文档库 最新最全的文档下载
当前位置:文档库 › 矿井气体分析中微型气相色谱仪的应用

矿井气体分析中微型气相色谱仪的应用

矿井气体分析中微型气相色谱仪的应用
矿井气体分析中微型气相色谱仪的应用

矿井气体分析中微型气相色谱仪的应用

摘要:针对很多操作员对agilent3000a微型气相色谱仪操作及条件设定不熟练的问题,详细介绍了该仪器矿井气体分析中的作用方法,并给了采用该仪器分析h2,o2、n2 ch4、co 、co2、c2h4、c2h6、c2h2等9种混合气体成分的结果。结果表明,使用

agilent3000a微型气相色谱仪的分析方法精度高,色普峰形对称,便于准确定量测定,可为矿井的防灭火工作提供一定的支持。

关键词:矿井;气相色谱仪;毛细管柱;热导检测器;气体检验;色谱峰形;agilent 3000a

引言

矿井中各种易燃易爆气体的快速分析是矿井安全生产的前提,因为一旦井下有煤炭自燃现象,在煤炭的缓慢氧化阶段会出现co或者co 值逐渐增加的现象,随着煤炭氧化程度的进一步加强,c2 h4、c2 h2 等有害气体也会逐渐增加,这就要求气相色谱仪能够连续快速地

分析这些有害气体,确定煤炭是否具有自然发火趋势,从而及时采取措施防止事故的进一步扩大。目前通常采用专用气体分析仪进行单一气体检验,该方法气体分析品种少、准确度不高;用一般的气相色谱仪,虽然分析气体品种多、精度高,但分析速度慢,另外为了适合不同浓度的气体检验须用多个检测器分别对几种气体检验,不利于定量检验而且我国煤炭企业采用的气相色谱仪分析速度较慢、精确度不高,一旦其压力旋钮被误调节,气相色谱仪将无法正常使用,需要专业的调试人员进行维修。a gilent3000a微型气相色谱仪

(以下简称agilent3000a)则解决了上述问题,它采用国际上先进的电子压力控制系统(epc),去除了传统的气相色谱仪使用的机械压

力调节旋钮,具有分析速度快、精度高、操作简单、维护方便等优点。由于agilent3000a刚刚进入我国煤炭行业,很多操作员对其操作及条件设定尚不熟练,本文就agilent3000a微型气相色谱仪在矿井气体分析方面的应用作一简要介绍。

1气相色谱仪简介

气相色谱仪是一种分析混合气体的重要工具,通常使用氢火焰离子化检测器和热导检测器分析气体。由于矿井气体成分多,分析较为复杂,并且对ch4、co、c2 h4、c2h2 等气体含量要求较高,如煤矿安全规程中规定:co气体的最高允许浓度为2410;要求在开启密封的火区时,空气中不得含有c2h4、c2h2 气体。因此,普通的气相色谱仪使用的热导检测器很难精确测量出上述气体含量,只能采用灵敏度高的氢火焰离子化检测器来检测。但使用氢火焰离子化检测器需要配备氢气和氧气,这样既增加了气相色谱仪的使用成本,并且使用氢气具有一定的危险性。

agilent3000a使用的微型热导检测器比传统的热导检测器灵敏度高10倍,能够精确地分析出煤矿防灭火所需要参考的指标气体,并且稳定时间短,在0.5 h内即可分析气体含量(普通的热导检测器稳定时间至少需要2 h)。

agilent3000a的每一个加热模块包含进样口、毛细管柱和热导检测器,这些都是按预先选定的分析任务而优化配置的;可同时在多

达4个不同的色谱柱上使用4套不同的操作条件分析样品,在3 min 内即可完成整个样品的分析。a gilent3000a分析系统结构如图1所示。

2井下气体分析条件的设定

(1)agilent3000a的自身配置

agilent3000a分两通道气相色谱仪和四通道气相色谱仪2种。本文以四通道气相色谱仪为例进行说明。四通道气相色谱仪分a、b、c、d四个通道,其中a、b、c通道使用的5a分子筛毛细管柱的尺寸均为10 m0.25 mm0.33m(柱长×内径×膜厚),d通道使用的plot u 毛细管柱的尺寸为8 m0.25 mm0.33m(柱长×内径×膜厚)。毛细管柱的内径较细,故其柱效能远远高于填充柱;毛细管柱的柱效高,扩散效应低,所以其灵敏度要比填充柱高;由于毛细管柱的空心结构,使得溶剂峰出得又快又窄,不仅可以提高气体的出峰速度,还可以

顺利地将气体分离出来,因此,采用毛细管柱的气相色谱仪分析速

度比采用填充柱的分析速度快。

(2)分析条件

a通道采用氩气做载气,可以分析h2、o2、n2;其余3个通道采用氦气做载气,b通道分析ch4 气体,c通道分析co气体,d通道分析co2、c2 h4、c2 h6、c2h2 气体。由于o2、n2 含量比较高,特别是n2,在a通道设置参数时要注意谨防n2 的峰形为平顶峰。agilent3000a 所有通道的初始设定都是一样的,进样口温度为90℃,色谱柱温度为60℃,进样时间为150 ms(进样量),柱头压为206.85 kpa。

气相色谱仪原理及应用实验指导书

气相色谱仪原理及应用实验指导书 贵州大学精细化工研究开发中心(绿色农药与生物工程重点实验室) 1. 实验类型:设计型实验(研究性实验) 2.课时安排:6课时。并运用其数据资料的能力以及归纳总结的能力等。 3.实验目的和意义 通过学习气相色谱仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 4. 实验原理 气相色谱分离是利用试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组分就在其中的两相间进行反复多次(103-106)的分配(吸附-脱附-放出)由于固定相对各种组分的吸附能力不同(即保存作用不同),因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,顺序离开色谱柱进入检测器,产生的离子流信号经放大后,在记录器上描绘出各组分的色谱峰。 5.实验设备 气相色谱仪、色谱柱、容量瓶、分析实验室常用玻璃仪器、氮气、农药标准品。 6.实验内容 了解并初步掌握气相色谱仪的基本原理与构造;了解气相色谱仪常用的几种检测器工作原理和使用范围;学习气相色谱法分离化合物和检测化合物的含量的方法;通过测定对样品的定性、定量测定,初步掌握获得气相色谱谱图和数据的一般操作程序与技术;学习样品制备的方法;了解影响分析测定的重要因素,学会优化分析条件;学习谱图和数据的处理方法;结合实验室项目,完成一个分析检测项目。 1)样品制备

