文档库 最新最全的文档下载
当前位置:文档库 › 高一物理牛顿第二定律2

高一物理牛顿第二定律2

高一物理《牛顿第二定律》知识点讲解

高一物理《牛顿第二定律》知识点讲解 实验:用控制变量法研究:a 与F 的关系,a 与m 的关系 一、牛顿第二定律 1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a 的方向与F 合的方 向总是相同。 2.表达式:F=ma 或 m F a 合 = 用动量表述:t P F ?=合 揭示了:① 力与a 的因果关系.... ,力是产生a 的原因和改变物体运动状态的原因; ② 力与a 的定量关系.... 3、对牛顿第二定律理解: (1)F=ma 中的F 为物体所受到的合外力. (2)F =ma 中的m ,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个 物体组成一个系统)做受力分析时,如果F 是系统受到的合外力,则m 是系统的合质量. (3)F =ma 中的 F 与a 有瞬时对应关系, F 变a 则变,F 大小变,a 则大小变,F 方向变a 也方向变. (4)F =ma 中的 F 与a 有矢量对应关系, a 的方向一定与F 的方向相同。 (5)F =ma 中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. (6)F =ma 中,F 的单位是牛顿,m 的单位是kg ,a 的单位是米/秒2. (7)F =ma 的适用范围:宏观、低速 4. 理解时应应掌握以下几个特性。 (1) 矢量性 F=ma 是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。 (2) 瞬时性 a 与F 同时产生、同时变化、同时消失。作用力突变,a 的大小方向随着改变,是瞬时的对应关系。 (3) 独立性 (力的独立作用原理) F 合产生a 合;F x 合产生a x 合 ; F y 合产生a y 合 当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在

人教版物理必修一试题02牛顿第二定律

(精心整理,诚意制作) 牛顿第二定律 1.由牛顿第二定律可推出m =a F ,所以一个物体的质量将 A .跟外力F 成正比 B .跟加速度a 成反比 C .跟F 成正比,跟a 成反比 D .跟F 与a 无关 2.静止在光滑水平面上的物体受到一个水平拉力的作用,该力随时间变化的关系如图3—2所示,则 图3—2 ①物体在2s 内的位移为零 ②4s 末物体将回到出发点 ③2s 末物体的速度为零 ④物体一直在朝同一方向运动 以上正确的是 A .①② B .③④ C .①③ D .②④ 3.一个物体质量是5kg ,在五个力作用下处于平衡状态,若撤去一个力,其他四个力保持不变,则物体沿水平方向向东的方向产生4m/s 2的加速度,则去掉的那个力的大小是______N ,方向______. 4.用2 N 的水平力拉一个物体沿水平地面运动时,加速度为1m/s 2,改为3 N 的水平力拉它时加速度将是2m/s 2,那么改用4N 的力拉它时,加速度将是______m/s 2,物体与地面间的动摩擦因数μ=______. 5.质量为m 的物体在力F 甲和F 乙作用下由静止开始运动,规律如图3—3 所示,则F 甲是F 乙的______倍.若图为同一恒力F 分别作用在质量为m 甲和m 乙的两个物体上由静止开始运动的规律,则m 甲是m 乙的______倍.

图3—3 6.重为1N的物体原来静止,如果受到恒力作用,经过4s获得39.2m/s 的速度,则该水平恒力的大小为多少? 7.质量为0.2kg的物体从高处以9.6m/s2的加速度匀速下落,则物体所受的合力为多少?空气阻力为多少? 8.说明加速度的物理含义及其具体数值所表示的意义. 参考答案 1.D 2.B 3.20 向西 1 4.3 0.1 5.3 3 6.1N 7.1.92N 0.04N 8.略

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

高中物理牛顿运动定律典型例题精选讲解解析

2012牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛 顿(定义使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N,即1N=1kg.m/s 2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力 的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右 为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, 0 图1

