文档库 最新最全的文档下载
当前位置:文档库 › HACH 哈希 TN 快速测定方法

HACH 哈希 TN 快速测定方法

HACH 哈希 TN 快速测定方法
HACH 哈希 TN 快速测定方法

Nitrogen, Total

Page 1 of 8

How to use instrument-specific information

The Instrument-specific information table displays requirements that may vary between

instruments. To use this table, select an instrument then read across to find the corresponding information required to perform this test.

Nitrogen, Total

DOC316.53.001086

Persulfate Digestion Method Method 10071LR (0.5 to 25.0 mg/L N)

Test ‘N Tube? Vials

Scope and Application:For water and wastewater

Test preparation

Table 1 Instrument-specific information

Instrument Light shield

Adapter DR 5000——DR 2800

LZV646—DR 2700LZV646—DR/2500——DR/2400

5945700

Before starting the test:

DR 2800 and DR 2700 only: Install the light shield in Cell Compartment #2 before performing this test.Digestion is required for determining total nitrogen.

This test is technique-sensitive. Invert the vials as described here to avoid low results: Hold the vial in a vertical position with the cap pointing up. Turn the vial upside-down. Wait for all of the solution to flow down to the cap. Pause. Return the vial to an upright position. Wait for all the solution to flow to the bottom of the vial. This process equals one inversion.If the test overranges, repeat the digestion and measurement with diluted sample. The digestion must be repeated for accurate results.

Use the deionized water provided in the reagent set or Organic-free Water to prepare the standards and perform the procedure.

Collect the following items:

Description

Quantity

Test ‘N Tube? LR Total Nitrogen Reagent Set 1DRB200 Reactor 1Funnel, micro

1Light Shield or adapter (see Instrument-specific information )1Pipet, TenSette ?, 1.0 to 10.0 mL plus tips 1Test Tube Cooling Rack 1–3Finger Cots

2

See Consumables and replacement items for reorder information.

Nitrogen, Total Page 2 of 8

Nitrogen, Total

Persulfate digestion method

1.Turn on the DRB200 Reactor and heat to 105°C.

https://www.wendangku.net/doc/1815167871.html,ing a funnel, add the contents of one Total Nitrogen Persulfate

Reagent Powder Pillow to each of two Total Nitrogen Hydroxide Digestion Reagent vials. Wipe off any reagent that may get on the lid or the tube threads.

Note: One reagent blank is sufficient for each set of samples.

3.Prepared Sample: Add 2 mL of sample to one vial.

Blank Preparation: Add 2mL of the deionized

water included in the kit to a second vial.

Use only water that is free of all nitrogen-containing species as a substitute for the provided deionized water.

4.Cap both vials. Shake vigorously for at least 30seconds to mix. The persulfate reagent may not dissolve completely after shaking. This will not affect accuracy.

5.Insert the vials in the reactor and close the lid. Heat for exactly 30 minutes.

https://www.wendangku.net/doc/1815167871.html,ing finger cots, immediately remove the hot vials from the reactor. Cool the vials to room temperature.

7.Select the test.Insert an adapter if

required (see Instrument-specific information ).

8.Remove the caps from the digested vials and add the contents of one Total Nitrogen (TN) Reagent A

Powder Pillow to each vial.

350 N, Total LR TNT

Stored Programs

Start

Nitrogen, Total

Nitrogen, Total

Page 3 of 8

9.Cap the tubes and shake for 15 seconds.10.Start the instrument timer.

A three-minute reaction period will begin.

11.After the timer expires, remove the caps from the vials and add one TN Reagent B Powder Pillow to each vial.

12.Cap the tubes and shake for 15 seconds. The reagent will not completely dissolve. This will not affect accuracy. The

solution will begin to turn yellow.

13.Start the instrument timer.

A two-minute reaction period will begin.

14.After the timer expires, remove the caps from two TN Reagent C vials and add 2 mL of digested, treated sample to one vial. Add 2 mL of digested, treated reagent blank to the second TN Reagent C vial.

15.Cap the vials and invert ten times to mix. Use slow, deliberate inversions for complete recovery.

The tubes will be warm to the touch.

16.Start the instrument timer.

A five-minute reaction period will begin. The yellow color will intensify.

Persulfate digestion method (continued)

Nitrogen, Total Page 4 of 8

Nitrogen, Total

Blanks for colorimetric measurement

The reagent blank may be used up to seven days for measurements using the same lots of reagents. Store it in the dark at room temperature (18–25 °C). If a small amount of white floc appears within a week, discard the reagent blank and prepare a new one.