煤矿井下有毒有害气体管理规定

煤矿井下有毒有害气体管理规定 第一章总则 第一条本规定适用于公司所属煤矿井下所有采掘活动区域。 第二条井下有毒有害气体是指甲烷、二氧化碳、一氧化碳、硫化氢、二氧化硫、二氧化氮、氨气、氢气等有害气体的总称。 第三条甲烷、二氧化碳等气体的检查标准执行《矿井瓦斯检查标准》(Q/JM J 1.0014-2013)、《矿井瓦斯检查地点设置标准》(Q/JM J 1.0015-2013)和《矿井瓦斯检查地点检查范围划分及检测点设置标准》(Q/JM J 1.0016-2013)。其它有毒有害气体(一氧化碳、硫化氢、二氧化硫、二氧化氮、氨气、氢气等)检查标准执行本规定。 第二章一般规定 第四条《规程》规定的井下有毒有害气体最高允许浓度,矿井中所有气体的浓度均按体积百分比计算。 《规程》还规定:井下充电室风流中以及局部积聚处的氢气浓度不得超过0.5%。 第五条采掘活动区域内有毒有害气体检查的检查方式有比长式检测管测定法和便携式检测仪测定法。可用便携式检测

仪检测的有毒有害气体,应使用便携仪检查。 可用比长式检测管法检测的有毒有害气体有CO、NO2、H2S、SO2、NH3和H2等。 可用便携式检测仪检测的有毒有害气体有CO、H2S和H2等。 井下气体的采样执行《煤矿井下气体人工采样规范》(Q/JM J 1.0176-2015)。自然发火矿井监测人员无法到达的区域(如回采工作面采空区、火区密闭内等地点)的气体检查执行《煤矿自然发火束管监测技术标准》(Q/JM J 1.0179-2015)。 第三章检查范围、方式和周期要求 第六条自然发火矿井一氧化碳的检查标准执行《晋煤集团“一通三防”管理规定》“防灭火”章节的有关要求。其他矿井一氧化碳的检查要求: (一)检查范围:主要回风巷、盘区回风巷及综掘、综采工作面的回风风流、回采工作面上隅角、采空区密闭墙前、揭不明巷道或空巷工作面、压风自救供风装置、采空区穿层或高位钻孔施工地点下风侧、瓦斯抽采管路等地点。 (二)检查方式:密闭采空区、瓦斯抽采管路等地点采用井下气体取样和色谱仪分析气体成分,气体采样符合《煤矿井下气体人工采样规范Q/JM J1.0176-2015》要求;压风自救供风装置、采空区穿层或高位钻孔施工地点下风侧等其余地点采用比长式检测管或便携式检测仪直接测定。 (三)检查周期:抽采管路每周至少检查1次。要求检查的其他地点每班至少应检测一次。 第七条进行采空区穿层钻孔或探放水钻孔施工时,施工钻孔地点下风侧0.5m-1m处应每班检查CO和H2S气体,且在钻孔下风侧0.5m-1m处悬挂CO、H2S便携仪实时检测。 第八条NO2、SO2、H2S和NH3等气体的检查要求: (一)检查范围:综采工作面回风流和上隅角、掘进工作面

在线分析仪简介(刘启元)

在线分析仪简介 在线分析仪,即跨带式CBX中子激活瞬发γ—射线活化分析设备,在1983年研发成功,2003年开始在中国水泥工业中使用,由于它性能可靠、优点突出,已得到令人满意的效果,使用范围正在稳步扩大。现介绍如下: 1.结构简介 本设备是一个可露天设臵的龙门式设备,横跨在需要测定物料化学成分的带式输送机上,主要结构为: 1.1 壳体:为龙门式隧道状,为内部设备挡雨,故本设备可以露天放臵。 1.2 中子源:放臵在回程胶带之上的承载物料胶带的下方。 1.3 探测器:设臵在承载物料胶带之上的门形框架上梁的底部。 1.4 处理器:可以与龙门框架分离,设臵在建筑物的室内。 1.5 配料微机:一般放在中控室。 2.工作原理 2.1 中子源中有重量不低于38μg的锕系元素锎,元素符号Cf,常见的锎原子量251,半衰期900年,但其同位素252Cf,半衰期为2.64年,我们在线分析仪使用的是同位素252Cf。它能自发裂变,产生中子,可作高通量中子源,但在操作巡检人员活动范围,这射线对人体是安全的。这中子源产生的中子流可以穿透皮带和500~800mm厚块状物料层。 热中子轰击被测物料,被测物料原子核吸收中子后,处于不稳定状态,瞬发出γ射线。 不同元素在γ射线能谱上有着不同的位臵,如Ca为4.42MeV和6.42MeV;Si为3.70MeV和4.9MeV,而脉冲值表现其相对含量。用这一原理,该分析仪可测物料CaO,SiO2,Al2O3,Fe2O3,MgO,K2O,Na2O,SO3,Cl-,MnO2,TiO2等化学成分。 2.2 探测器即内有碘化钠的闪光探测器,设臵在载料皮带上方,可以收集物料产生的γ射线,光脉动能谱,并传递到处理器。 2.3 处理器:对收集到的γ—射线光脉冲能谱进行放大,并用计算机进行识别、统计、积分计算,与标准模块对比、修正。最后用数字显示被测物料各种元素及氧化物含量的质量百分比。整个过程只需1/100秒的时间。反应非常迅速,