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

(完整word版)质点系牛顿第二定律-分析

质点系牛顿第二定律的讨论 浙江邮电职业技术学院 徐超明 《中学物理》24卷第7期《质点系牛顿第二定律的简单应用》(简称吴文)讨论了质点系部分质点有相对加速度时的求解方法,提出了用质点系牛顿第二定律求解连接体要比隔离法简单。是的,吴文实际上将质点系的质点加速度在正交直角坐标系两个方向上进行分解,并整体列方程进行求解。 质点系牛顿第二定律可叙述为:质点系的合外力等于系统内各质点的质量与 加速度乘积的矢量和。即: F 合=m 1a 1+m 2a 2+m 3a 3+……+m n a n (1) 这里假定质点系中有n 个质点具有对地的相对加速度。 (上见吴文) 将(1)式再变形,可得: F 合-m 1a 1-m 2a 2-m 3a 3-……-m n a n =0 (2) 若令F 1’=-m 1a 1,F 2’=-m 2a 2,F 3’=-m 3a 3,……,F n ’=-m n a n 则 F 合+∑=n i 1F i ’=0 (3) 从(3)式可得:如果将第i 个质点的加速度效应用F i ’来代替,则就可以用 力合成的静力学方法来求解具有加速度的动力学问题,使质点系部分质点具有加速度的求解比吴文更简单。 值得注意的是F i ’为人为假设力,不是真实存在的,它没有施力体,其大小等于该质点质量与质点加速度的乘积,方向与加速度方向相反。 例1 如图1,质量为M 、倾角为α 的斜面静止在粗糙的水平面上,质量为m 的滑块沿M 粗糙的斜面以加速度a 下滑,求地面对M 的支持力和摩擦力。 图1 解:在M 、m 两质点组成的系统中,受到竖直向下的重力(M +m )g ;地

面对质点系的支持力N;F1’是质点m因具有加 速度a而转换成的假设力,其大小为ma,方向 与加速度a相反;f是地面对质点系的摩擦力, 如图2。 这样我们就可马上求得: f=F1’cosα=ma cosα N =(M+m)g-F1’sinα =(M+m)g-ma sinα图2 例2:如图3,静止在水平面上的木箱M 中央有一根竖直的杆,小环m沿杆有摩擦地以 加速度a下滑,求M对地面的压力的大小。 图3 解:在M、m两质点组成的系统中,受到重力 (M+m)g,地面对质点系的支持力N,质点m因 具有a加速度而添加的假设力ma,如图4。 则立即可得到: N =(M+m)g-ma 图4 例3:如图5,质量为M的木板可沿放在 水平面上固定不动、倾角为α的斜面无摩擦地滑 下。欲使木板静止在斜面上,木板上质量为m的 人应以多大的加速度沿斜面向下奔跑? 图5 解:在M、m两质点组成的系统中,受到竖 直向下的重力(M+m)g,斜面对质点系的支持力

二次函数对称轴经典问题

高中数学二次函数对称轴典型问题练习题 二次函数在闭区间上一定存在最大值和最小值,此类问题与区间和对称轴有关,一般分为三类: ①定区间,定轴; ②定区间,动轴, ③动区间,动轴.要认真分析对称轴与区间的关系,合理地进行分类讨论,特别要注意二次项系数是否为0. 第一类问题 二次函数中的动轴定区间 例一已知函数2 142+-+-=a ax x y 在区间[0,1]上的最大值是2,求实数a 的值。 〖解答〗.3 106,310,2)1(,]1,0[,2,12/;,20,32,2)2 (,20,120;6,2)0(,]1,0[,0,02 ,2,42)2(max max max 22或综上上单调递增函数在即时当故舍去矛盾与或得有即时当得有上单调递减函数在即时当对称轴为-==∴==∴>>≤≤-===≤≤≤≤-===<<=+-+--=a a f y a a a a a f y a a a f y a a a x a a a x y 第二类问题 二次函数中的定轴动区间 例二 函数f (x )=142-+-x x 在区间[t ,t +1](t ∈R)上的最大值记为g (t ). (1)求g (t )的解析式;(2)求g (t )的最大值 (1)对区间[t ,t +1](t ∈R)与对称轴x =2的位置关系进行讨论: ①当t +1<2,即t <1时,函数f (x )在区间[t ,t +1]上递增,

