文档库 最新最全的文档下载
当前位置:文档库 › 钢筋混凝土梁设计的ANSYS软件分析

钢筋混凝土梁设计的ANSYS软件分析

钢筋混凝土梁设计的ANSYS软件分析
钢筋混凝土梁设计的ANSYS软件分析

钢筋混凝土梁设计的ANSY S 软件分析

彭兵田,刘立时,肖 洁

(广东省航盛工程有限公司,广东 广州 510230)

收稿日期:2002-04-30

作者简介:彭兵田(1974-),男,湖南双峰人,助理工程师,从事路桥施工管理。

摘 要:本文通过ANSY S 软件对简支梁的受力和应变情况作了全面分析,提出将梁体看作理想弹塑性材料进行计算和设计的优点。同时也指出了利用ANSY S 软件对简支梁分析时的不足。为钢筋混凝土梁的设计提供了另一种思路。

关键词:ANSY S;钢筋混凝土梁;理想弹塑性

中图分类号:U416.02 文献标识码:B 文章编号:1002-4972(2002)06-0012-02

ANSYS Softw are Analysis of R einforced Concrete B eam Design

PE NG Bing -tian ,LI U Li -shi ,XI AO Jie

(G uangdong Provincial Hangsheng Engineering C o.,Ltd.,G uangzhou 510230,China )

Abstract :Through a com prehensive analysis of the stress and strain of sim ple beam by ANSY S s oftware ,it

puts forward the advantages in calculation and design when beams are considered as ideal elastic and plastic materials.Meanwhile ,

the inadequateness of ANSY S s oftware for sim ple beam analysis is als o pointed out.Another idea in rein 2forced concrete beam design is provided.

K ey w ords :ANSY S ;rein forced concrete beam ;ideal elasticity and plasticity

目前,在我国的混凝土规范中,钢筋混凝土梁的设计分正截面抗弯和斜截面抗剪分别进行的。正截面和斜截面承载力公式也是分别由各自试验提出。在正截面试验中,为防止发生斜截面破坏,保证试件发生典型的正截面破坏,通常在梁中配置过多的箍筋,以致破坏时虽然纵向钢筋屈服,但大多数箍筋没有屈服。在斜截面试验中,为防止发生正截面破坏,保证试件发生典型的斜截面破坏,常在梁中配置超量纵向钢筋。导致试验破坏时通过临界斜裂缝的大多数,甚至全部箍筋屈服,但其纵向钢筋没有屈服,这与正截面设计纵向钢筋屈服的假设不符。

根据试验得出正截面承载力计算的平面假定,假定钢筋是理想弹性材料,混凝土的应力应变曲线为斜线和水平线相结合,且不考虑混凝土的抗拉强度。斜截面抗剪则是在试验的基础上推导出的经验公式。从试验中可看出纵向钢筋数量对抗剪承载力影响较小。大量试验和

理论分析已证明,将钢筋和混凝土假设成理想弹塑性材料进行设计是可行的。这样既可简化理论,又能满足工程计算的精度要求。下面从ANSY S 分析的角度加以说明。理想弹塑性材料的应力—应变关系如图1。

图1 应力—应变关系图

在利用ANSY S 进行钢筋混凝土梁的设计时既可建立平面模型,也可建立实体模型。为真实再现钢筋混凝土梁的受力和应变过程,一般建立实体模型。现举例说明。

利用ANSY S 建立实体模型,在简单加载和简单约束

?

21?

情况下,进行分析。采用C20钢筋混凝土简支梁,其截面尺寸为200mm ×450mm ,承受2个距离梁端1300mm 的集中荷载F =70.2kN 作用。纵向受力钢筋,箍筋和架立钢筋均采用Ⅰ级钢,根据《规范》设计,取混凝土的轴心抗压强度f c =10MPa ,抗拉强度f t =1.1MPa ,弹性模量

Ec =25.5G Pa ,泊桑比r =0.15,纵向受力钢筋抗拉强度fr =310MPa ,弹性模量Ec =200G Pa ,箍筋和架立箍筋抗拉

强度fr =210MPa ,弹性模量Ec =210G Pa 。

在模型中选s olid45作为三维实体模型,s olid45定义有8个节点,每个节点上有3个自由度,它能再现单元的弹塑性、蠕变、应力应变等情况。

在经过网格划分、加载、施加边界约束后求解(图

2),结果如图3、图4所示

图2 

划分网格加载施加约束后的梁

图3 梁体剪应力分布示意图

图4 梁长度方向的正应力分布图

根据图3、4所示的剪应力和正应力图,可以得出纵向钢筋的面积为81216mm 2、箍筋面积为01282mm 。该结果较一般方法得出的结果钢筋用量要少,但是仍有一定的安全系数。一般方法的结果为:纵向钢筋的面积为82418mm 2、箍筋面积为01306mm 。

此外ANSY S 分析表明,对于配箍量一定的钢筋混凝土梁,如纵向钢筋配置较多,破坏时,纵向钢筋不发生屈服。而随着纵向钢筋量的减少,纵筋受力减少较小。混凝土受压区高度变化不大,临界斜裂缝的倾角变化很小。通过临界斜裂缝的箍筋能够绝大部分、甚至全部屈服,梁呈剪切破坏形式。纵向钢筋数量对抗剪承载力影响较小,破坏时纵向钢筋发生屈服,随着纵筋量的减少,纵筋内力按比例减小,其混凝土受压区高度显著减少,临界裂缝的倾角明显增大,而且通过斜裂缝的箍筋已不能够全部屈服,甚至不屈服。梁的抗剪能力急剧下降,梁呈弯曲破坏形式,箍筋数量对抗剪承载力影响较大。所以,设计时可以综合考虑纵筋量和箍筋量对梁的影响。