Interferences

The Non-interfering substances table shows substances that have been tested and found not to interfere up to the indicated levels (in mg/L). Interfering substances that resulted in a concentration change of ±10% appear in the Interfering substances table.

17.Wipe the reagent blank and insert it into the 16-mm round cell holder.

18.ZERO the instrument.The display will show:

0.0 mg/L N

19.Wipe the reagent vial and insert it into the 16-mm round cell holder.

Note: Multiple samples may be read after zeroing on one reagent blank.

20.READ the results in mg/L N.

Table 2 Non-interfering substances

Interfering substance Interference level Barium 2.6 mg/L Calcium 300 mg/L Chromium (3+)

0.5 mg/L Iron 2 mg/L Lead 6.6 μg/L Magnesium 500 mg/L Organic Carbon

150 mg/L pH

13 pH units Phosphorus 100 mg/L Silica 150 mg/L Silver 0.9 mg/L Tin

1.5 mg/L

Table 3 Interfering substances

Interfering substance Interference level

Bromide

>60 mg/L; positive interference

Persulfate digestion method (continued)

Zero Read

Nitrogen, Total

Nitrogen, Total

Page 5 of 8

This test performed with standard nitrogen solutions prepared from the following compounds obtained 95% recovery:Ammonium chloride or nicotinic-PTSA spikes in domestic influent, effluent and the ASTM standard specification for substitute wastewater (D 5905-96) also resulted in ≥ 95% recovery.

The large amounts of nitrogen-free organic compounds in some samples may decrease digestion efficiency by consuming some of the persulfate reagent. Samples known to contain high levels of organics should be diluted and re-run to verify digestion efficiency.

Sample collection, storage and preservation

?Collect samples in clean plastic or glass bottles. Best results are obtained with immediate analysis.

?Preserve the sample by reducing the pH to 2 or less with concentrated (at least 2mL/L) Sulfuric Acid.

?Store samples at 4 °C (39 °F) or less. Preserved samples may be stored up to 28 days. ?Warm stored samples to room temperature and neutralize with 5N Sodium Hydroxide before analysis.

?

Correct the test result for volume additions.

Accuracy check

This method generally yields 95–100% recovery on organic nitrogen standards. For proof of accuracy use Primary Standards for Kjeldahl Nitrogen.

1.Prepare one or more of the following three solutions. Each preparation is for an equivalent 25-mg/L N standard. Use the deionized water included in the kit or water that is free of all organic and nitrogen-containing species.

a.Weigh 0.3379 g of Ammonium p-Toluenesulfonate (PTSA). Dissolve in a 1000-mL

volumetric flask with deionized water. Add deionized water to the 1000-mL mark.b.Weigh 0.4416 g of Glycine p-Toluenesulfonate (PTSA). Dissolve in a 1000-mL volumetric

flask with deionized water. Add deionized water to the 1000-mL mark.c.Weigh 0.5274 g of Nicotinic p-Toluenesulfonate (PTSA). Dissolve in a 1000-mL volumetric

flask with deionized water. Add deionized water to the 1000-mL mark.2.Analyze each of these solutions using the test procedure above. Calculate the percent

recovery for each using this formula. Refer to the Percent recovery table for more information.

Chloride

>1000 mg/L; positive interference

?Ammonium chloride ?Urea ?Ammonium sulfate ?

Glycine

?

Ammonium acetate

Table 3 Interfering substances (continued)

Interfering substance Interference level

% recovery measured concentration

25

---------------------------------------------------------------100

×=

Nitrogen, Total

Refer to the Percent recovery table.

Table4 Percent recovery

Compound Lowest Expected % Recovery

Ammonia-PTSA95%

Glycine-PTSA95%

Nicotinic-PTSA95%

Analysts have found Ammonia-PTSA to be the most difficult to digest. Other compounds may yield

different percent recoveries.

Standard additions method (sample spike)

Required for accuracy check:

?Ammonia Nitrogen Standard Solution, 1000-mg/L as NH3–N

?Ampule breaker

?TenSette Pipet

?Mixing cylinders (3)

1.After reading test results, leave the sample cell (unspiked sample) in the instrument.

2.Select standard additions from the instrument menu:

Instrument Navigate to:

DR 5000OPTIONS>MORE>STANDARD ADDITIONS

DR 2800OPTIONS>MORE>STANDARD ADDITIONS

DR 2700OPTIONS>MORE>STANDARD ADDITIONS

DR/2500OPTIONS>STANDARD ADDITIONS

DR/2400OPTIONS>STANDARD ADDITIONS

3.Accept the default values for standard concentration, sample volume and spike volumes. After

the values are accepted, the unspiked sample reading will appear in the top row. See the user

manual for more information.

