络拓扑结构

智能电网与低压电网网络拓扑结构 随着国际金融危机、与全球能源危机的深化,二氧化碳减排与低碳经济的倡导,各国不约而同地选择了智能电网作为经济发展的引擎。它导致了全球范围的智能电网热潮。 我国根据自己电网的特殊性,提出坚强智能电网规划。其内涵包括特高压输电网架、数字化变电站、配网调度自动化系统,以及用电营业管理与用户互动系统。 而就目前我国的现实条件而言,只有特高压输电网络与用电营业管理系统具备立即实施的条件。数字化变电站与配网调度自动化,由于标准还很不完善,暂时还不具备全面实施的条件。 一.用电营业管理数据采集系统与低压电网网络拓扑分析: 鉴于用电营业管理与用户互动系统,涉及的产业链最长,现实需要的产品数量最大,可以容纳的企业也最多,它也成了企业追捧的热点、投资商的最爱! 但也就是这个系统,从现场反馈的数据分析,存在重大技术障碍。主要体现在系统的低压载波信道的通信可靠性上。 考虑到低压电网资产属于供电部门所有,国家投资形成的资产无投入或低投入增值,具有太大的诱惑;加上自家信道不用支付长年累月日常通信的运行费用,国网首选低压载波信道作为用电营业数据采集与用户互动系统的下段信道。 但是这条信道也存在它自身的弱点:由于我国对低压电器上网监控不严,电网载波通信背景噪声很大;而电网的优越的50hz频率

响应特性与极差的高频响应特性,面对剧烈的电网负载变化,使得电网产生极高的高频衰减与难以克服的衰减动态范围;这都导致了用电营业管理数据采集系统下段信道通信可靠性达不到现场适用要求。 根据目前国际上在低压电网上允许使用的两个载波通信频段与通信技术发展现状,目前低压载波通信单纯依靠物理层通信,无法保证系统数据采集的可靠性;这也为我国低压载波集抄系统将近二十年的推广实践所证实。现在国内外在低压载波通信领域,几乎毫无例外地都在发展中继组网技术。也就是关联中继技术。借助中继通信,牺牲部分数据采集速度,来提高数据采集的可靠性。 但是这种解决方案,具有一个前提,这就是电能表之间的关联性。当系统出现“孤岛”现象时,“孤岛”中的电能表与其他电能表之间丧失了通信上相关性,中继手段就完全无能为力了。要解决“孤岛”现象的唯一手段,就是提高载波通信芯片物理层通信能力,建立电能表之间的关联关系。这个要求,比单纯依靠物理层进行系统全覆盖,要求低一些。它也说明系统的关联指标是与载波通信芯片物理层通信能力是相关的。 中继通信的关键是电能表之间的相关性! 就关联中继技术而言,从中继的选择性分类,可以分为非选择性的自动中继(我们可以把它称作盲中继)与选择性自动中继两种。 非选择性的自动中继的典型方案,有lonworks总线技术,及其国内的动态组网技术。它主要依靠“全网侦听、冲突避让”,实现中

几种网络拓扑结构及对比教学内容

几种网络拓扑结构及 对比

局域网的实验一 内容:几种网络拓扑结构及对比 1星型 2树型 3总线型 4环型 计算机网络的最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。计算机网络的拓扑结构是把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构:分为逻辑拓扑和物理拓扑结构这里讲物理拓扑结构。总线型拓扑:是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但是它的缺点是所有的PC不得不共享线缆,优点是不会因为一条线路发生故障而使整个网络瘫痪。环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点是布局灵活但是故障检测较为复杂,PC环不会影响全局。星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条

连接,这种结构需要大量的电缆,星型拓扑可以看成一层的树型结构不需要多层PC的访问权争用。星型拓扑结构在网络布线中较为常见。 编辑本段计算机网络拓扑 计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。最基本的网络拓扑结构有:环形拓扑、星形拓扑、总线拓扑三个。 1. 总线拓扑结构 是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。拓扑结构 优点:结构简单、布线容易、可靠性较高,易于扩充,节点的故障不会殃及系统,是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。另外,由于信道共享,连接的节点不宜过多,总线自身的故障可以导致系统的崩溃。最著名的总线拓扑结构是以太网(Ethernet)。 2. 星型拓扑结构 是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构。这种结构适用于局域网,特别是近年来连接的局域网大都采用这种连接方式。这种连接方式以双绞线或同轴电缆作连接线路。优点:结构简单、容易实现、便