按目前《规范》中的公式进行设计时,纵向钢筋量由正截面承载力公式确定,箍筋量由斜截面承载力公式确定。当荷载超过规定以后,梁即发生弯曲破坏,且发生剪切破坏。这在实际上是不可能的,只能造成梁承载力的下降,在给定荷载下,当纵向钢筋较多、箍筋较少时,梁发

生剪切破坏。纵向钢筋较少,箍筋较多时,梁发生弯曲破坏。配筋在两者之间时,梁的破坏形式应介于弯曲和剪切之间。所以,对于给定荷载下钢筋混凝土梁的设计,配置的纵向钢筋量和箍筋量不是唯一的,而且两者相互影响。这可以进行统一设计,甚至根据某一标准(强剪弱剪、总用钢量少等)进行优化设计。

利用ANSY S 分析和设计时,忽略了钢筋的销栓作用,并假定梁体开裂前为理想弹塑性材料,开裂后的混凝土单元不再能够承受拉力。考虑到混凝土的实际受力性能,偏安全地认为混凝土单元开裂和受压屈服后,主应力方向不再改变。根据《规范》取混凝土的极限压应变为0.

0033。由于忽略钢筋的销栓作用,以及假设混凝土单元开

裂后,主应力方向不再改变。因此,以上的实体模型不能完全反映钢筋混凝土梁的实际抗剪能力。但是,ANSY S

分析在很大程度上仍反映出构件性能的变化规律。尤其在纵向钢筋屈服后,钢筋的销栓作用和混凝土开裂面上骨料的咬合作用对梁抗剪能力的影响会逐步减小,分析的结构更接近实际。

从以上ANSY S 分析可以看出,把钢筋混凝土梁假设成理想弹塑性材料进行设计是可行的。

?

31?

钢筋混凝土伸臂梁设计

钢筋混凝土伸臂梁设计 一.设计资料 某支承在砖墙上的混凝土伸臂梁,L1=6.5m ,伸臂长度L2=1.8m ,一类环境,安全等级为II 级,有楼板传来的荷载设计值P1=40kN/m ,P2=100kN/m ,混凝土等级为C25,纵筋采用HRB400,箍筋采用HPB300,设计并绘制配筋图。 二.梁的截面尺寸及内力计算 (1)截面尺寸选择。取高跨比h/l=1/10,则h=650mm ,按高宽比的一般规定,取b=250mm ,h/b=2.5。 初选h0=h-a0=650-65=585mm (按一排布置纵筋) (2)梁的荷载计算。梁的自重设计值(包括15mm 的粉刷层厚度) G=1.2gbh γ=1.2×25×0.25×0.65+1.2×17×0.015×2×0.65 =4.875+0.3978 =5.2728kN/m P1=40+5.47=45.27kN/m P2=100+5.47=105.27kN/m (3)绘制梁的弯矩图和剪力图 VA=1.0×1.0×120.89=120.89 VB 上=1.0×1.0×105.27×1.8=189.49 VB 下=1.0×1.0×(FB-VB 上)=173.37 Vmax=189.49 MD=2 12 1X P X F A - =67.289.120?-2 1 ×45.27×2.67 =161.41

三.配筋设计计算 (1)已知条件。混凝土C25,2C mm N 11.9f =,2y mm N 360f =,0.518b =ξ, 2yv mm N 270f =,截面尺寸b=250 h=650 (2)验算截面尺寸。610mm h h 0w == 4.0 2.34250585b h w 〈== 53.6946102509.1125.0bh 0.25f 0C =???= 满足抗剪要求。 (3)纵筋计算。纵筋计算见下表 计算内容 计算截面 跨中D 截面 支座B 截面 )/(m kN m d γ 193.69 292.13 2 0bh f m c d s γα= 0.17 0.264 s αξ211--= 0.19 0.313

基于ANSYS的钢筋混凝土梁的裂纹损伤分析

题目:基于ANSYS的钢筋混凝土梁的裂纹损伤分析 学院: 理学院 专业: 工程力学 学号: 200907152008 学生姓名: 张帅磊 指导教师: 李明 日期: 二〇一三年六月

摘要 钢筋混凝土结构在设计荷载作用下,在其受拉区出现裂缝是难以避免的,过大的裂缝不仅影响结构的安全性还影响结构的耐久性,必须通过配筋来限制裂缝开展宽度。ANSYS中的SOLID65是专门为分析混凝土结构定义的单元,可以显示结构的应力应变,还可以显示裂缝的分布情况,为钢筋混凝土梁的设计提供了理论依据。 本文主要使用有限元分析软件ANSYS对钢筋混凝土梁进行分析,通过选择适当的单元,简化建模过程,获得在位移荷载作用下,梁的变形数据,和裂纹分布同时。为钢筋混凝土梁在工程实际应用中提供适当的数据参考,以便更快捷地进行施工材料的选取,缩短工期。 关键字:钢筋混凝土梁;有限元分析;ANSYS;裂缝