矿井有害气体及瓦斯检查防治讲解

矿井空气中的有害气体检测及防治 第一节矿井空气中的有害气体及检测 矿井空气中常见的有害气体,主要有二氧化碳、氮气、一氧化氮、硫化氢、氧化硫、二氧化氮、氨气、氢气、甲烷等。本节将重点介绍其中的部分气体性质、危害、浓度标准和检测方法。 一、矿井空气中的有害气体及其基本性质 (一)一氧化碳(CO) 一氧化碳是无色、无味、无臭的气体,对空气的相对密度为0.97, 微溶于水,能燃烧,当体积密度达到13%-17%时遇火源有爆炸性。 一氧化碳有剧毒。人体血液中的血红素与一氧化碳的亲和力比它与氧气的亲和力大250-300倍,因此,人体吸入含有一氧化碳的空气时,一氧化碳首先与血红素相结合,阻碍了氧气的正常结合,从而造成人体血液缺氧引起窒息和中毒。一氧化碳的中毒程度与中毒浓度、中毒时间、呼吸频率和深度及人的体质有关。一氧化碳中毒程度和中毒浓度的关系如下表: 一氧化碳的中毒程度与浓度的关系

一氧化碳中毒除上述症状外,最显著的特征是中毒者黏膜和皮肤呈樱桃红色。 (二)硫化氢(H2S) 硫化氢是无色、微甜、略带臭鸡蛋味的气体,对空气的相对密度 为1.19,易溶于水,当浓度达4.3%-46%时具有爆炸性。 硫化氢有剧毒,它不但能使人体血液缺氧中毒,同时对眼睛及呼吸道黏膜具有强烈的刺激作用,能引起鼻炎和飞、气管炎和肺水肿。当空气中其浓度达到0.001%时可嗅到臭味,但当浓度较高时 (0.005%-0.01%),因嗅觉神经中毒麻痹,臭味“减弱”或“消失,” 反而嗅不到。硫化氢的中毒程度与浓度的关系如下表: 硫化氢的中毒程度与浓度的关系

矿井中硫化氢的主要来源有:坑木等有机物的腐烂;含硫矿物的水化;从老空区和旧巷积水中放出。有些的矿区的煤层中也有硫化氢涌出。 (三)二氧化硫(so) 二氧化硫是无色、有强烈硫磺及酸味的气体,当空气中二氧化硫浓度达到0.0005%时即可嗅到刺激气味。它以溶于水,对空气的相对密度为2.32,是井下有害气体密度最大的,常常积聚在矿井下巷道的底部。 二氧化硫有剧毒,空气中的二氧化硫遇到水后生成硫酸,对眼睛有刺激作用,矿工们称其为“瞎眼气体”。此外,也能对呼吸道的黏膜产生强烈的刺激作用,引起喉炎和肺水肿。化硫的中毒程度与浓 度的关系如下表: 二氧化硫的中毒程度与浓度的关系 矿井中二氧化硫的主要来源有:含硫矿物的氧化与燃烧;在含 硫矿物中的爆破;从含硫媒体中涌出。 (四)二氧化氮(NO2) 二氧化氮是一种红褐色气体,有强烈的刺激性气味,对空气的 相对密度为1.59,易溶于水。

国产全光谱水质在线监测仪的应用原理及研发步骤分析

国产全光谱水质在线监测仪的应用原理及研发步骤分析 一、全光谱在线分析仪器市场现状 我国环境水质监测仪器以往主要依赖进口,从2000年开始,成熟的国产化设备才开始在全国范围内大规模推广。我国的环境水质在线监测仪器厂家主要以民营为主,在成长初期,普遍存在规模偏小、技术不够成熟、仪器的可靠稳定性不足等问题,难以满足我国复杂的水体环境和日益多样化的污染物监测需求。另外,仪器市场整体存在集中度不高、区域分割严重、单一企业所占市场份额小等问题。后期随着国家对环保产业的重视和水质自动监测网络体系的建立,环境水质在线监测仪器厂家数量迅速增长,部分具备自主研发实力的企业发展壮大起来,成为与国外品牌如美国哈希、日本岛津等相抗衡的仪器生产企业。 具体到光谱在线监测领域,国内目前主要以单光谱UV254为主,较为先进也只有COD等少数数值可进行在线测量,且测量参数及精度较国外设备均有一定差距,如S::CAN公司的高端产品spectro就可以同时测量COD,BOD,BTX,NO3-N,TSS,温度,AOC等参数,并保证测量精度。 外国设备价钱高企业和政府采购难以负担高额成本,而国内仪器设备技术落后等缺陷却无法满足精准监测的要求,此外国外仪器在国内也存在“水土不服”的情况,针对这一矛盾现状,陕西正大环保科技与浙江大学强强合作,发挥自身优势推进全光谱在线设备国产化进程,正大环保以多年的设备设计与运维经验选择相应的原材料进行整合,提供基础设备;浙江大学提供设备内部计算模型及先进完善机制,共同致力于为客户提供运行稳定,数据可靠,价格合理的全光谱在线监测设备。 二、全光谱分析法原理 朗伯-比尔定律光度分析中定量分析是最基础、最根本的依据, 如图所示, 可以用如下公式描述:式中: A 为吸光度值; I0为空白溶液(即不存在吸收物质)时的光强度;I为吸收后的光强度; b为光程, 单位为 cm; c 为溶液的摩尔浓度;为摩尔吸光系数, 单位为I/(mol.cm) 图 1 朗伯比尔定律示意