此时g (t )=f (t +1)=-t 2+2t +2; ②当t ≤2≤t +1,即1≤t ≤2时,函数f (x )在区间[t ,t +1]上先增后减, 此时g (t )=f (2)=3; 例三 已知f (x )=)(2)34(2R a a x x a ∈+--a ∈R),求f (x )在[0,1]上的最大 值 ()()()()()()2222[1]4122(1)3(12)241(2) 3. t f x t t g t f t t t t t t g t t t t t g t >?-++? ③当时,函数在区间,+上递减,此时==-+-,综上,=利用图象解得的最大值是()()()[]()()()()[]()()max max 4430342.30,140.34430341()43003430,10.12a a f x x f x f x f a a a a x a f x f x f a ????≠≠ <><-????若-=,则=,所以=-+由于在上是减函数,所以==若-,即,分两种情况讨论:ⅰ若-,即,因为对称轴=,所以在上是减函数,所以=【】=解析()()()()()[]max max 41()4300343112043231221124<<<0.243330,12a a x a a a f x f a a f x f a a f x ><>-<≤≤-????????-?ⅱ若-,即,因为对称轴= ,故又分两种情况讨论: ①当,即时,==-;②当,即时,==综上所述,在上的最大值是关

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

初中升高中物理教材衔接知识点归纳总结13牛顿第二定律

衔接点13牛顿第二定律 1 【基础知识梳理】 1、牛顿第二定律的内容:物体的加速度跟所受的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同. 2、牛顿第二定律的表达式:F=ma 3、牛顿第二定律的理解 (1)同向性:加速度的方向与力的方向始终一致 (2)瞬时性;加速度与力是瞬间的对应量,即同时产生、同时变化、同时消失 (3)同体性:加速度和合外力(还有质量)是同属一个物体的 (4)独立性:当物体受到几个力的作用时,各力将独立地产生与其对应的加速度,而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果 2、牛顿第二定律解决实际问题 1.确定研究对象. 2.分析物体的受力情况和运动情况,画出研究对象的受力分析图. 3.求出合力.注意用国际单位制统一各个物理量的单位. 4.根据牛顿运动定律和运动学规律建立方程并求解. 3、超重和失重 超重现象:物体对支持物的压力(或对悬挂物的拉力)大于物体受到的重力的现象称为超重现象. 失重现象:当物体对支持物的压力和对悬挂物的拉力小于物体重力的现象称为失重现象. 1.如图所示,质量为2 kg的物体A静止在竖直的轻弹簧上面。质量为3 kg的物体B用轻质细线悬挂,A、B接触但无挤压。某时刻将细线剪断,则细线剪断瞬间,B对A的压力大小为(g=10 m/s2)

A .12 N B .22 N C .25 N D .30N 【答案】A 【解析】剪断细线前,A 、B 间无压力,对A 受力分析,受重力和弹簧的弹力,根据平衡条件有: 21020A F m g ==?=N 剪断细线的瞬间,对整体分析,根据牛顿第二定律有: ()()A B A B m m g F a m m =+-+ 代入数据得整体加速度为:6a =m/s 2 隔离对B 分析,根据牛顿第二定律有:B B m g N m a -= 代入数据解得:12N =N ,故A 正确,BCD 错误。故选A . 2.如图所示,小球从轻弹簧正上方无初速释放,从小球开始接触弹簧到弹簧被压缩到最短的过程中,小球的速度、加速度和所受的合力的变化是 A .合力变大,加速度变小,速度变小 B .合力与加速度逐渐变大,速度逐渐变小 C .合力与加速度先变小后变大,速度先变大后变小 D .合力、加速度和速度都是先变大后变小 【答案】C 【解析】小球与弹簧接触后,受重力和弹力作用,开始重力大于弹力,合力方向向下,则加速度方向向下,向下做加速度减小的加速运动,当重力和弹力相等后,弹力大于重力,合力方向向上,加速度方向向上,与速度方向相反,做加速度逐渐增大的减小运动。所以合力和

二次函数典型例题——最大值问题

二次函数典型例题——最大面积 1、如图所示,在平面直角坐标系中,Rt△OBC 的两条直角边分别落在x 轴、y 轴上,且 OB=1,OC=3,将△OBC 绕原点O 顺时针旋转90°得到△OAE ,将△OBC 沿y 轴翻折得到△ODC ,AE 与CD 交于点 F. (1)若抛物线过点 A 、B、C, 求此抛物线的解析式; (2)求△OAE 与△ODC 重叠的部分四边形ODFE 的面积; (3)点M 是第三象限内抛物线上的一动点,点M 在何处时△AMC 的面积最大?最大面积 是多少?求出此时点M 的坐标. 解:(1)∵OB=1 ,OC=3 ∴C(0,-3),B(1,0) ∵△OBC 绕原点顺时针旋转90°得到△ OAE ∴A(-3,0) 所以抛物线过点A(-3 ,0),C(0,-3),B(1,0) 设抛物线的解析式 为 y 2 ax bx c(a 0) ,可得 a+b+c 0a1 c -3解得b2 9a-3b c 0c-3 ∴过点A,B,C 的抛物线的解析式为y x2 2x-3 (2)∵△OBC 绕原点顺时针旋转90°得到△ OAE ,△OBC 沿y 轴翻折得到△COD ∴ E(0,-1),D(-1,0) 1 可求出直线AE 的解析式为y 1x 1 3直线DC 的解析式为y 3x 3 ∵点F为AE、DC 交点 ∴F(-3,-3) 44