Abstract Under design load, the reinforced concrete structures in the cracks in tensile area is difficult to avoid excessive cracks not only affects the safety of the structure also affect the durability of the structure, must through the reinforcement to limit the crack width in the ANSYS SOLID65 is defined specifically for analysis of reinforced concrete structure unit, can display the structure of the stress and strain, can also represent the distribution of cracks, provides a theoretical basis for the design of the reinforced concrete beam。 In this paper, we use finite element analysis software ansys analysis of reinforced concrete beams, by selecting the appropriate cell, simplify the modeling process, obtained under displacement load and deformation of the beam, and crack distribution for reinforced concrete beam at the same time to provide the appropriate data in the practical engineering application, in order to more quickly for the selection of construction materials, shorten the construction period Keywords:reinforced concrete beam;finite element analysis;ansys; crack

ansys梁分析实例

习题二 题一: 已知:如下图1.1所示,梁一端固定,自由端受弯矩M=105,截面参数见图1.2,材料弹性模量E=3X107,泊松比μ=0.3。 求:截面上的最大应力和最小应力δmax,δmin? 解:ansys分析得: 图1.1 图1.2

ELEM STREST2 STREST5 STRESB3 STRESB6 1 -700.00 -700.00 300.00 300.00 MINIMUM VALUES ELEM 1 1 1 1 VALUE -700.00 -700.00 300.00 300.00 MAXIMUM VALUES ELEM 1 1 1 1 VALUE -700.00 -700.00 300.00 300.00 由ansys的分析可得,应力最值分别发生在梁截面的上下部分,且各截面的同一水平高度应力相等。Δmax300,即为拉应力,发生于梁下表面;δmin=-700,为压应力,发生于梁上表面。

题二: 已知:如图2.1所示,梁两端受均布力q=104/12作用,梁的长度及截面尺寸见图2.1和图2.2,截面Iz=7892,A=50.65,材料弹性模量E=3X107,泊松比μ=0.3。 求:(1)梁中点的挠度 (2)截面上的最大应力 图2.1 图2.2 解:ansys分析

(1)NODE UY 1 -0.45616 2 -0.45616 3 0.0000 4 0.18246 5 0.0000 中点即第四节点,故中点的挠度为0.18246(2)梁的弯矩图如下,

可知最大应力发生在梁的中间段。 下面数据为各节点的应力大小, ELEM STRTOP2 STRTOP5 STRBOT3 STRBOT6 1 -0.68592E-11 11404. 0.68592E-11 -11404. 2 11404. 11404. -11404. -11404. 3 11404. 11404. -11404. -11404. 4 11404. -0.68592E-11 -11404. 0.68592E-11 由上面数据可得,最大应力为11404,发生于梁中间段的上表面。如有侵权请联系告知删除,感谢你们的配合!

钢筋混凝土梁的ansys分析

摘要 本文介绍ANSYS 模拟钢筋混凝土梁的过程,讨论了有限元模型的建立以及在 ANSYS 中的实现,给出了用分离式配筋方法对混凝土梁的分析的一般过程。并给出了详细的命令流过程。并在此基础上对混凝土梁进行了分析,讨论了在力的作用下混凝土梁的塑形变形和裂缝的发展过程。 关键词 Ansys 混凝土梁 分离式配筋 The analysis of mechanics of a reinforced concrete based on ANSYS Abstract This paper introduces ANSYS simulation of the reinforced concrete beam process, discusses the establishment of the finite element model and the realization, and gives the ANSYS reinforcement method with separate the analysis of concrete beams of the general process. And gives the detailed command flow process. Based on the analysis of concrete beams, and discussed the concrete beam under the action of forces of the body deformation and fracture process. Keywords Ansys concrete beams reinforced separated 1 引言 由于钢筋混凝上材料性质复杂,使其表现出明显的非线性行为[1]。长期以来采用线弹性理论的设计方法来研究钢筋混凝上结构的应力或内力,显然不太合理,尽管有此理论是基于人量试验数据上的经验公式,还是不能准确反映混凝上的力学性能,特别是受力复杂的重要结构,必须采用三维钢筋混凝上非线性有限元方法才能很好地掌握其力学性能。利用ANSYS 对钢筋混凝上结构弹塑性的仿真分析,可以对结构自开始受荷载直到破坏的全过程进行分析,获得不同阶段的受力性能。本文将以混凝土梁的弹塑性分析为例,介绍在Ansys 中分析材料非线性问题的具体实现方法。 2 问题介绍 如图所示的钢筋混凝土梁[2],横截面尺寸为200400b h mm mm ?=?,梁的跨度为3.0L m =,支座宽度为250mm 采用C20混凝土,梁内受拉纵筋3φ20,架立筋采用2φ12, 箍筋采用φ6@150,钢筋保护层厚度为25mm 。如图一。 图一 对于梁中所采用的所有钢筋,弹性模量为5 2.110MPa ?,抗拉强度设计值210MPa , 密度33 7.810/kg m ?,泊松比为0.3。