LGA-4000激光气体分析仪

二、LGA-4000激光气体分析仪 (一)、简介 1、概要 LGA-4000激光气体分析仪能够在各种高温、高粉尘、高腐蚀等恶劣的环境下进行现场在线的气体浓度测量。 2、测量原理 LGA-4000激光气体分析仪是基于半导体激光吸收光谱(DLAS)气体分析测量技术的革新,能有效解决传统的气体分析技术中存在的诸多问题。 半导体激光吸收光谱(DLAS)技术利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度。由半导体激光器发射出特定波长的激光束(仅能被被测气体吸收),穿过被测气体时,激光强度的衰减与被测气体的浓度成一定的函数关系,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。 3、系统组成 LGA-4000激光气体分析仪由激光发射、光电传感和分析模块等构成,如图 1.2所示。由激光发射模块发出的激光束穿过被测烟道(或管道),被安装在直径相对方向上的光电传感模块中的探测器接收,分析控制模块对获得的测量信号进行数据采集和分析,得到被测气体浓度。在扫描激光波长时,由光电传感模块探测到的激光透过率将发生变化,且此变化仅仅是来自于激光器与光电传感模块之间光通道内被测气体分子对激光强度的衰减。光强度的衰减与探测光程之间的被测气体含量成正比。因此,通过测量激光强度衰减可以分析获得被测气体的浓度。

图4、 ●●●●5 L 激光发射光电传感 控制模块

表1.1 LGA-4000激光气体分析仪规格和技术参数表 图2.1. LGA-4000激光气体分析仪示意图 LGA-4000激光气体分析仪采用了集成化、模块化的设计方式,系统主要功能模块是由发射单元和接收单元构成(见图2.1)。发射单元驱动半导体激光器,将探测激光发射,并穿过被测环境,由接收单元进行光电转换,将传感信号送回发射单元,由发射单元的中央处理模块对光谱数据进行分析,获得测量结果。

气相色谱法基本原理及其应用

安徽建筑大学 现代水分析技术论文 专业:xx级市政工程 学生姓名:xxx 学号:xxx 课题:气相色谱法基本原理及其应用指导教师:xxx xx年xx月xx日

气相色谱法基本原理及其应用 xx (安徽建筑工业学院环境与能源工程学院,合肥,230601) 摘要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。 关键词:气相色谱法;发展历程;工作原理;水污染物分析 1.气相色谱法的起源与发展历程 (1)气相色谱法的起源 色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家Tswett。Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。Tswett开创的方法叫做“液-固色谱法”[1-2],这就是色谱法的起源。 1941年,英国科学家Martin和Synge在研究液-液分配色谱时,预言可以使用气体作流动相,即气-夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”[3]。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气^液分配色谱的起源。后来,他们在1952年的Biochemical Journal上又连续发表了3篇论文[4-6],叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气相色谱法正式进入历史舞台。当时在石油化工的分析中,正当传统的分析方法无能为力时,气相色谱法就像及时雨一样,成为化学分析的得力助手。从此,科学家对气相色谱法的研究逐步展开。 (2)气相色谱法的发展 在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家Jaroslav Janak发明的。该仪器以C为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CA 进入测氮管之前,通过KOH溶液吸收掉CA,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。Jaroslav Janak发明的气相色谱仪也有一些明显的不足:它只能测室温下为气体的样品, 样品中的CA不能被测定,而且没有实现自动化。20世纪50年代末,它逐渐被更先进的气相色谱仪所取代。W55年,第一台商品化气相色谱仪诞生,标志着气相色谱仪的发展进入了崭新的时代。 现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步[7]。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的

几种氧分析仪原理及应用

1、电化学氧分析仪: 相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学气体传感器分很多子类: (1)原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫、氯气等。 (2)恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。 (3)浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。 (4)极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。 目前这种传感器的主要供应商遍布全世界,主要在德国、日本、美国,最近新加入几个欧洲供应商:英国、瑞士等。 2、顺磁式氧分析仪: 顺磁式氧分析仪:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。 物质的磁特性:任何物质在外界磁场的作用下都会被磁化,呈现出一定的磁特性。物质在外加磁场中被磁化,其本身就会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质就被外磁场吸引;附加磁场与外磁场方向相反时,则被外磁场排斥。因此,我们通常会将被外磁场吸引的物质称为顺磁性物质,或者说该物质具有顺磁性;而把被磁场排斥的物质称为逆磁性物质,或者说该物质具有逆磁性。气体介质处于磁场中也会被磁化,我们根据气体组分对磁场的吸引和排斥的不同,也将气体分为顺磁性和逆磁性。顺磁性气体有:O2、NO、NO2等;逆磁性气体有:H2、N2、CO2、CH4等。 磁性氧气传感器是磁性氧气分析仪的核心,但是目前也已经实现了“传感器化”进程。这种传感器只能用于氧气的检测,选择性极好。大气环境中只有氮氧化物能够产生微小的影响,但是由于这些干扰气体的含量往往很少,所以,磁氧分析技术的选择性几乎是唯一的! 当然磁氧根据传感器类型,又分为磁力机械式,热磁式氧分析仪,热磁式市场售价略低,

气相色谱仪的及如何应用

气相色谱仪的简介及如何应用 气相色谱仪 气相色谱法适用于分析具有一定蒸气压且热稳定性好的组分,对气体试样和受热易挥发的有机物可直接进行分析,而对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。 一、仪器的组成 气相色谱仪由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。 二、对仪器的基本要求 1.对仪器的一般要求 (1)载气源气体氦、氮和氢可用作气相色谱法的流动相,可根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气。 (2)进样部分进样方式一般可采用溶液直接进样或顶空进样。采用溶液直接进样时,进样口温度应高于柱温30~50℃。顶空进样适用于固体和液体供试品中挥发性组分的分离和测定。 (3)色谱柱根据需要选择。新填充柱和毛细管柱在使用前需老化以除去残留溶剂及低分子量的聚合物,色谱柱如长期未用,使用前应老化处理,使基线稳定。 (4)柱温箱柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。 (5)检测器适合气相色谱法的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、氮磷检测器(NPD)、火焰光度检测器(FPD)、电子捕获检测器(ECD)、质谱检测器(MS)等。火焰离子化检测器对碳氢化合物响应良好,适合检测大多数的药物;氮磷检测器对含氮、磷元素的化合物灵敏度高;火焰光度检测器对含磷、硫元素的化合物灵敏度高;电子捕获检测器适于含卤素的化合物;质谱检测器还能给出供试品某个成分相应的结构信息,可用于结构确证。除另有规定外,火焰离子化检测器一般用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于150℃,以免水汽凝结,通常为250~350℃。 (6)数据处理系统目前多用计算机工作站。 药典规定,各品种项下规定的色谱条件,除载气、检测器、固定液品种及特殊指定的色谱柱材料不得改变外,其余如色谱柱内径、长度、载体牌号、粒度、固定液涂布浓度、载气流速、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并符合系统适用性试验