4.Open the standard solution ampule.

https://www.wendangku.net/doc/1815167871.html,e the TenSette Pipet to prepare spiked samples: add 0.1 mL, 0.2 mL and 0.3 mL of

standard to three 10-mL portions of fresh sample.

6.Follow the Persulfate digestion method test procedure for each of the spiked samples, starting

with the 0.1 mL sample spike. Measure each of the spiked samples in the instrument.

7.Select GRAPH to view the results. Select IDEAL LINE (or best-fit) to compare the standard

addition results to the theoretical 100% recovery.

Standard solution method

Note: Refer to the instrument user manual for specific software navigation instructions.

Required for accuracy check:

?10-mg/L ammonia nitrogen standard solution

1.Substitute 2 mL of a 10-mg/L ammonia nitrogen standard solution in place of the sample.

Follow the Persulfate digestion method test procedure.

Nitrogen, Total

Page 6 of 8

Nitrogen, Total

Nitrogen, Total

Page 7 of 8

2.To adjust the calibration curve using the reading obtained with the standard solution, navigate

to Standard Adjust in the software.

3.Turn on the Standard Adjust feature and accept the displayed concentration. If an alternate

concentration is used, enter the concentration and adjust the curve to that value.

Method performance

Summary of method

An alkaline persulfate digestion converts all forms of nitrogen to nitrate. Sodium metabisulfite is

added after the digestion to eliminate halogen oxide interferences. Nitrate then reacts with

chromotropic acid under strongly acidic conditions to form a yellow complex with an absorbance maximum at 410nm.

Consumables and replacement items

Instrument Navigate to:

DR 5000OPTIONS>MORE>STANDARD ADJUST DR 2800OPTIONS>MORE>STANDARD ADJUST DR 2700OPTIONS>MORE>STANDARD ADJUST DR/2500OPTIONS>STANDARD ADJUST DR/2400

OPTIONS>STANDARD ADJUST

Program Instrument Standard Precision—95% Confidence Limits of Distribution Sensitivity—ΔConcentration

per 0.010 ΔAbs

350DR 500010 mg/L NH 3–N 9.6–10.4 mg/L N 0.5 mg/L N 350DR 280010 mg/L NH 3–N 9.6–10.4 mg/L N 0.5 mg/L N 350DR 270010 mg/L NH 3–N 9.6–10.4 mg/L N 0.5 mg/L N 350DR/250010 mg/L NH 3–N 9.0–11.0 mg/L N 0.5 mg/L N 350

DR/2400

10 mg/L NH 3–N

9.0–11.0 mg/L N

0.5 mg/L N

Required reagents

Description

Unit Catalog number

Test ’N Tube? Total Nitrogen Reagent Set, LR

50 vials

2672245

Required apparatus (powder pillows)

Description

Quantity/Test

Unit Catalog number DRB200 Reactor, 110 V, 15x16 mm 1each LTV082.53.40001DRB200 Reactor, 220 V, 15x16 mm 1each LTV082.52.40001

Funnel, micro

1each 2584335Pipet, TenSette ?, 1.0 to 10.0 mL 1each 1970010Pipet Tips, for TenSette Pipet 19700-10250/pkg 2199796Test Tube Cooling Rack 1–3each 1864100Finger Cots

2

2/pkg

1464702

Nitrogen, Total

Recommended standards

Description Unit Catalog number Ammonia Nitrogen Standard Solution, 1000-mg/L NH3–N 1 L2354153 Ammonia Nitrogen Standard Solution, 10-mg/L NH3–N500 mL15349 Primary Standard Set, for Kjeldahl Nitrogen set of 32277800 Wastewater Mixed Inorganic Standard for NH3-H, NO3-N, PO4, COD, SO4,TOC500 mL2833149 Water, deionized500 mL27249 Water, organic-free500 mL2641549