伸臂梁设计实例

[例5-3] 伸臂梁设计实例 本例综合运用前述受弯构件承载力的计算和构造知识,对一教室简支楼面的钢筋混凝土伸臂梁进行设计,使初学者对梁的设计全貌有较清晰的了解。在例题中,初步涉及活荷载的布置及内力组合的概念,为梁、板结构设计打下基础。 (一) 设计条件 某支承在370mm 厚砖墙上的钢筋混凝土伸臂梁,其跨度17.0m l =,伸臂长度2 1.86m l =,由楼面传来的荷载标准值1k 28.60kN m g =(未包含梁自重),活荷载标准值1k 21.43kN m q =,2k 71.43kN m q =(图5-28)。采用强度等级为C25的混凝土,纵向受力钢筋为HRB335级,箍筋和构造钢筋为HPB300级。设计使用年限为50年,环境类别为一类。试设计该梁并绘制配筋详图。 图5-28 梁的跨度、支承及荷载 (二) 梁的内力和内力图 1.截面尺寸选择 取高跨比110h l =,则700mm h =;按高宽比的一般规定,取250mm b =,2.8h =。 初选0s 700mm 60mm 640mm h h a =-=-=(按两排布置配筋)。 2.荷载计算 梁自重标准值(包括梁侧15mm 厚粉刷重): 332k 0.25m 0.7m 25kN m 0.015m 0.7m 17kN m 2 4.73kN m g =??+???= 则梁的恒载设计值 12 1.228.60kN m 1.2 4.73kN m 40kN m g g g =+=?+?= 当考虑悬臂的恒载对求AB 跨正弯矩有利时,取G 1.0γ=,则此时的悬臂恒载设计值为 1.028.60kN m 1.0 4.73kN m 33.33kN m g '=?+?= 活荷载的设计值为 1 1.421.43kN m 30kN m q =?= 2 1.471.43kN m 100kN m q =?=

第七章 梁分析和横截面形状【ANSYS帮助中文版】

第七章梁分析和横截面形状 梁的概况 梁单元用于生成三维结构的一维理想化数学模型。与实体单元和壳单元相比,梁单元可以效率更高的求解。 两种新的有限元应变单元,BEAM188和BEAM189,提供了更强大的非线性分析能力,更出色的截面数据定义功能和可视化特性。参阅ANSYS Elements Reference中关于BEAM188和BEAM189的描述。 何为横截面? 横截面定义为垂直于梁的轴向的截面形状。ANSYS提供了有11种常用截面形状的梁横截面库,并支持用户自定义截面形状。当定义了一个横截面时,ANSYS 建立一个9结点的数值模型来确定梁的截面特性(lyy,lzz等),并求解泊松方程得到弯曲特征。 下图是一个标准的Z横截面,示出了截面的质心和剪切中心以及计算的横 截面特性: 1

图8-1 Z向横截面图 横截面和用户自定义截面网格划分将存储在横截面库文件中。可以用LATT 命令将梁横截面属性赋给线实体。这样,横截面的特性将在用BEAM188或BEAM189对该线划分网格时包含进去。 如何生成横截面 用下列步骤生成横截面: 1.定义截面并与代表相应截面形状的截面号关联。 2.定义截面的几何特性数值。 ANSYS中提供了下表列出的命令完成生成、查看、列表横截面和操作横截面库的功能:参阅ANSYS Commands Reference可以得到横截面命令的完整集合。 定义截面并与截面号关联 使用SECTYPE命令定义截面。下面的命令将截面号2与定义号的横截面形状(圆柱体)关联: 命令:SECTYPE,2,BEAM,CSOLID SECDATA,5,8 SECNUM,2 GUI: Main Menu>Preprocessor>Settings>-Beam-Common Sects Main Menu>Preprocessor>-Attributes-Define>Default Attribs 要定义自己的横截面,使用子形状(ANSYS提供的形状集合)MESH。要定义带特殊特性如lyy和lzz的横截面,使用子形状ASEC。 定义横截面的几何特性数值 使用SECDATA命令定义横截面的几何数值。下面的命令将用SECTYPE命令定义的尺寸赋值给横截面。CSOLID形状有两个尺寸:半径和周长上的格栅数目。 命令:SECDATA,4,6 2

梁结构应力分布ANSYS分析

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062

2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。另外,有限元法分析梁结构时,建模简单,施加应力和约束也相

格构梁的ANSYS有限元模拟分析实例运用

龙源期刊网 https://www.wendangku.net/doc/1415046350.html, 格构梁的ANSYS有限元模拟分析实例运用作者:张少剑刘真 来源:《城市建设理论研究》2013年第10期 摘要:本文通过一工程实例运用ansys模拟计算。针对格构梁的研究,合理地简化模型,取出1.5米宽的土体、梁和面层单元,两边加对称约束,从而达到模拟空间结构梁的目的。本文还模拟了基坑的开挖过程的时空效应,共分七步,土体在自重应力作用下的沉降为第一步,梁与面层的激活、力的施加和土层杀死共分六步。梁的最大受力状态并不发生在最后一步完成后,而是在第六工况。 关键词:格构梁有限元分析模拟分析 中图分类号:K826.16 文献标识码:A 文章编号: 1 土体、梁、锚索和混凝土面层共同作用 基坑支护的受力机理是土体的土压力作用在格构梁和混凝土面层上,混凝土面层的力传递到格构梁上,格构梁再把它受到的力传递到和它相连的锚索上,锚索则和被支护土体嵌固为一体,格构梁和混凝土面层除起到承受土压力外,格构梁还起到平均弯矩和变形的作用,喷射混凝土面层则有保护土体表面,防止土体表面非格构梁作用部位坍塌的作用。 2模型简化及技术处理 根据基坑开挖深度,根据实际的土体性质建立土体模型。格构梁的作用是承受弯矩的,可以选用Beam4梁单元,考虑到钢筋混凝土格构梁中有钢筋的作用,其弹性模量、泊松比等设置有所调整。在建模时,如果混凝土面层的长宽与厚度的比都大于5,所以在有限元分析中采用板壳单元可以全面地反映其变形特征和应力分布规律。混凝土面层用Shell63单元模拟,其参数的取值和梁单元相同。 由于格构梁的受力性状,锚索的模拟对格构梁的受力影响较小,本模型忽略考虑锚索的模拟。预应力锚索的作用简化为作用在纵横梁交点处的集中力。 对于格构梁和土体、混凝面层之间的接触,模型采用节点耦合,以实现共同变形和受力。 3.1ANSYS有限元模拟计算 3.1.1模型的参数 1.土体的参数见下表:

用ANSYS对钢筋混凝土梁进行计算模拟

一、用钢筋混凝土简支梁的数值模拟为实例,对ANSYS的使用方法进行说明 钢筋混凝土简支梁,尺寸为长2000mm,宽150mm,高300mm。混凝土采用C30,钢筋全部采用HRB335,跨中集中荷载P作用于一刚性垫板上,垫板尺寸为长150mm,宽100mm。 建立分离式有限元模型,混凝土采用SOLID65单元,钢筋采用LINK8单元,不考虑钢筋和混凝土之间的粘结滑移。创建分离式模型时,将几何实体以钢筋位置切开,划分网格时将实体的边线定义为钢筋即可。加载点以均布荷载近似代替钢垫板,支座处则采用线约束和点约束相结合。单元尺寸以50mm左右为宜。 二、命令流 !钢筋混凝土简支梁数值分析 !分离式模型 FINISH /CLEAR /PREP7 !1.定义单元与材料属性 ET,1,SOLID65,,,,,,,1 ET,2,LINK8 MP,EX,1,13585 !混凝土材料的初始弹模以及泊松比 MP,PRXY,1,0.2 FC=14.3 !混凝土单轴抗压强度和单轴抗拉强度 FT=1.43 TB,CONCR,1 TBDA TA,,0.5,0.95,FT,-1 !定义混凝土材料及相关参数,关闭压碎 TB,MISO,1,,11 !定义混凝土应力应变曲线,用MISO模型 TBPT,,0.0002,FC*0.19 TBPT,,0.0004,FC*0.36 TBPT,,0.0006,FC*0.51 TBPT,,0.0008,FC*0.64 TBPT,,0.0010,FC*0.75 TBPT,,0.0012,FC*0.84 TBPT,,0.0014,FC*0.91 TBPT,,0.0016,FC*0.96 TBPT,,0.0018,FC*0.99 TBPT,,0.002,FC TBPT,,0.0033,FC*0.85 MP,EX,2,2.0E5 !钢筋材料的初始弹模以及泊松比 MP,PRXY,2,0.3 TB,BISO,2 TBDA TA,,300,0 !钢筋的应力应变关系,用BISO模型

西南交通大学钢筋混凝土伸臂梁课程设计74#题

钢筋混凝土伸臂梁课程设计第0页钢筋混凝土伸臂梁设计 姓名:XXX 学号:XXX 班级:XXX 指导老师:XXX 设计时间:XXX

钢筋混凝土伸臂梁课程设计第0页 目录 1、钢筋混凝土伸臂梁设计任务书 (1) 2、设计资料 (3) 3、内力计算 (4) 3.1设计荷载值 (4) 3.2组合工况 (4) 2.3 包络图 (6) 4、正截面承载力计算 (7) 4.1 确定简支跨控制截面位置 (7) 4.2 配筋计算 (7) 5、斜截面承载力计算 (10) 5.1 截面尺寸复核 (10) 5.2 箍筋最小配筋率 (10) 5.3 腹筋设计 (10) 6、验算梁的正常使用极限状态 (12) 6.1 梁的挠度验算 (14) 6.1.1 挠度限值 (14) 6.1.2 刚度 (14) 6.1.3 挠度 (17) 6.2 梁的裂缝宽度验算 (17) 7、绘制梁的抵抗弯矩图 (19) 7.1 按比例画出弯矩包络图 (19) 7.2 确定各纵筋及弯起钢筋 (20) 7.3 确定弯起钢筋的弯起位置 (20) 7.4 确定纵筋的截断位置 (20)

1、钢筋混凝土伸臂梁设计任务书 (编写:潘家鼎 2013.10.26) 一、设计题目:某钢筋混凝土伸臂梁设计 二、基本要求 本设计为钢筋混凝土矩形截面伸臂梁设计。学生应在指导教师的指导下,在规定的时间内,综合应用所学理论和专业知识,贯彻理论联系实际的原则,独立、认真地完成所给钢筋混凝土矩形截面伸臂梁的设计。 三、设计资料 某支承在370mm 厚砖墙上的钢筋混凝土伸臂梁,如图1所示。 g k 、g k 、q 2k q 1k l 2 l 1 185 185 185 185 C B A 图1 梁的跨度、支撑及荷载 图中:l 1——梁的简支跨计算跨度; l 2——梁的外伸跨计算跨度; q 1k ——简支跨活荷载标准值; q 2k ——外伸跨活荷载标准值; g k =g 1k +g 2k ——梁的永久荷载标准值。 g 1k ——梁上及楼面传来的梁的永久荷载标准值(未包括梁自重)。 g 2k ——梁的自重荷载标准值。 该构件处于正常坏境(环境类别为一类),安全等级为二级,梁上承受的永久荷载标准值(未包括梁自重)g k1=21kN/m 。 设计中建议采用HRB500级别的纵向受力钢筋,HPB300级别的箍筋,梁的混凝土和截面尺寸可按题目分配表采用。 四、设计内容 1.根据结构设计方法的有关规定,计算梁的内力(M 、V ),并作出梁的内力图及内力包络图。 2.进行梁的正截面抗弯承载力计算,并选配纵向受力钢筋。 3.进行梁的斜截面抗剪承载力计算,选配箍筋和弯起钢筋。