井下各种有害气体防治措施

矿井各种有害气体防治措施 为了全面贯彻“安全第一,预防为主” 的方针,坚持“安全第一,超前预防,贯穿全程,关键落实”的安全理念,及时发现消除事故隐患防止事故的发生,结合我矿实际制定本方案及防治措施。 一、瓦斯 1、瓦斯来源:岩层或煤层之中。 2、防止瓦斯事故的措施: 1)加强通风。井下凡是需要通风的场所,都要按照需要数量供给新鲜风量。2)加强检查和管理。要加强井下巷道瓦斯的日常检查和管理,对通风不良或废弃的巷道,也应根据生产实际要求严加检查和管理。3)消除引燃瓦斯的高温热源。如消除井下各种明火,使用安全炸药,使用防爆性能好的电气设备等。4)严格贯彻执行《煤矿安全规程》、《操作规程》、《作业规程》,以及各种安全措施。 二、二氧化碳 1、二氧化碳来源: 1)人的呼吸;2)工程爆破;3)煤及含碳岩层的氧化和有机物的氧化;4)煤、岩层裂缝中自由放出;5)发生瓦斯、煤层爆炸、火灾事故。 2、防止二氧化碳危害措施:

1)加强通风防止有害气体积聚;2)按规定使用安全可靠的炸药并严格执行放炮的有关规定;3)消除井下各种明 火。 三、一氧化碳 1、一氧化碳来源: 1)井下火灾和瓦斯、煤尘爆炸;2)井下爆破工作;3)煤的缓慢氧化。 2、防止一氧化碳中毒的措施: 1)防止煤炭自然发火和瓦斯、煤尘爆炸的发生;2)爆 破时喷雾洒水;3)加强通风。 四、硫化氢 1、硫化氢来源: 1)坑木的腐烂;2)含硫矿物遇水分解;3)从废旧巷道的涌水中或从煤层和围岩中放出;4)爆破工作。 2、防止硫化氢中毒的措施: 1)向煤层内注入石灰水;2)加强通风。 五、二氧化硫 1、二氧化硫来源: 1)含硫化物的缓慢氧化或自燃;2)从煤层中或岩层中放出;3)在含硫矿物中进行爆破工作。 2、预防二氧化硫危害的措施: 1)预防矿内各种火灾的发生;2)加强通风。

激光气体分析仪的发展现状及其应用

激光气体分析仪的发展现状及其应用 叶 晟 (武汉晟诺仪器科技有限公司 湖北 武汉 430074) 摘 要:本文介绍了可调谐半导体激光吸收光谱(T unable D iode L aser A bsorption S pectroscopy)的基本原理及其在气体传感方面的应用及发展过程。针对TDLAS在不同行业的应用案例,例如工业过程分析、环境监测、安全检测、医疗应用以及科学研究等,具体阐述了激光气体分析仪的结构和应用特点。并对激光气体分析仪的发展趋势做了初步探讨。 关键词:TDLAS 可调谐半导体激光器 激光气体分析 1 前言 近年来红外光谱分析技术的快速发展使其气体分析应用得到了普遍推广,同时伴随半导体激光器技术的不断进步,激光器所具有的高转换效率、快速调谐性和高光谱分辨率等优点得以凸显,促成了以近红外半导体激光器为基础的光谱分析方法和仪器成为当前研究和应用的热点。激光气体分析仪也从传统的单光路结构,向多光路、长光程等技术方向不断拓展,使得TDLAS技术在诸多领域得以推广和应用,并取得了良好的市场经济效益。 2 激光气体分析仪的原理 激光气体分析仪大多采用了半导体激光器作为光源,利用气体在近红外和中红外的吸收光谱特性,对气体类型或浓度进行分析和测量。 2.1可调谐半导体激光吸收光谱原理 可调谐半导体激光吸收光谱(T unable D iode L aser A bsorption S pectroscopy),简称TDLAS,是利用半导体激光器的波长可调谐特性,获得待测气体的吸收线或吸收光谱,从而对待测气体进行定性或定量分析。待测气体可吸收特定对应波长的激光信号,造成接收光强的变化,该信号的变化符合朗伯-比尔定律,表达式如下: I v I v exp σ v cL (1) 其中 I为接收光强,I 为激光器原始光强,v为光源频率,σ为吸收面积,c为气体浓度,L为吸收光程。 根据公式(1)可知,当确定激光器频率和吸收截面时,光强的变化与气体浓度和吸收光程成正比。 与传统光源相比较,半导体激光器的光谱宽度要小于气体吸收谱线的展宽,可得到单线吸收光谱,实际应用中可有效地避免背景气体的交叉干扰影响,因此TDLAS技术是一种高分辨率吸收光谱技术。 图1 单线光谱测量原理 TDLAS技术在应用中通过快速调制激光频率,可使光谱扫过被测气体吸收谱线的一定频率范围,然后利用锁相放大和检测技术测量被气体吸收谱线吸收后 的透射激光光强中的谐波分量,以此来分析气体的吸