Optional reagents and apparatus

Description Unit Catalog number Balance, analytical, 80 g capacity, 115 VAC each2936701 Cylinder, mixing with stopper, 50 mL each2088641 Flask, volumetric, Class A, 1000 mL each1457453 Pipet, TenSette, 0.1 to 1.0 mL each1970001 Pipet Tips, for TenSette Pipet 197000150/pkg2185696 Pipet tips for TenSette Pipet 19700011000/pkg2185628 Pipet tips for TenSette Pipet 1970010250-pkg2199725 Sodium Hydroxide, 5 N50 mL245026 Sulfuric Acid, concentrated500 mL97949 PourRite? Ampule breaker, 2-mL each2484600 Voluette? Ampule breaker 10 mL each2196800 Ammonia Nitrogen Standard Solution, 1-mg/L NH3–N500 mL189149 Ammonia Nitrogen Standard Solution, 100-mg/L NH3–N500 mL2406549 Ammonia Nitrogen Standard Solution, 2-mL PourRite Ampule, 50 mg/L20/pkg1479120 Ammonia Nitrogen Standard Solution, 10-mL Voluette Ampules, 10 mg/L16/pkg1479110 Ammonia Nitrogen Standard Solution, 10-mL Voluette Ampules, 150 mg/L16/pkg2128410 Ammonia Nitrogen Standard Solution, 10-mL Voluette Ampules, 160 mg/L16/pkg2109110

?Hach Company,2007. All rights reserved. Printed in the U.S.A.Updated February2008,Edition5

元素磷含量的测定方法

元素磷含量的测定方法 本方法参考ZBG76002—90适用于循环冷却水中磷的测定,其含量为0.02~50mg/L。 1 方法提要 在酸性介质中,膦酸盐、亚磷酸与过硫酸铵在加热的条件下,转变成正磷酸,利用钼酸铵和磷酸反应生成锑磷钼酸配合物,以抗坏血酸还原成“锑磷钼蓝”,用吸光光度法测定总磷酸盐(以PO43-计)的含量。 2 试剂和材料 2.1 磷酸盐标准贮备液:1 mL溶液含有0.500 mg PO43-;称量0.7165 g 预先在100~105℃干燥至恒重的磷酸二氢钾,精确至0.0002 g ,置于烧杯中,加水溶解移入1000mL容量瓶中,用水稀释至刻度,摇匀; 2.2 磷酸盐标准溶液:1 mL溶液含有0.020 mg PO43-;吸取20.00 mL磷酸盐标准贮备溶液(2.1)于500 mL容量瓶中,用水稀释至刻度,摇匀; 2.3 钼酸铵溶液:称量6.0 g钼酸铵溶于约500 mL水中,加入0.2 g酒石酸锑钾和83 mL 浓硫酸,冷却后稀释至1L,混匀,贮于棕色瓶中,贮存期6个月; 2.4 抗坏血酸溶液:称量17.6 g抗坏血酸溶于适量水中,加入0.2 g乙二胺四乙酸二钠和8 mL甲酸,用水稀释至1L,混匀,贮存于棕色瓶中,贮存期15d; 2.5 硫酸:c(H2SO4)=0.5 mol / L; 2.6 过硫酸铵24g / L溶液,贮存期7d; 3 仪器和设备 3.1 分光光度计:波长范围400~800 nm; 3.2 可调电炉:800W。 4 工作曲线的绘制 在一系列50mL容量瓶(或比色管)中,分别加入0.00,1.00,2.00,3.00,4.00,5.00 mL磷酸盐标准溶液(2.2),加水约20 mL,然后加入5mL钼酸铵溶液(2.3)和3 mL抗血酸溶液(2.4),用水稀释至刻度,摇匀,于25~30℃下放置10 min。在710 nm处,用1cm的比色皿,以试剂空白为参比,测量其吸光度。 5 试验步骤 5.1 正磷酸含量的测定 吸取20mL经中速滤纸过滤后的水样于50 mL容量瓶(或比色管)中,加入20 mL水,再加入5 mL钼酸铵溶液(2.3)、3 mL抗坏血酸溶液(2.4),用水稀释至刻度,摇匀。在25~30℃下放置10 min。在710 nm处,用1cm比色皿,以试剂空白为参比,测量其吸光度。 5.2 总磷酸盐含量的测定 吸取10mL经中速滤纸过滤后的水样于100 mL锥形瓶中,加入1 mL硫酸溶液(2.5)和5 mL过硫酸铵溶液(2.6),稀释到约25mL,在可调电炉(3.2)上缓缓煮沸15 min 以上至溶液快蒸干为止。取下,冷却至室温,移入50 mL容量瓶(或比色管)内。加入5 mL钼酸铵溶液、3 mL 抗坏血酸溶液,用水稀释至刻度,摇匀。于25~30℃下放置10 min,在710 nm处,用1 cm的比色皿,以试剂空白为参比,测量其吸光度,绘制工作曲线。