Ansys梁分析实例

工程介绍: 某露天大型玻璃平面舞台的钢结构如图1所示,每个分格(图2中每个最小的矩形即为一个分格)x方向尺寸为1m,y方向尺寸为1m;分格的列数(x向分格)=8,分格的行数(y向分格)=5。 钢结构的主梁(图1中黄色标记单元)为高140宽120厚14的方钢管,其空间摆放形式如图3所示;次梁(图1中紫色标记单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X方向正中间,偏X坐标小处布置)的次梁的两端,如图2中标记为 U R处。主梁和次梁之间是固接的。 xyz xyz 玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷;试对在垂直于玻璃平面方向的42 KN m的面载荷(包括玻璃自重、钢结构自重、活载 / 荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。(每分格面载荷对于每一支撑点的载荷可等效于1KN的点载荷)。 作业提交的内容至少应包括下面几项: (1)屏幕截图显示该结构的平面布置结构,图形中应反映所使用软件的部分界面,如图2; (2)该结构每个支座的支座反力; (3)该结构节点的最大位移及其所在位置; (4)对该结构中最危险单元(杆件)进行强度校核。 图1

图2 图3 本操作中选用的单位为:(N,mm,MPa)。具体操作及分析求解: 1.更该工作文件和标题。如图1.1-1.5所示

图1.1 图1.2

图1.3 图1.4 图1.5

图1.6 2.选择单元类型。 根据题目要求,选择单元类型为beam-3D-2node-188单元。 执行Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add ,选择beam-3D-2node-188。如图2.1所示。 图2.1 3.定义材料属性 该钢结构材料为碳素结构钢Q235,则将弹性模量设置为200GPa,泊松比设置为0.3。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2.05e,在PRXY框中输入0.3。操作步骤为如图3.1;3.2所示。

(完整版)ansys钢筋混凝土梁的建模方法约束方程法

用约束方程法模拟钢筋混凝土梁结构问题描述 建立钢筋线 对钢筋线划分网格后形成钢筋单元 b h P 位移载荷

建立混凝土单元 对钢筋线节点以及混凝土节点之间建立约束方程

后施加约束以及位移载荷 进入求解器进行求解;钢筋单元的受力云图 混凝土的应力云图

混凝土开裂

fini /clear,nostart /config,nres,5000 /filname,yue su fang cheng 5 jia mi hun nin tu /prep7 /title,rc-beam b=150 h=300 a=30 l=2000 displacement=5 !定义单元类型 et,1,solid65 et,2,beam188 et,3,plane42 !定义截面类型 sectype,1,beam,csolid,,0 secoffset,cent secdata,8,0,0,0,0,0,0,0,0,0 sectype,2,beam,csolid,,0 secoffset,cent secdata,4,0,0,0,0,0,0,0,0,0

!定义材料属性,混凝土材料属性mp,ex,1,24000 mp,prxy,1,0.2 tb,conc,1,1,9 tbdata,,0.4,1,3,-1 !纵向受拉钢筋 mp,ex,2,2e5 mp,prxy,2,0.3 tb,bkin,2,1,2,1 tbdata,,350 !横向箍筋,受压钢筋材料属性mp,ex,3,2e5 mp,prxy,3,0.25 tb,bkin,3,1,2,1 tbdata,,200 !生成钢筋线 k,, k,,b kgen,2,1,2,,,h k,,a,a k,,b-a,a kgen,2,5,6,,,h-2*a

钢筋混凝土课程设计——伸臂梁

钢筋混凝土伸臂梁设计任务书 一、设计题目:某钢筋混凝土伸臂梁设计 二、基本要求 本设计为钢筋混凝土矩形截面伸臂梁设计。学生应在指导教师的指导下,在规定的时间内,综合应用所学理论和专业知识,贯彻理论联系实际的原则,独立、认真地完成所给钢筋混凝土矩形截面伸臂梁的设计。 三、设计资料 某支承在370mm厚砖墙上的钢筋混凝土伸臂梁,如图1所示。 k、2k 185 图1 梁的跨度、支撑及荷载 图中:l1——梁的简支跨计算跨度; l2——梁的外伸跨计算跨度; q1k——简支跨活荷载标准值; q2k——外伸跨活荷载标准值; g k=g1k+g2k——梁的永久荷载标准值。 g1k——梁上及楼面传来的梁的永久荷载标准值(未包括梁自重)。 g2k——梁的自重荷载标准值。 该构件处于正常坏境(环境类别为一类),安全等级为二级,梁上承受的永久荷载标准值(未包括梁自重)g =21kN/m。 k1 设计中建议采用HRB500级别的纵向受力钢筋,HPB300级别的箍筋,梁的混凝土和截面尺寸可按题目分配表采用。