3 S 四边形 ODFE =S △AOE -S △ADF = 4 3)连接 OM ,设 M 点的坐标为 (m ,n ) 2 2、在平面直角坐标系 xOy 中,抛物线 y mx 2 (m 2)x 2 过点 (2, 4) ,且与 x 轴交于 A 、 B 两点(点 A 在点 B 左侧),与 y 轴交于点 C.点 D 的坐标为 (2,0) ,连接 CA ,CB ,CD. (1)求证: ACO BCD ; (2) P 是第一象限内抛物线上的一个动点,连接 DP 交 BC 于点 E. ①当 △BDE 是等腰三角形时,直接写出点 E 的坐标; ②连接 CP ,当△ CDP 的面积最大时,求点 E 的坐标. ∵点 M 在抛物线上,∴ n 2 m 2m ∴ S AMC S AMO S OMC S AOC = 12OA m = 32(m 2 11 OC n OA OC 2 2 3m) 3(m 因为 0 m 3 ,所以当 m 所以当点 M 3 的坐标为 ( , 2 3 9 3 (m n) (m n 3) 2 2 2 3 2 27 2) 8 3 时, 2 15 - ) 时, 4 n 15 ,△AMA ' 的面积有最大值 4 △ AMA '的面积有最大值

高一物理牛顿第二定律知识点

2019年高一物理牛顿第二定律知识点 牛顿第二运动定律的常见表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比。接下来我们大家一起了解高一物理牛顿第二定律知识点。 2019年高一物理牛顿第二定律知识点 1.定律内容:物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同. 2.公式:F合=ma 牛顿原始公式:F=Δ(mv)/Δt(见牛顿《自然哲学之物理原理》).即,作用力正比于物体动量的变化率,这也叫动量定理.在相对论中F=ma是不成立的,因为质量随速度改变,而 F=Δ(mv)/Δt依然使用. 3.几点说明: (1)牛顿第二定律是力的瞬时作用规律.力和加速度同时产生、同时变化、同时消逝. (2)F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向反正方向. (3)根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物本所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:

Fx=max,Fy=may列方程. 4.牛顿第二定律的五个性质: (1)因果性:力是产生加速度的原因. (2)矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定.牛顿第二定律物理表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同. (3)瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系.牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应. (4)相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系.地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立. (5)独立性:作用在物体上的各个力,都能各自独立产生一个加速度,各个力产生的加速度的矢量和等于合外力产生的加速度. (6)同一性:a与F与同一物体某一状态相对应. [编辑本段]牛顿第二定律的适用范围

实际问题与二次函数典型l例题

1. 某商品的售价为每件60 元,进价为每件40元,每星期可卖出300件,该商场一星期卖这种商品的利润为元。 2、我班某同学的父母开了一个小服装店,出售一种进价为40元的服装,现每件60元,每星期可卖出300件. 该同学对父母的服装店很感兴趣,因此,他对市场作了如下的调查: 如调整价格,每降价1元,每星期可多卖出20件. 请问同学们,该如何定价,才能使一星期获得的利润最大? 3、某种商品每件的进价为30元,在某段时间内若以每件x元出售(按部门规定,单价不超过每件70元),可以卖出(100- x)件,应如何定价才能使利润最大? 4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。 (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式; (2)求该批发商平均每天的销售利润ω(元)与销售价x(元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? 5、某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查,在进价不变的情况下,若每千克涨价1元,销量将减少10千克 (1)该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多? 6、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系). (1)由已知图象上的三点坐标,求累积利润s(万元)与销售时Array间t(月)之间的函数关系式; (2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?