电力系统网络拓扑结构分析及运行方式组合研究_

华中科技大学博士学位论文 6 母线综合阻抗计算时的网络拓扑分析算法 6.1 引言 随着电网规模日益扩大和复杂,在电力系统实际运行和管理中,一般采用了分区、分级的管理模式。220kV以上电网一般由省、网局调度管辖,110kV及以下电网由地区调度管辖,相应的继电保护也是分级整定管理。这种分区、分级的管理模式带来了同级电网以及上、下级电网之间的数据交换问题[171-172]。为了保证整个电网准确地进行继电保护整定计算,上下级或同级的两个电网之间需要彼此交换相邻边界母线上的等值网络参数。 在我国,110kV及以下地区电网往往采用闭环设计、开环运行的方式,因此其上一级电网给地区电网的等值交换参数一般表现为一个对地的等值支路,这个等值支路的阻抗称为母线综合阻抗(或母线总阻抗、母线等值阻抗)。母线综合阻抗的计算是电力系统继电保护部门最为常见的工作任务之一,其计算准确性是保证整个电网继电保护整定计算准确程度、防止下级电网故障时上级电网保护越级误动作的重要保障。 为了适应可能的运行方式变化,母线综合阻抗的计算需要进行运行方式组合,一般方法是对待计算母线上的线路轮流进行开断。由于电网中可能存在辐射线路、辐射变压器等辐射状网络[173],计算辐射支路上终端母线的综合阻抗时,必须首先通过拓扑搜索分析,确定其对应的系统侧轮断母线。搜索路径上的母线可能具有多个分支,这种多分支结构增加了辐射支路判断以及回溯的复杂性。基于等值网络参数描述的节点之间的电气物理路径分析,本章提出了一种母线综合阻抗计算时的网络拓扑分析算法。该算法结合物理网络拓扑和几何网络拓扑,通过节点之间的电气物理路径判断,剔除了无效的几何路径搜索方向,保证搜索方向始终指向系统侧,从而有效避免了辐射分岔支路的深度搜索以及回溯的复杂性。研究和算例证明本章算法能够准确、快速地判断终端母线并搜索其对应的系统侧轮断母线。基于本算法设计的母线综合阻抗计算程序在东北、湖北等省、区域电网的整定计算软件及实际工程计算中得到了成功应用和验证。

计算机网络毕业论文计算机网络拓扑结构分析

计算机网络拓扑结构分析 计算机网络的拓扑结构分析是指从逻辑上抽象出网上计算机、网络设备以及传输媒介所构成的线与节点间的关系加以研究,下 面是搜集整理的一篇探究计算机网络拓扑结构的论文范文,欢迎 阅读参考。 摘要:通过对计算机网络拓扑结构的概念、分类、特点的介绍,在分析其复杂网络结构的基础上,探讨出计算机网络拓扑结 构模型的有效构建,对其在实际应用中的冗余设计进行了研究, 提高了网络系统设计的可靠性、安全性。 关键词:计算机网络;拓扑结构;网络协议;冗余设计 1、计算机网络拓扑结构的概念和分类 计算机网络的拓扑结构是指网上计算机或网络设备与传输媒 介所构成的线与节点的物理构成模式。计算机网络的节点一般有 两大类:一是交换和转换网络信息的转接节点,主要有:终端控 制器、集线器、交换机等;二是各访问节点,主要是终端和计算机 主机等。其中线主要是指计算机网络中的传输媒介,其有有形的,也有无形的,有形的叫“有线”,无形的叫“无线”。根据节点 和线的连接形式,计算机网络拓扑结构主要分为:总线型、星型、树型、环型、网状型、全互联型拓扑结构。如图1所示。