2021版矿井空气中的常见有害气体

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2021版矿井空气中的常见有害 气体 Safety management is an important part of production management. Safety and production are in the implementation process

2021版矿井空气中的常见有害气体 空气中常见有害气体:CO、NO2 、SO2 NH3 H2 。 一、基本性性质 1、一氧化碳(CO) 一氧化碳是一种无色、?无味、?无臭的气体。相对密度为0.97,微溶于水,能与空气均匀地混合。一氧化碳能燃烧,当空气中一氧化碳浓度在13~75%范围内时有爆炸的危险。 主要危害:血红素是人体血液中携带氧气和排出二氧化碳的细胞。一氧化碳与人体血液中血红素的亲合力比氧大250~300倍。一旦一氧化碳进入人体后,首先就与血液中的血红素相结合,因而减

少了血红素与氧结合的机会,使血红素失去输氧的功能,从而造成人体血液“窒息”。0.08%,40分钟引起头痛眩晕和恶心,0.32%,5~10分钟引起头痛、眩晕,30分钟引起昏迷,死亡。 主要来源:爆破;矿井火灾;煤炭自燃以及煤尘瓦斯爆炸事故等。 2、硫化氢(H2 S) 硫化氢无色、微甜、有浓烈的臭鸡蛋味,当空气中浓度达到0.0001%即可嗅到,但当浓度较高时,因嗅觉神经中毒麻痹,反而嗅不到。硫化氢相对密度为1.19,易溶于水,在常温、常压下一个体积的水可溶解2.5个体积的硫化氢,所以它可能积存于旧巷的积水中。硫化氢能燃烧,空气中硫化氢浓度为4.3~45.5%时有爆炸危险。 主要危害:硫化氢剧毒,有强烈的刺激作用;能阻碍生物氧化过程,使人体缺氧。当空气中硫化氢浓度较低时主要以腐蚀刺激作用为主,浓度较高时能引起人体迅速昏迷或死亡。0.005~0.01%,1~2

DLAS技术在CO在线分析系统中的应用

81 1 概述 梅山钢铁公司能源有限公司新投运1台掺烧煤气锅炉和1台全烧煤气锅炉。本文主要讨论了运用了DLAS 技术的CO 激光在线分析系统在这2台锅炉的CO 监测系统中的应用。 众所周知,现在环保要求相当高,CO 如果大量排入大气中,导致空气中CO 浓度偏高,CO 与人体内的红细胞的结合能力比O 2与红细胞的结合能力强,并且结合后不容易分离,故而使红细胞失去正常的运输O 2的功能,使人产生中毒症状。据悉,空气中的CO 达到0.06%,呼吸1小时就能引起人的中毒,如果达到0.32%,只需30分钟,人就可以陷入昏迷而死亡。因此,对烟道CO 排放量的监视就有着非常重要的意义。另外,对锅炉烟道CO 的监视还可以监测燃料的燃烧率,防止CO 排放量超标而发生爆炸事故,还可以监视煤气燃烧是否充分提高燃烧系数,以节约能源。4#锅炉是全烧煤气锅炉,对高炉煤气的监视即对燃料量的监视显得尤为重要。 2 DLAS技术简介 DLAS(Diode Laser Absorption Spectroscopy)是半导体激光吸收光谱技术的简称。该技术是利用激光能量被气体分子“选频”吸收形式吸收光谱的原理来测量气体浓度的一种技术。具体来说,半导体激光器发射出的特定波长的激光束穿过被测气体时,被测气体对激光束进行吸收导致激光强度产生衰减,激光强度的衰减与被测气体含量成正比,因此,通过测量激光强度衰减信息即可获得被测气体的浓度。(见基本测量工作原理示意图,如图1) 3 DLAS技术在我厂的应用 3.1 系统安装 应用了DLAS 技术的激光现场在线CO 气体分析系统主要由发 射装置、接受装置和中央分析仪器等构成,发射装置和接受装置可 以直接在被测管道(烟道)上,发射装置发射特定频率的激光,直接穿过过程气体管道(烟道),被接受装置中的传感器接受,接受装置将检测信号传送到中央分析仪器,中央分析仪器完成对过程气体的检测分析和输出控制。(其安装图见图2) 发射装置:由半导体激光器、温控模块、光学视窗等组成,主要功能是发射调制激光束,该激光束通过被测气体到达接受装置。 接受装置:由传感器、光电转换模块、光学视窗等组成,主要功能是通过传感器接受通过气体环境的激光束,并将采集到的激光强度信息实时传送给中央分析仪器。 中央分析仪器:主要由电源板、信号处理板、人机界面板等部分构成。电源板将交流电源转换成直流电后供电给中央分析仪器内部各电子电路以及发射装置和接受装置中的电子电路。信号处理板完成所有的光谱信号处理,获得气体浓度。人机界面板通过液晶显示器、薄膜键盘和RS232串行口实现人机交流和外部数据通讯。 机械连接装置:由根部阀、焊接法兰和仪器法兰等构成,是将发射装置和接受装置安装在过程气体管道(烟道)上的机械装置。 吹扫装置:由精密过滤器、温压阀和流量计等构成,通过向仪器管道内吹入氮气等气体,防止光学视窗污染的防护装置。 标定装置:由标定管、减压阀和标定气等构成,是用来进行仪器标定的一套部件。 GPRS 无线通信模块:用户可选配GPRS 无线通信模块,将现场 DLAS 技术在CO 在线分析系统中的应用 王蓉婷 (梅山钢铁公司能源有限公司 江苏南京 210039) 摘要:简单介绍了利用激光能量被气体分子“选频”吸收形式吸收光谱的原理来测量气体浓度的DLAS 技术,并阐述了DLAS 技术在我厂为了测量燃料燃烧情况、对环境的污染情况和防爆处理情况,在3#炉电除尘后烟道及4#炉烟道左右侧CO 在线激光分析系统,和为了测量煤气参与燃烧的浓度的4#炉高炉煤气的CO 激光在线分析系统中的应用。 关键词:DLAS 技术 CO 在线分析 激光中图分类号 :TP216.3 文献标识码:A 文章编号:1007-9416(2013)05-0081-02 图1 图 2