高一物理必修一牛顿第二定律的应用

牛 顿第二定律的应用 一、计算题 1.如图所示,在游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来。若人和滑板的总质量m = 60 kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ= 0.50,斜坡的倾角θ= 37°(sin37° = 0.6,cos37° = 0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10 m/s 2.求: (1)人从斜坡上滑下的加速度为多大? (2)若AB 的长度为25m ,求人到B 点时的速度为多少? 2.如图所示,物体的质量m=4 kg ,与水平地面间的动摩擦因数为μ=0.2,在与水平方向夹角为37°、大小为10 N 的恒力F 的作用下,由静止开始加速运动,取g=10m/s 2,已知sin 37°= 0.6,cos 37°= 0.8,试求: (1)物体运动的加速度的大小a ; (2)若1t =10 s 时撤去恒力F ,物体还能继续滑行的时间2t 和距离 x . 3.放于地面上、足够长的木板右端被抬高后成为倾角为0137θ=的斜面,此时物块恰好能沿着木板匀速下滑,重力加速度取10m/s 2,sin370=0.6,cos370=0.8,求 (1)物块与木板间的动摩擦因数;

(2)若将此木板右端被抬高后成为倾斜角为0253θ=的斜面,让物块以一定初速度v 0=10m/s 从底端向上滑, 能上滑离底端的最远距离是多大. 4.如图所示,物体的质量m=4kg ,与水平地面间的动摩擦因数为μ=0.2,在与水平面成37°,F=10N 的恒力作用下,由静止开始加速运动,当t=5s 时撤去F ,(g=10m/s 2,sin37°=0.6,cos37°=0.8)。求: (1)物体做加速运动时的加速度a ; (2)撤去F 后,物体还能滑行多长时间? 5.如图所示,水平地面上有一质量m=2.0kg 的物块,物块与水平地面间的动摩擦因数μ=0.20,在与水平方向成θ=37°角斜向下的推力F 作用下由静止开始向右做匀加速直线运动。已知F=10N ,sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物块运动过程中所受滑动摩擦力的大小; (2)物块运动过程中加速度的大小; (3)物块开始运动5.0s 所通过的位移大小。 6.如图所示,粗糙斜面固定在水平地面上,用平行于斜面的力F 拉质量为m 的物块,可使它匀速向上滑动,若改用大小为3F 的力,扔平行斜面向上拉该物体,让物体从底部由静止开始运动,已知斜面长为L ,物块可看作质点,求: (1)在力3F 的作用下,物体到达斜面顶端的速度; (2)要使物体能够到达斜面顶端,3F 力作用的时间至少多少?

高一物理牛顿第二定律练习题

二、牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是[ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是[ ] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作[ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ]

A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的 D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是[ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块[ ] A.有摩擦力作用,方向向右 B.有摩擦力作用,方向向左 C.没有摩擦力作用

新课标初中升高中衔接-物理:牛顿第二定律

第二节牛顿第二定律 一、牛顿第二定律

正交分解后,列出方程F x =ma ,F y =0. ①特殊情况下,若物体的受力都在两个互相垂直的方向上,也可将坐标轴建立在力的方向上,正交分解加速 度a .根据牛顿第二定律????? F x =ma x F y =ma y 及F =F 2x +F 2y 求合外力. 例题1.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A .由F =ma 可知,物体所受的合外力与物体的质量成正比,与物体的加速度成反比 B .由m =F a 可知,物体的质量与其所受合外力成正比,与其运动的加速度成反比 C .由a =F m 可知,物体的加速度与其所受合外力成正比,与其质量成反比 D .由m =F a 可知,物体的质量可以通过测量它的加速度和它所受到的合外力求出 【参考答案】CD 【试题解析】a =F m 是加速度的决定式,a 与F 成正比,与m 成反比;F =ma 说明力是产生加速度的原因,但不能说F 与m 成正比,与a 成正比;质量是物体的固有属性,与F 、a 皆无关. 例题2.力F1作用在物体上产生的加速度a 1=3 m/s 2,力F 2作用在该物体上产生的加速度a 2=4 m/s 2,则F 1和F 2同时作用在该物体上,产生的加速度的大小可能为( ) A .7 m/s 2 B .5 m/s 2 C .1 m/s 2 D .8 m/s 2 【参考答案】ABC 【试题解析】加速度a 1、a 2的方向不确定,故合加速度a 的范围为|a 1-a 2|≤a ≤a 1+a 2,即1 m/s 2≤a ≤7 m/s 2,故 A 、 B 、 C 项符合题意 例题3.如图所示,一质量为8 kg 的物体静止在粗糙的水平地面上,物体与地面间的动摩擦因数为0.2,用一水平力F =20 N 拉物体由A 点开始运动,经过8 s 后撤去拉力F ,再经过一段时间物体到达B 点停止. 求:(g =10 m/s 2) (1)在拉力F 作用下物体运动的加速度大小; (2)撤去拉力时物体的速度大小; (3)撤去拉力F 后物体运动的距离. 【参考答案】(1)0.5 m/s 2 (2)4 m/s (3)4 m 【试题解析】(1)对物体受力分析,如图所示竖直方向mg =F N 水平方向,由牛顿第二定律得F -μF N =ma 1