什么是哈希函数

什么是哈希函数 哈希(Hash)函数在中文中有很多译名,有些人根据Hash的英文原意译为“散列函数”或“杂凑函数”,有些人干脆把它音译为“哈希函数”,还有些人根据Hash函数的功能译为“压缩函数”、“消息摘要函数”、“指纹函数”、“单向散列函数”等等。 1、Hash算法是把任意长度的输入数据经过算法压缩,输出一个尺寸小了很多的固定长度的数据,即哈希值。哈希值也称为输入数据的数字指纹(Digital Fingerprint)或消息摘要(Message Digest)等。Hash函数具备以下的性质: 2、给定输入数据,很容易计算出它的哈希值; 3、反过来,给定哈希值,倒推出输入数据则很难,计算上不可行。这就是哈希函数的单向性,在技术上称为抗原像攻击性; 4、给定哈希值,想要找出能够产生同样的哈希值的两个不同的输入数据,(这种情况称为碰撞,Collision),这很难,计算上不可行,在技术上称为抗碰撞攻击性; 5、哈希值不表达任何关于输入数据的信息。 哈希函数在实际中有多种应用,在信息安全领域中更受到重视。从哈希函数的特性,我们不难想象,我们可以在某些场合下,让哈希值来“代表”信息本身。例如,检验哈希值是否发生改变,借以判断信息本身是否发生了改变。` 怎样构建数字签名 好了,有了Hash函数,我们可以来构建真正实用的数字签名了。 发信者在发信前使用哈希算法求出待发信息的数字摘要,然后用私钥对这个数字摘要,而不是待发信息本身,进行加密而形成一段信息,这段信息称为数字签名。发信时将这个数字签名信息附在待发信息后面,一起发送过去。收信者收到信息后,一方面用发信者的公钥对数字签名解密,得到一个摘要H;另一方面把收到的信息本身用哈希算法求出另一个摘要H’,再把H和H’相比较,看看两者是否相同。根据哈希函数的特性,我们可以让简短的摘要来“代表”信息本身,如果两个摘要H和H’完全符合,证明信息是完整的;如果不符合,就说明信息被人篡改了。 数字签名也可以用在非通信,即离线的场合,同样具有以上功能和特性。 由于摘要一般只有128位或160位比特,比信息本身要短许多倍,USB Key或IC卡中的微处理器对摘要进行加密就变得很容易,数字签名的过程一般在一秒钟内即可完成。

哈希表的设计与实现 课程设计报告

一: 需求分析 (2) 三: 详细设计(含代码分析) (4) 1.程序描述: (4) 2具体步骤 (4) 四调试分析和测试结果 (7) 五,总结 (9) 六.参考文献; (10) 七.致谢 (10) 八.附录 (11)

一: 需求分析 问题描述:设计哈希表实现电话号码查询系统。 基本要求 1、设每个记录有下列数据项:电话号码、用户名、地址 2、从键盘输入各记录,分别以电话号码和用户名为关键字建立哈希表; 3、采用再哈希法解决冲突; 4、查找并显示给定电话号码的记录; 5、查找并显示给定用户名的记录。 6、在哈希函数确定的前提下,尝试各种不同类型处理冲突的方法(至少 两种),考察平均查找长度的变化。 二: 概要设计 进入主函数,用户输入1或者2,进入分支选择结构:选1:以链式方法建立哈希表,选2:以再哈希的方法建立哈希表,然后用户输入用户信息,分别以上述确定的方法分别以用户名为检索以及以以电话号码为检索将用户信息添加到哈希表,.当添加一定量的用户信息后,用户接着输入用户名或者电话号码分别以用户名或者电话号码的方式从以用户名或电话号码为检索的哈希表查找用户信息.程序用链表的方式存储信息以及构造哈希表。 具体流程图如下所示:

三: 详细设计(含代码分析) 1.程序描述: 本程序以要求使用哈希表为工具快速快速查询学生信息,学生信息包括电话号码、用户名、地址;用结构体存储 struct node { string phone; //电话号码 string name; //姓名 string address;//地址 node *next; //链接下一个地址的指针 }; 2具体步骤 1. 要求主要用在哈希法解决冲突,并且至少尝试用两种方法解决冲突,定义两个指针数组存储信息node *infor_phone[MAX]; node *infor_name[MAX];前者以电话号码为关键字检索哈希表中的信息,后者以姓名为关键字检索哈希表中的信息 用链式法和再哈希法解决冲突: int hash(string key) //以姓名或者电话号码的前四位运算结果作为哈{ //希码 int result=1,cur=0,i; if(key.size()<=4) i=key.size()-1; else i=4; for(;i>=0;i--) { cur=key[i]-'0'; result=result*9+cur; } result%=(MOD); return result;

一致性哈希算法应用及优化(最简洁明了的教程)