四、设计内容 1.根据结构设计方法的有关规定,计算梁的内力(M、V),并作出梁的内力图及内力包络图。 2.进行梁的正截面抗弯承载力计算,并选配纵向受力钢筋。 3.进行梁的斜截面抗剪承载力计算,选配箍筋和弯起钢筋。 4.作梁的材料抵抗弯矩图(作为配筋图的一部分),并根据此图确定梁的纵向受力钢筋的弯起与截断位置。 5.根据有关正常使用要求,进行梁的裂缝宽度及挠度验算; 6.根据梁的有关构造要求,作梁的配筋详图,并列出钢筋统计表。 梁的配筋注意满足《混规》、、、、、、、和等条款的要求。 五、设计要求 1.完成设计计算书一册,计算书应包含设计任务书,设计计算过程。计算书统一采用A4白纸纸张打印,要求内容完整,计算结果正确,叙述简洁,字迹清楚,图文并茂,并有必要的计算过程。 2.绘制3#图幅的梁抵抗弯矩图和配筋图一张,比例自拟。图纸应内容齐全,尺寸无误,标注规范,字迹工整,布局合理,线条清晰,线型适当。 3.完成时间:17周周五之前上交。 六、参考文献: 1.《建筑结构可靠度设计统一标准》GB50068-2001 2.《混凝土结构设计规范》GB50010—2010 3.《混凝土结构设计原理》教材 注:相比所学教材的规范版本,本设计所采用的主要规范(见上,请各位同学到网上下载电子版规范)为规范的新版本,设计中应注意在材料等级、计算公

ANSYS_APDL命令流悬臂梁分析教程

ANSYS APDL命令流悬臂梁分析教程 本文通过分析悬臂梁介绍了ANSYS APDL相关命令流方法。 考虑悬臂梁如图2-2,求x=L变形量。已知条件:杨氏系数E=200E9;截面参数:t=0.01m, w=0.03m, A=3E-4,I=2.5E-9;几何参数:L=4m, a=2m, b=2m;边界外力F=2N,q=0.05N/m. 使用ANSYS解决该问题的命令如下: /FILNAM,EX2-1? ! 定义文件名 /TITLE,CANTILEVER BEAM DEFLECTION? !定义分析的标题 /UNITS,SI !定义单位制(注意观察输出窗口的单位) /PREP7 !进入前置处理 ET,1,3? !定义元素类型为beam3 MP,EX,1,200E9 ! 定义杨氏模量 R,1,3E-4,2.5E-9,0.01 !定义实常数(要严格根据该元素类型的说明文档所给出的实常数格式) N,1,0,0!定义第1号节点X坐标为0,Y坐标为0 N,2,1,0!定义第2号节点X坐标为1,Y坐标为0 N,3,2,0 !定义第3号节点X坐标为2,Y坐标为0 N,4,3,0 !定义第4号节点X坐标为3,Y坐标为0 N,5,4,0!定义第5号节点X坐标为4,Y坐标为0 E,1,2!把1、2号节点相连构成单元,系统将自定义为1号单元 E,2,3!把2、3号节点相连构成单元,系统将自定义为2号单元 E,3,4!把3、4号节点相连构成单元,系统将自定义为3号单元 E,4,5!把4、5号节点相连构成单元,系统将自定义为4号单元 FINISH? !退出该处理层 /SOLU!进入求解处理器 D,1,ALL,0 !对1节点施加约束使它X,Y向位移都为0

某支撑在370mm厚砖墙上的钢筋混凝土伸臂梁

注意在百度文库搜索文件名为: “华南理工大学课程设计桩基础设计2010010203040506”的文件,这个文件就是答案。 任选其一完成 课程设计题目一:伸臂梁设计 设计条件:某支撑在370mm 厚砖墙上的钢筋混凝土伸臂梁,其跨度m l 0.71=,伸臂长度m l 86.12=,由楼面传来的永久荷载设计值m kN g /32.341=,梁侧15mm 厚粉刷重按m kN g /68.51=计算;活荷载设计值m kN q m kN q /100,/3021==(如下图所示)。采用混凝土强度等级C25,纵向受力钢筋为HRB335级,箍筋和构造钢筋为HPB235级。试设计该梁并绘制配筋详图。 课程设计题目二:桩基础设计 设计条件:某工程位于软土地区,采用桩基础。已知基础顶面竖向荷载设计值kN F 3900=,标准值kN F k 3120=,弯矩设计值m kN M ?=400,标准值m kN M k ?=320。水平方向剪力设计值kN T 50=,标准值kN T k 40=。工程地质勘察查明地基土层如下: 表层为人工填土,松散,层厚m h 0.21=; 第○2层为软塑状粘土,层厚m h 5.82 =,承台底的地基土极限阻力标准值kPa q ck 115=;