总线型主要是由一条高速主干电缆也就是总线跟若干节点进 行连接而成的网络形式。此网络结构的主要优点在于其灵活简单,容易构建,性能较好;缺点是总线故障将对整个网络产生影响,即 主干总线将决定着整个网络的命运。星型网络主要是通过中央节 点集线器跟周围各节点进行连接而构成的网络。此网络通信必须 通过中央节点方可实现。星型结构的优点在于其构网简便、结构 灵活,便于管理等;缺点是其中央节点负担较重,容易形成系统的“瓶颈”,线路的利用率也不高。树型拓扑是一种分级结构。在 树型结构的网络中,任意两个节点之间不产生回路,每条通路都 支持双向传输。这种结构的特点是扩充方便、灵活,成本低,易 推广,适合于分主次或分等级的层次型管理系统。环型拓扑结构 主要是通过各节点首尾的彼此连接从而形成一个闭合环型线路, 其信息的传送是单向的,每个节点需安装中继器,以接收、放大、发送信号。这种结构的优点是结构简单,建网容易,便于管理;其 缺点是当节点过多时,将影响传输效率,不利于扩充。网状型主 要用于广域网,由于节点之间有多条线路相连,所以网络的可靠 性较高。由于结构比较复杂,建设成本较高。 2、计算机网络拓扑的特点 随着网络技术的发展,计算机网络拓扑结构越来越呈现出一 种复杂性。近些年来对于计算机拓扑的研究,越来越趋向于计算 机拓扑节点度的幂律分布特点。这种分布在规模不同的网络拓扑 中表现出一定的稳定性,也就是指,在规模不同的计算机拓扑中,它们的节点度表现出一种幂律分布,即:P(k)=k-β。其中,β一般在2―3这个小范围内进行波动,k是指节点度,P(k)表示度为 k的节点出现的概率,即分布率。

电力系统分析报告..

山东交通学院 电力系统分析课程设计 报告书 院(部)别信息科学与电气工程学院 班级 学号 姓名 指导教师 时间 2014.06.9-2013.06.13

课程设计任务书 题目电力系统分析课程设计 学院信息科学与电气工程学院 专业电气工程及其自动化 班级 学生姓名 学号 6 月9 日至 6 月13 日共 1 周 指导教师(签字) 院长(签字) 2014 年 6 月13日

一、设计内容及要求 复杂网络牛顿—拉夫逊法潮流分析与计算的设计 电力系统潮流计算是电力系统中一项最基本的计算,设计内容为复杂网络潮流计算的计算机算法——牛顿-拉夫逊法。 首先,根据给定的电力系统简图,通过手算完成计算机算法的两次迭代过程,从而加深对牛顿-拉夫逊法的理解,有助于计算机编程的应用。 其次,利用计算机编程对电力系统稳态运行的各参数进行解析和计算;编程完成复杂网络的节点导纳矩阵的形成;电力系统支路改变、节点增减的程序变化;编程完成各元件的功率损耗、各段网络的电压损耗、各点电压、功率大小和方向的计算。 二、设计原始资料 给出一个4~6节点、环网、两电源和多引出的电力系统; 参数给定,可以选用直角坐标表示的牛拉公式计算,也可以选用极坐标表示的牛拉公式计算。 具体题目详见附录题单 三、设计完成后提交的文件和图表 1.计算说明书部分 设计报告和手算潮流的步骤及结果

2.图纸部分: 电气接线图及等值电路; 潮流计算的计算机算法,即程序;运算结果等以图片的形式附在设计报告中。 四、进程安排 第一天上午:选题,查资料,制定设计方案; 第一天下午——第三天下午:手算完成潮流计算的要求; 第四天上午——第五天上午:编程完成潮流计算,并对照手算结果,分析误差第五天下午:答辩,交设计报告。 五、主要参考资料 《电力系统分析(第三版)》于永源主编,中国电力出版社,2007年 《电力系统分析》,何仰赞温增银编著,华中科技大学出版社,2002年版;《电力系统分析》,韩桢祥主编,浙江大学出版社,2001年版; 《电力系统稳态分析》,陈珩编,水利电力出版社;