一致性哈希算法的应用及其优化 一.简单哈希算法 哈希(Hash)就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,使得散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。哈希算法是一种消息摘要算法,虽然哈希算法不是一种加密算法,但由于其单向运算,具有一定的不可逆性使其成为加密算法中的一个重要构成部分。 二.分布式缓存问题 哈希算法除了在数据加密中的运用外,也可以用在常见的数据分布式技术中。哈希计算是通过求模运算来计算哈希值的,然后根据哈希值将数据映射到存储空间中。设有由N 个存储节点组成的存储空间,采用简单哈希计算将一个数据对象object 映射到存储空间上的公式为:Hash(object)% N。 现在假设有一个网站,最近发现随着流量增加,服务器压力越来越大,之前直接读写数据库的方式已经不能满足用户的访问,于是想引入Memcached作为缓存机制。现在一共有三台机器可以作为Memcached服务器,如下图1所示。

图1.三台memcached服务器 可以用简单哈希计算:h = Hash(key) % 3 ,其中Hash是一个从字符串到正整数的哈希映射函数,这样能够保证对相同key的访问会被发送到相同的服务器。现在如果我们将Memcached Server分别编号为0、1、2,那么就可以根据上式和key计算出服务器编号h,然后去访问。 但是,由于这样做只是采用了简单的求模运算,使得简单哈希计算存在很多不足: 1)增删节点时,更新效率低。当系统中存储节点数量发生增加或减少时,映射公式将发生变化为Hash(object)%(N±1),这将使得所有object 的映射位置发生变化,整个系统数据对象的映射位置都需要重新进行计算,系统无法对外界访问进行正常响应,将导致系统处于崩溃状态。 2)平衡性差,未考虑节点性能差异。由于硬件性能的提升,新添加的节点具有更好的承载能力,如何对算法进行改进,使节点性能可以得到较好利用,也是亟待解决的一个问题。 3)单调性不足。衡量数据分布技术的一项重要指标是单调性,单调性是指如果已经有一些内容通过哈希计算分派到了相应的缓冲中,当又有新的缓冲加入到系统中时,哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。 由上述分析可知,简单地采用模运算来计算object 的Hash值的算法显得过于简单,存在节点冲突,且难以满足单调性要求。

磷酸含量的测定

、磷酸含量的测定(容量法) 1、原理 根据磷酸性质,以百里香酚酞为指示剂,用氢氧化钠标准滴定溶液直接滴定,以确定磷酸含量。 2、仪器 250ml具塞锥形玻璃烧瓶3个,滴定管(碱式)一支。 3、试剂和材料 ①氢氧化钠标准滴定溶液:c (Na OH)~0.5mol/L ; ②百里香酚酞指示剂:1g/L. ③超纯水(25 T在线电阻率不小于18.2M Q .cm) 4、测定步骤 ①称取约1g试样,精确至0.0002g。移入250ml具塞锥形玻璃烧瓶中,用80ml的超纯水稀释,加入0.5ml百里香酚酞指示剂。 ②用0.5mol/L的氢氧化钠标准溶液滴定至溶液刚呈浅蓝色即为终点。 ③用同样方法同时做一空白和一平行样。 5、计算: 磷酸(H3PO4)质量分数(x i)按下式计算 V.c M9.0 x i= 100% x 式中:c----氢氧化钠标准滴定溶液的实0际浓度,单位为摩尔每升

(mol/L); V--- 消耗氢氧化钠标准滴定溶液的体积,单位为毫升(ml);m--- 试样的质量,单位为克(g); 49.00--- 磷酸的摩尔质量[M(1/2H 3PO4)], 单位为克每摩尔 (g/mol )。 取平行测定结果的算术平均值为测定结果,两次平行测定结果的绝对差值不 大于0.2% 。

、磷酸含量的测定(重量法或仲裁法) 1、方法原理 在盐酸介质中试样与加人的喹钼柠酮沉淀剂生成磷钼酸喹啉沉淀,经过滤,洗涤,烘干及称重后,确定磷酸含量 2、仪器 玻璃砂坩埚:滤板孔径5 Km-15 pm; 电烘箱:温度能控制在180C士5C或250C士100C; 100ml烧杯2个; 500ml容量瓶1个。 3、试剂 (1)盐酸; (2)喹钼柠酮溶液配置: a)称取70g钼酸钠溶解于150ml纯水中,此溶液为溶液A; b)称取60g柠檬酸溶解于150ml纯水和85ml硝酸的混合溶液中,此溶液为溶液B。 c)在搅拌下将溶液A倒入溶液B中,此溶液为溶液C。 d)在100ml水中加入35ml硝酸,再加入5ml喹啉,此溶液为溶液D; e)将溶液D倒入溶液C中,混匀。放置12h后,用玻璃砂坩埚过滤,再加入280ml丙酮,用水稀释至1000ml,混匀,贮存于聚乙烯瓶中