第○3层为可塑状态粉质粘土,层厚m h8.6 =。 3 地下水位埋深 2.0m,位于第○2层粘土层面。地基土的物理力学性质试验结果,如下表所示。采用钢筋混凝土预制桩,桩的横截面面积为mm 300?,桩长 mm300 10m。进行单桩现场静载荷试验,试验成果s P-曲线见下图所示。试设计此工程的桩基础。 某工程地基土的试验指标 P-曲线 载荷试验s

ansys桁架和梁的有限元分析

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

ansys实例命令流-实体梁分析命令流

/FILNAME,SolidBeam ,1 !定义工作文件名。/TITLE,SolidBeam Analysis !定义工作标题。/PREP7 ET,1,SOLID95 !定义材料属性。 MPTEMP,,,,,,,, !定义材料属性。MPTEMP,1,0 MPDATA,EX,1,,2.06e5 MPDATA,PRXY,1,,0.3 !建立几何模型 K,1,,,, K,2,450,,, K,3,450,-55,, K,4,,-100,, FLST,2,4,3 FITEM,2,1 FITEM,2,2 FITEM,2,3 FITEM,2,4 A,P51X VOFFST,1,45, , !网格划分。 FLST,5,4,4,ORDE,2 FITEM,5,9 FITEM,5,-12 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,3, , , , ,1 !* FLST,5,4,4,ORDE,4

FITEM,5,2 FITEM,5,4 FITEM,5,6 FITEM,5,8 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,6, , , , ,1 !* FLST,5,4,4,ORDE,4 FITEM,5,1 FITEM,5,3 FITEM,5,5 FITEM,5,7 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,30, , , , ,1 !* CM,_Y,VOLU VSEL, , , , 1 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y !* VSWEEP,_Y1 CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2 !加载。

钢筋混凝土梁ansys非线性分析大作业

钢筋混凝土非线性分析2015大作业 1、参数选择 梁的截面宽度为200mm,上部配置2Φ8受压筋,混凝土的净保护层厚度为25 mm(从纵向钢筋外边缘算起),箍筋两端区采用8@100的双肢箍,中间区取8@200 双肢箍 1)梁的截面高度选300mm; 2)两加载间的距离选1000mm; 3)混凝土选C30; ; 4)纵向受拉钢筋配筋选218 2、描述选用的有限元模型及单元的特点 采用ansys软件进行模拟计算,钢筋混凝土模型采用分离式模型,不考虑钢筋与混凝土之间的相对滑移。 混凝土采用solid65单元模拟,solid65用于模拟三维有钢筋或无钢筋的混凝土模型。该单元能够计算拉裂和压碎。在混凝土应用中,该单元的实体功能可以用于建立混凝土模型,同时,还可用加筋功能建立钢筋混凝土模型。另外,该单元还可以应用于加强复合物和地质材料。该单元由八个节点定义,每个节点有三个自由度:节点坐标系的x,y,z方向的平动。至多可以定义三种不同规格的钢筋。 钢筋单元采用link180单元模拟,link180是一个适用于各类工程应用的三维杆单元。根据具体情况,该单元可以被看作桁架单元、索单元、链杆单元或弹簧单元等等。本单元是一个轴向拉伸一压缩单元,每个节点有三个自由度:节点坐标系的x,y,z方向的平动。本单元是一种顶端铰接结构,不考虑单元弯曲。本单元具有塑性、蠕变、旋转、大变形和大应变功能。缺省时,当考虑大变形时任何分析中LINK180单元都包括应力刚化选项。 3、描述选用的混凝土与钢筋粘结滑移本构关系的具体形式、参数等。

钢筋的应力应变关系曲线 考虑到极限塑性应变最大值为0.01,钢筋本构模型采用多线性模型kinh,初始弹性模量为Es=200000Mpa,强化系数为0.001。 混凝土的应力应变关系曲线 混凝土选用各向同性的miso模型,当计入下降端时,程序报错,所以只取了前面的上升段,用5段折线模拟混凝土应力应变曲线。 不考虑混凝土与钢筋之间的相对滑移 4、迭代方法和收敛标准。 使用修正的Newton-Raphson迭代方法进行求解。收敛标准采用位移来控制

钢筋混凝土伸臂梁设计

《混凝土结构》 项目报告说明书 课程名称:混凝土结构 设计题目:钢筋混凝土伸臂梁设计 院系:建筑工程学院 学生姓名: 学号: 专业班级: 指导教师: 2016年11月22日

项 目 任 务 书 设计题目 钢筋混凝土伸臂梁设计 学生姓名 所在系 土木工程 班级 设计要求:图所示钢筋混凝土伸臂梁,截面尺寸为h b ,计算跨度为mm 1l ,承受均布荷载设计值为kN/m 1q ,伸臂梁跨度为mm 2l ,承受均布荷载设计值为kN/m 2q ;采用混凝土等级见表,纵向受力钢筋为HRB335,箍筋为HPB235,试设计该梁并绘制配筋详图。 每位同学根据自己学号,取用相应的设计参数: 学号 q1(k N/m) q2(k N/m) l1(m) l2(m) bxh(mm*mm) 混凝土等级 1 65 150 6 2 300*650 c25 2 65 150 7 300*650 c35 3 65 150 6 2 300*650 c35 4 65 150 7 300*650 c25 5 65 150 6 2 250*700 c25 6 65 150 7 250*700 c35 7 65 150 6 2 250*700 c35 8 65 150 7 250*700 c25 9 65 145 6 2 300*650 c25 10 65 145 7 300*650 c35 11 65 145 6 2 300*650 c35 12 65 145 7 300*650 c25 13 65 145 6 2 250*700 c25 14 65 145 7 250*700 c35 15 65 145 6 2 250*700 c35 16 65 145 7 250*700 c25 17 65 135 6 2 300*650 c25 18 65 135 7 300*650 c35 19 65 135 6 2 300*650 c35 20 65 135 7 300*650 c25 21 65 135 6 2 250*700 c25 22 65 135 7 250*700 c35

相关文档