基于矩阵论的电路网络拓扑分析

基于矩阵论的电路网络拓扑分析 【摘 要】电路分析是电子专业领域人员必需的一项能力。该知识具有概念性强、电路分析繁杂、求解计算量大的特点。为了缓解此问题,因此引入了矩阵理论,并结合 MATLAB 软件对矩阵分析的良好支持,以期达到优化分析电路的目的。 本文就矩阵理论中的网络拓扑知识展开,介绍了网络拓扑在电路中的应用,并以给予 MATLAB 求解。 【关键词】电路分析;矩阵法;网络拓扑 0 前言 矩阵是线性代数里的一个重要概念,在电路网络分析、工程结构分析等方面,矩阵都是一个强自力的工具,因为它能使较复杂的计算过程简化成一系列的四则运算,便于用计算机的算法语言或程序进行描述和解答,当运行这些程序时,能迅速地得到较准确的计算结果。 电子领域基础知识电路分析中, 经过理论分析后形成线性方程组,求未知解是电路分析的一项基本技能。而求解线性方程组使用矩阵理论,优势十分明显。 例如某电路网孔法求网孔电流 a i 、b i 、c i ,其中电阻、供电电压为已知。 网孔方程为: ()()()?????=+++-=-+++-=++0i 0i u i -i c 765555433b 3a 321R R R i R i R R R R i R R R R R b c b a s (1) 上述方程(1)在求解过程中相对简单,但如果未知量继续增多,则利用初等代数方法求解线性方程组就比较困难,相当繁杂。借助矩阵理论,可将方程式 (1)变换为如下矩阵形式: s c b a u i i R R R R R R R R R R R R ??????????=????????????????????++--++--++001R 1i 00 765555433332 矩阵形式方程(2)可表述为 s u B AI =。(A 表示方程组系数矩阵;I 表示网孔电流列向量 ;s Bu 表示网孔电源列向量。) 1 网络拓扑性质的矩阵表示 当电路结构比较简单时,直接利用 KCL 、KVL 或网络的各种方法列出必要的方程并不十分困难,但当电路结构比较复杂时,前述方法就显得很不适应,特别是如何在计算机上把输入的数据自动地转换为所需要的方程,就需要利用网络拓扑和矩阵代数的概念去完成这一任务。 网络图论又称为网络拓扑学,适应用图的理论,对电路的结构及其连接性质进行分析和研究。 在网络分析中,列写网络方程的主要问题是如何正确地选择其独立变量,“网络图论 ” 的基本概念为选取这种独立变量提供了理论依据。

电力系统网络拓扑结构分析_(3)

华中科技大学博士学位论文 1 绪论 1.1 问题的提出 根据系统学原理,结构和功能是任何一个系统都存在的两种属性,系统的结构和功能相互联系、相互影响。结构决定功能,规定、制约着功能的性质和水平,限制着功能的范围和大小;功能是结构的外在表现,结构的改变往往伴随着功能的改变[1]。例如在力学中,用同样三根木条,当用钉子把它们分别钉为字母“N”、“H”和“A”的形状时,其稳定性有很大差别。同样地,电网的拓扑结构将对电力系统的稳定性产生直接影响[2-4],合理的电网结构能为其本身的可靠性提供物质基础,减少电网发生重大事故的可能性,或者能快速灵活地从事故状态恢复到正常状态。因此,分析和研究电力系统网络拓扑结构,对于理解、掌握电力系统静态和动态行为[5]、保障电力系统安全稳定运行具有重要的意义。 电力系统是由发电机、变电站、输电线及负荷等电力元件按一定形式联结成的总体,其电气运行性能受到两个约束,即元件特性的约束和联结关系的约束(拓扑约束)。当不考虑网络中元件的特性,即各支路的物理参数,网络可以抽象成一些支路及由它们联结成的节点组成的几何图形。综合考虑电力系统的元件特性约束和联结关系约束,电网实际上包含了两类拓扑结构:几何拓扑和物理拓扑。几何拓扑反映了电网设备的几何连接状态,物理拓扑则体现了电网元件物理上的电气耦合关系。电力系统网络拓扑结构分析一般分为以下两个方面的内容: ①电力系统几何网络拓扑结构的建立。根据开关状态把各种设备连接的电网表示成能用于电力系统分析计算的节点—支路几何连接关系模型,并且识别相互连通孤立的子系统,是电力系统物理分析、计算和研究的基础。 ②研究和利用电网拓扑结构,挖掘拓扑结构和物理功能之间的内在联系,从而方便和简化电力系统分析和控制。网络拓扑结构是电力系统分析和控制的宝贵资源,电力系统中的很多问题与网络拓扑结构有着紧密的联系,如链式狭长电网结构与暂态稳定问题密切相关[6];网络拓扑的结构特点可以为许多问题的处理和实际应用提供便利,如无功电压的分层分区控制[7-8];利用网络拓扑结构特点也可以有效提高电力系统

相关文档
相关文档 最新文档