单向散列函数算法Hash算法

单向散列函数算法(Hash算法): 一种将任意长度的消息压缩到某一固定长度(消息摘要)的函数(过程不可逆),常见的单向散列算法有MD5,SHA.RIPE-MD,HAVAL,N-Hash 由于Hash函数的为不可逆算法,所以软件智能使用Hash函数作为一个加密的中间步骤 MD5算法: 即为消息摘要算法(Message Digest Algorithm),对输入的任意长度的消息进行预算,产生一个128位的消息摘要 简易过程: 1、数据填充..即填出消息使得其长度与448(mod 512)同余,也就是说长度比512要小64位(为什么数据长度本身已经满足却仍然需要填充?直接填充一个整数倍) 填充方法是附一个1在后面,然后用0来填充.. 2、添加长度..在上述结果之后附加64位的消息长度,使得最终消息的长度正好是512的倍数.. 3、初始化变量..用到4个变量来计算消息长度(即4轮运算),设4个变量分别为A,B,C,D(全部为32位寄存器)A=1234567H,B=89abcdefH,C=fedcba98H,D=7654321H 4、数据处理..首先进行分组,以512位为一个单位,以单位来处理消息.. 首先定义4个辅助函数,以3个32为双字作为输入,输出一个32为双字 F(X,Y,Z)=(X&Y)|((~X)&Z) G(X,Y,Z)=(X&Z)|(Y&(~Z)) H(X,Y,Z)=X^Y^Z I(X,Y,Z)=Y^(X|(~Z)) 其中,^是异或操作 这4轮变换是对进入主循环的512为消息分组的16个32位字分别进行如下操作: (重点)将A,B,C,D的副本a,b,c,d中的3个经F,G,H,I运算后的结果与第四个相加,再加上32位字和一个32位字的加法常数(所用的加法常数由这样一张表T[i]定义,期中i为1至64之中的值,T[i]等于4294967296乘以abs(sin(i))所得结果的整数部分)(什么是加法常数),并将所得之值循环左移若干位(若干位是随机的??),最后将所得结果加上a,b,c,d之一(这个之一也是随机的?)(一轮运算中这个之一是有规律的递增的..如下运算式),并回送至A,B,C,D,由此完成一次循环。(这个循环式对4个变量值进行计算还是对数据进行变换??) For i=0 to N/16 do For j=0 to 15 do Set X[i] to M[i*16+j] End AA = A BB=B CC=C DD=D //第一轮,令[ABCD K S I]表示下面的操作: //A=B+((A+F(B,C,D)+X[K]+T[I])<<

哈 希 常 见 算 法 及 原 理

数据结构与算法-基础算法篇-哈希算法 1. 哈希算法 如何防止数据库中的用户信息被脱库? 你会如何存储用户密码这么重要的数据吗?仅仅 MD5 加密一下存储就够了吗? 在实际开发中,我们应该如何用哈希算法解决问题? 1. 什么是哈希算法? 将任意长度的二进制值串映射成固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。 2. 如何设计一个优秀的哈希算法? 单向哈希: 从哈希值不能反向推导出哈希值(所以哈希算法也叫单向哈希算法)。 篡改无效: 对输入敏感,哪怕原始数据只修改一个Bit,最后得到的哈希值也大不相同。 散列冲突: 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小。 执行效率: 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速计算哈

希值。 2. 哈希算法的常见应用有哪些? 7个常见应用:安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。 1. 安全加密 常用于加密的哈希算法: MD5:MD5 Message-Digest Algorithm,MD5消息摘要算法 SHA:Secure Hash Algorithm,安全散列算法 DES:Data Encryption Standard,数据加密标准 AES:Advanced Encryption Standard,高级加密标准 对用于加密的哈希算法,有两点格外重要,第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要小。 在实际开发中要权衡破解难度和计算时间来决定究竟使用哪种加密算法。 2. 唯一标识 通过哈希算法计算出数据的唯一标识,从而用于高效检索数据。 3. 数据校验 利用哈希算法对输入数据敏感的特点,可以对数据取哈希值,从而高效校验数据是否被篡改过。 4. 散列函数 1.如何防止数据库中的用户信息被脱库?你会如何存储用户密码这么重要的数据吗?