气相色谱法的应用

气相色谱法的应用 气相色谱法在石油工业中的应用 ⑴石油气的分析石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25ml/nin,热导池电桥电流120~150mA, C1~C4各组分得较好的分离见图10。图10 石油在丁酮酸乙酯柱上的分离1-空气;2-乙烷;3-乙烯;4-二氧化碳;5-丙烷;6-丙烯;7-异丁烷8-乙炔;9-正丁烷;10-正丁烯;11-异丁烯12- 反丁烯-2,3;13- 顺丁烯-2,4;14-丁二烯北京化工研究院近期研究出用多孔氧化铝微球色谱固定相,对C1~C4烃分离很好,柱长2m,内径2mm,内填充0.3%阿皮松L,改性?-Al2O3,微球120~130目;柱温85℃,氮为载气,流速15ml/min,氢火焰离子化检测器。分离谱见图11. 此外吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。⑵石油馏的的分析气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6?1,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm 毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离(见图12)。图11 低级烃类的气相色谱分离图1-CH4;2-C2H6;3-C2 H4;4-C3 H8;5-C2 H2;6-C8 H6;7-iC4 H10;8-nC4 H10;9-丙二烯;10-丁烯-1;11-iC5 H12 12--i C4 H6;13- 反丁烯-2;14- 顺丁烯-2;15-丁二烯16-丙炔图12汽微量芳烃的油中色谱分离1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-一间二甲苯; 6-邻二甲苯 气相色谱法在环境科学中的应用 我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。 ⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中ppm级一氧化碳。

有毒有害气体标准

一、有毒气体 二、 1、一氧化碳:这种气体主要产生在矿井发生火灾及瓦斯、煤尘爆炸过程中。它无色、无味、无臭,比一般 空气轻,多存在于巷道中上部,是一种毒性很大的气体。当空气中的浓度达到%时,短时间内会使人丧失知觉,很快死亡。 三、人中毒昏死后,脸、嘴唇粉红色,大腿、腋下有皮下小红点。 四、《规程》第101条规定:井下一氧化碳浓度不得超过%(24ppm)。 五、 2、二氧化氮:这种气体主要来源于井下放炮工作。纯的二氧化氮是红棕色气体,井下的二氧化氮已经被风流 冲淡了,所以一般为灰白色,它有强烈的刺激味,比一般空气重,多存在于巷道中下部,它是一种剧毒气体,对人的眼睛、呼吸道及肺部组织具有强烈的腐蚀作用,能引起肺水肿、肺心病等。当空气中二氧化氮浓度达到%时,能使人在短时间内死亡。这里应特别注意的是这种气体中毒往往有拖后性,常在升井4—6小时后发作,必须引起重视。 六、《规程》规定:井下二氧化氮不得超过%。 七、 3、二氧化硫:它主要由含有硫磺的煤炭氧化和煤炭自燃产生,以及在含硫煤层中进行爆破时产生。这种气体 无色,有强烈的硫磺气味,比一般空气重,多存在于巷道中下部,二氧化硫对人的眼睛和呼吸系统有强烈的刺激作用。当它在空气中的浓度达到%时,会引起支气管炎、肺气肿,严重的短时间内能造成人的死亡。 八、《规程》规定:井下的二氧化硫不得超过%。 九、 4、硫化氢:硫化氢气体经常存在于煤层中,在落煤过程中自然放出,井下有些物质腐烂和含有硫的矿物遇到 水时也可以分解出硫化氢。这种气体无色、微甜、有臭鸡蛋味,比一般空气重,多存在于巷道中下部,它是一种有强烈毒性的气体,对人的眼、鼻、喉的粘膜有刺激作用。当空气中浓度达到%时,短时间内会使人死亡。 十、《规程》规定:硫化氢不得超过%;另外,个别煤矿井下有氨气,《规程》规定井下氨气不得超过%。 十一、二、有害气体 十二、 1、氮气:煤层中本来就有,另外井下坑木腐烂也产生一部分,氮气是井下有害气体的一种,空气中约占79% 。 这种气体无色、无味、无臭,比一般空气轻,多存在于巷道中上部,不支持燃烧,煤矿常用它防灭火,这种气体无毒,但当氮气浓度升高时,氧气浓度相对减少,可引起缺氧窒息事故。 十三、注意:这种气体《规程》虽然没有具体的浓度规定,但井下大量存在,煤矿井下必须加强重视,加强防范。十四、 2、二氧化碳:主要来源是工作人员呼吸、煤中本来就有、煤氧化、坑木腐烂、放炮、火灾、井下大小便等。 其特点是无色,略有酸味,比一般空气重,多存在于巷道中下部,不支持燃烧,易溶合在水中,对人的呼吸有刺激作用。空气中约占% 。对人的作用浓度:二氧化碳达到1%时,呼吸加快;二氧化碳达到5-8%,呼吸加快1倍以上,10%以上能使人昏死,昏死后脸、嘴唇紫红色,大腿、腋下有紫斑。 十五、《规程》规定:在采掘工作面进风流不得超过%;在采掘工作面和采区的回风流中不得超过%;在矿井总回风巷和一翼总回风巷不得超过%。