初三《二次函数》经典习题汇编(易错题、难题)

《 二次函数 》经典习题汇编 模块一:二次函数的相关概念 1.(2014山东东营,9)若函数21(2)12 y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( ) A .0 B .0或2 C .2或-2 D .0,2或-2 2.(2015江苏宿迁,16)当x m =或x n =(m n ≠)时,代数式223x x -+的值相等,则x m n =+时,代数 式223x x -+的值为 。 3.(2013江苏南通,18)已知22x m n =++和2x m n =+时,多项式2 46x x ++的值相等,且20m n -+≠,则当3(1)x m n =++时,多项式246x x ++的值等于________。 模块二:二次函数的顶点问题 1.(2015湖南益阳,8改编)若抛物线2()(1)y x m m =+++的顶点在第一象限,则m 的取值范围为________。 2.(2013吉林,6)如图,在平面直角坐标系中,抛物线所表示的函数解析式为22()y x h k =--+,则下列结论正确的是( ) A .0h >,0k > B .0h <,0k > C .0h <,0k < D .0h >,0k < 模块三:二次函数的对称轴问题 1.(2014福建三明,10)已知二次函数2 2y x bx c =-++,当1x >时,y 的值随x 值的增大而减小,则实数b 的取值范围是( ) A .1b ≥- B .1b ≤- C .1b ≥ D .1b ≤ 2.(2013贵州贵阳,15)已知二次函数222y x mx =++,当2x >时,y 随x 的增大而增大,则实数m 的取值范围是________。 3.(2015江苏常州,7)已知二次函数2(1)1y x m x =+-+,当1x >时,y 随x 的增大而增大,而m 的取值范围是( ) A .1m =- B .3m = C .1m ≤- D .1m ≥- 模块四:二次函数的图象共存问题 1.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能是( )

高中物理牛顿第二定律经典习题训练含答案

牛顿第二定律典型题型及练习 一、巧用牛顿第二定律解决连接体问题 所谓的“连接体”问题,就是在一道题中出现两个或两个以上相关联的物体,研究它们的运动与力的关系。 1、连接体与隔离体:两个或几个物体相连接组成的物体系统为连接体。如果把其中某 个物体隔离出来,该物体即为隔离体。 2、连接体问题的处理方法 (1)整体法:连接体的各物体如果有共同的加速度,求加速度可把连接体作为一个整 体,运用牛顿第二定律列方程求解。 (2)隔离法:如果要求连接体间的相互作用力,必须隔离出其中一个物体,对该物体 应用牛顿第二定律求解,此方法为隔离法。隔离法目的是实现内力转外力的,解题要注意判明每一隔离体的运动方向和加速度方向。 (3)整体法解题或隔离法解题,一般都选取地面为参照系。 例题 1 跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图1所示. 已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计.取重 力加速度g=lOm/s2.当人以440 N的力拉绳时,人与吊板的加速度a和人 对吊板的压力F分别为( ) A.a=1.0m/s,F=260N B.a=1.0m/s,F=330N C.a=3.0m/s,F=110N D.a=3.0m/s,F=50N 二、巧用牛顿第二定律解决瞬时性问题 当一个物体(或系统)的受力情况出现变化时,由牛顿第二定律可知, 其加速度也将出现变化,这样就将使物体的运动状态发生改变,从而导致该物体(或系统) 对和它有联系的物体(或系统)的受力发生变化。 例题2如图4所示,木块A与B用一轻弹簧相连,竖直放在木块C上。三者静置于 地面,它们的质量之比是1∶2∶3。设所有接触面都光滑,当沿水 平方向迅速抽出木块C的瞬时,A和B的加速度a A、a B分别是多少? 题型一对牛顿第二定律的理解 1、关于牛顿第二定律,下列说法正确的是() A.公式F=ma中,各量的单位可以任意选取 B.某一瞬间的加速度只决定于这一瞬间物体所受合外力,而与这之前或之后的受力无关 C.公式F=ma中,a实际上是作用于该物体上每一个力所产生的加速度的矢量和 D.物体的运动方向一定与它所受合外力方向一致 【变式】.从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用 一个很小的力去推很重的桌子时,却推不动它,这是因为() A.牛顿的第二定律不适用于静止物体 B.桌子的加速度很小,速度增量极小,眼睛不易觉察到 C.推力小于静摩擦力,加速度是负的D.桌子所受的合力为零