COD在线监测分析仪的操作使用、维护规程

在线COD分析仪操作规程 本规程适用于哈希水质分析仪器()CODmax plus sc型化学需氧量在线自动监测仪的操作使用及维护保养。 一、仪表概况: 1、仪表名称:COD水质分析仪。 2、仪表型号:CODmax plussc型化学需氧量在线监测仪。 3、仪表位号:AT-00302。 4、制造厂家:美国哈希公司。 5、工作温度:2~40℃。 6、技术指标: (1)电源要求:220V AC,50HZ。 (2)准确度:±8.0%。 (3)重复性:3.0%。 (4)仪表测量围:0---200mg/l。 (5)串行口:RS232。 (6)消解时间:可选择5--120Min多种间隔。 (7)检测原理:重络酸钾氧化--光度法。 (8)清洗方式:自动清洗。 (9)标定方式:自动标定。 (10)零点漂移:±5mg/l(24小时)。 (11)量程漂移:±10mg/l(24小时)。 二、溶液配制: 1、硫酸汞溶液

下列步骤是为了防止被污染的化合物引起的干扰,这些干扰可能会影响COD的测量。 (1)往1升的量杯中投入100克物质B(硫酸汞(Ⅱ)ACS)。 (2)然后缓慢地加入800毫升纯净水,使用磁力搅拌器搅拌此悬浮液,搅拌2小时。 (3)用抽滤器(烧结玻璃滤器D1)进行抽滤,量杯中就剩下了黄色的沉淀。 (4)现在往量杯中再次缓慢加入800毫升蒸馏水重复冲洗循环。 (5)使用磁力搅拌器搅拌2小时后,用抽滤器(烧结玻璃滤器D1)抽滤。第二次冲洗循环获得的抽滤水用于确定COD浓度,根据中国标准实验室COD测定方法。 2、重铬酸钾溶液 (1)首先往1升的量杯中加入700毫升的蒸馏水。

气相色谱仪用途和应用领域

气相色谱仪用途和应用领域 一、气相色谱仪用途和应用领域主要有以下方面: 、石油和石油化工分析: 油气田勘探中的化学分析、原油分析、炼厂气分析、模拟蒸馏、油料分析、单质烃分析、含硫/含氮/含氧化合物分析、汽油添加剂分析、脂肪烃分析、芳烃分析。 、环境分析: 大气污染物分析、水分析、土壤分析、固体废弃物分析。 、食品分析: 农药残留分析、香精香料分析、添加剂分析、脂肪酸甲酯分析、食品包装材料分析。 、药物和临床分析: 雌三醇分析、儿茶酚胺代谢产物分析、尿中孕二醇和孕三醇分析、血浆中睾丸激素分析、血液中乙醇/麻醉剂及氨基酸衍生物分析。 、农药残留物分析: 有机氯农药残留分析、有机磷农药残留分析、杀虫剂残留分析、除草剂残留分析等。 、精细化工分析: 添加剂分析、催化剂分析、原材料分析、产品质量控制。 、聚合物分析: 单体分析、添加剂分析、共聚物组成分析、聚合物结构表征/聚合物中的杂质分析、热稳定性研究。 、合成工业: 方法研究、质量监控、过程分析。 二、分析实例: (一)天然气常量分析: 选用热导检测器,适用于城市燃气用天然气O2、N2、CH4、CO2、C2H6、C3H8、i-C40、n-C40、i-C50、n-C50等组分的常量分析。分析结果符合国标GB10410.2-89。 (二)人工煤气分析: 选用热导检测器、双阀多柱系统,自动或手动进样,适用于人工煤气中H2、O2、N2、CO2、CH4、C2H4、C2H6、C3H6等主要成分的测定。分析结果符合国标GB10410.1-89。 (三)液化石油气分析①: 选用热导检测器、填充柱系统、阀自动或手动切换,并配有反吹系统,适用于炼油厂生产的液化石油气中C2-C4及总C5烃类组成的分析(不包括双烯烃和炔烃)。分析结果符合SH/T10230-92。 液化石油气分析②: 选用热导检测器,填充柱系统、阀自动或手动切换,并配有反吹 系统,适用于液化石油气中C5以下气态烃类组分的分析(不包括炔烃)。分析结果符合GB10410.3-89。 (四)炼厂气分析: 选用热导和氢焰离子化检测器,填充柱和毛细管柱分离,通过多阀自动切换,

各类气体分析仪基本原理及特点

各类气体分析仪基本原理及特点 1、质谱仪的基本原理 质谱仪又称质谱计,是分离和检测不同同位素的仪器。它根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。 具体工作过程为:质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按荷质比q/m(q为电荷,m为质量)大小分离的装置,原理公式:q/m=2U/B2r2(U为电压,B为磁感应强度,r为半径)。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。 优点:测量气体种类多,测试速度快,灵敏度高,结果精确,稳定性和重复性 也较高。 缺点:是价格偏高;仪器机构复杂,需要专业人员维护;要求环境高。 2、气相色谱仪的基本原理

检测混合物由载气(载气特性为惰性气体,不应与样品和溶剂反应。一般可选用且常用的载气有氢气,氮气,氦气。氦气有最好的分离柱效果,氦气用于热导式测量组件,氢气用于当氦气不能使用的场合,另一为氦气和氢气的混合气可得到较快的响应)带入,检测混合物通过色谱柱(通常为填充柱和毛细管柱)与色谱柱内固定相(我们把色谱柱内不移动,起分离作用的填料称为固定相)相互作用,这种相互作用大小的差异使各混合物各组分按先后次序从流出,并且依次导入检测器,从而得到各组分的检测信号。按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。 主要特点 气相色谱仪因为检测器的不同而具有不同的优缺点。 2、氢火焰检测器气相色谱仪。氢火焰检测器(FID, flame ionization detector)是利用氢火焰作电离源,使被测物质 电离,产生微电流的检测器。它是破坏性的、典型的质量型 检测器。 优点: 对几乎所有的有机物均有响应,特别是对烃类化合物灵敏度高,而且响应值与碳原子数成正比;对 H2O、CO2和 CS2等无机物不敏感;对气体流速、压力和温度变化不敏感。它的线性范围宽,结构简单、操作方便,死体积几乎为零。因此,作为实验室仪器, FID

相关文档
相关文档 最新文档