怎样在非惯性系中运用牛顿第二定律求解物理问题

怎样在非惯性系中运用牛顿第二定律求解物理问题 新课程物理必修1-1在74页给同学们介绍了惯性系和非惯性系。区分惯性系和非惯性系就在于分清坐标系的加速度是否等于零。如果某个参考系的加速度为零,则该参考系就是惯性系,在惯性系内,对研究对象而言,牛顿定律成立;如果某个参考系的加速度不为零,则该参考系就是非惯性系,在非惯性系内,对研究对象而言,牛顿定律不成立;而如果我们假设研究对象除了受到其它的力以外,还受到一个惯性力()的作用,则在该非惯性系内,对研究对象就可以用牛顿定律进行求解了。下面我们举一个例题进行具体分析。 如图1,一个质量为m 的光滑小球,置于升降机内倾角为θ的斜面上。另一个垂直于斜 面的挡板同小球接触,挡板和斜面对小球的弹力分别为1 N 和2N 。起初,升降机静止,后来,升降机以a 向上加速运 动。试求: 升降机静止和以a 加速运动这两种情况下,挡板和斜 面对小球的弹力分别为多少? 解:方法一:在惯性系中运用牛顿第二定律, 我们首先对小球进行受力分析,如图2,得到: 建立平面直角坐标系,如图2,得到: ma mg N N =-+θθcos sin 21 θθsin cos 21N N = 解,得到: θsin )(1a g m N += θcos )(2a g m N += 方法二: 从另一种角度来说,本题中如果以电梯为参考 系(非惯性参考系),则小球处于静止状态,其受力情况处于 平衡状态。小球的受力情况如图3所示,则(其中,* f 为惯 性力的大小): *21cos sin f mg N N +=+θθ θθsin cos 21N N = ma f =* 解,得到: θsin )(1a g m N +=

二次函数典型例题

二次函数典型例题 一、已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且10;③ 4a+c<0;正确的有几个? 解1: 两根之积为负,c/a<0,C>0,a<0 对对称轴为负,-b/2a<0,a,b同号都为负 两根之和为负,-b/a>-1,a<b<0 把(-2,0)代入 0=4a-2b+c,2b=4a+c<0 x=1时,a+b+c>0,6a+3c>0,即2a+c>0,都正确 解2 1. 函数y=f(x)通过(-2,0), f(-2)=4a-2b+c=0 2. 函数与x轴交于-2, x1 两点,与y正半轴相交,且交点x=0在-2,1之间,所以开口向下,a<0 又对称轴x=-b/2a 在(-2+1)/2和(-2+2)/2之间所以-1/2<-b/2a<0 即a0 2a+2b+2c>0 和上式联立得 2a+c>0 4. 由于函数与y轴交于正半轴且在(0,2) 下方,f(0)=c<2 c=2b-4a<2 即2a-b+1>0 由以上可知正确结论个数四个 追问2a+2b+2c>0和 c=2b-4a怎么得出? 回答由f(1)=a+b+c>0 不等式两边同乘以2 得 2a+2b+2c>0 由f(-2)=4a-2b+c=0 得 c=2b-4a 2a+2b+2c>0和4a-2b+c=0 两式相加即可得出 2a+c>0 二、二次函数y=ax2+bx+c的图象与x轴交于点(1,0)且a<b<c.那么①abc>0;②b2-4ac<0;③a+b+c=0;④2a-b<0;⑤2a+c<0.这五个式子中,一定正确的是③④⑤(填序号). 解析根据图象与x轴交于点(1,0)且a<b<c,首先确定a<0,c>

相关文档
相关文档 最新文档