NH3-N说明书简介(氨氮)

氨氮在线分析仪使用说明书简介

使用安全说明 一、总则 请在开机运行前认真阅读本手册,并严格按照本手册说明进行操作,尤其注意所有有关危险和谨慎问题的说明,请不要擅自维修、拆装仪器上任意组件,否则可能会导致对操作人员的严重伤害和对仪器的严重损伤。 二、触电与灼伤预防 1、维护或修理前务必断开电源; 2、按照地方或国家规则进行电力连接; 3、尽可能使用接地故障断路器; 4、在连接操作条件下将操作单元接地,接地电阻≤10Ω。 5、化学药品危险预防。 本设备所需的部分化学药品为有毒有腐蚀性物质,在处理这些药品时,请参照本手册试剂章节中的相关内容,采取一定的预防措施。 不正确的使用仪器或其部件以及/或其附件会导致人身伤害、仪器损坏或污染。 因此一定要确保正确使用仪器和/或其部件以及/或其附件。 仪器是专门为了测量经过处理的水溶液中的NH3-N而设计的(废水、过程水和地表水)。

目录 使用安全说明 (2) 一、总则 (2) 二、触电与灼伤预防 (2) 第一章、技术参数 (4) 第二章、概述 (5) 一、基本原理 (5) 二、产品特点 (5) 三、系统描述 (5)

第一章、技术参数 仪器尺寸图:

第二章、概述 一、基本原理 本仪器采用纳式试剂比色法来测量水体中的以游离态的氨或铵离子存在的氨氮。 水样中游离态的氨或铵离子与纳式试剂反应生成淡红棕色络合物,该络合物的浓度与氨氮的量成正比,在波长420nm下测量。 二、产品特点 1、全新的计量系统 ▲ 光学定量试样/试剂,从本质上提高了定量精度。 ▲ 法国OEM 进样阀岛,最大可能的减少了死体积对定量精度的影响。 2、校正清洗功能 ▲ 仪器可以自动实现用热硫酸清洗管道,无需用户干预,避免测量误差。 3、完善的系统自我维护功能 ▲ 仪器在出现故障时,具有自我检查和维护功能,确保人身安全和设备安全。 ▲ 当发生液体泄漏的时,设备自带的湿度传感器会发生报警,并自动锁定.。 ▲ 所有故障信息都在HMI显示终端处予以记录,用户可以查询,对设备运行状况了如指掌。 4、远程升级功能 ▲ 仪表具备远程升级功能,可以通过ETHERNET口、GPRS口等实现对设备的远程维护和监控。 5、软件升级功能 ▲ 仪表具备完善的联网功能,可以实现和ETHERNET等广域网的互联互通。 大屏幕触摸屏显示终端 ▲ 仪表采用的是640*480带触摸的TFT显示终端,显示信息更加丰富,操作更加简单 6、强大的对外接口功能 ▲ 仪表对外接口丰富,现场使用的各种接口(如ETHERNET/4-20mA输入、输出/RS485/开关量输入、输出等)都具备 ▲ 仪表的良好的可扩展性,使得可以按用户需求增加设备的功能。 三、系统描述 1、内部结构图

属性约简方法概述

属性约简方法概述 属性约简又称维规约或特征选择,从数学的角度考虑,就是有p 维数据 x =(x 1,x 2……x p ),通过某种方法,得到新的数据 x’=(x’1,x’2…… x’k ) , k ≤p , 新的数据在某种评判标准下,最大限度地保留原始数据的特征。属性约简主要是为了解决高维数据计算的复杂性和准确性问题。目标是消除冗余和不相关属性对计算过程和最终结果造成的影响。 对数据进行属性约简的意义,主要从以下几个方面考虑: a) 从机器学习的角度来看,通过属性约简去除噪音属性是非常有意义的; b) 对一些学习算法来说,训练或分类时间随着数据维数的增加而增加,经过属性约简可以降低计算复杂度,减少计算时间; c) 假如不进行属性约简,噪音或不相关属性和期望属性对分类的作用一样,就会对最终结果产生负面影响; d) 当用较多的特征来描述数据时,数据均值表现得更加相似,难以区分。 为了描述属性约简方法,这里假设数据集合为D ,D ={x 1,x 2….x n }, x i 表示D 中第i 个实例,1≤i≤n ,n 为总的实例个数。每个实例包含p 个属性{|x i |=p }。从机器学习的角度来看,属性约简方法可以分为监督的和非监督的两类。下面是几种常用的方法。 (1) PCA 主成分分析 主成分概念是Karl parson 于1901年最先引进。1933年,Hotelling 把它推广到随机变量。主成分分析把高维空间的问题转换到低维空间来处理,有效的降低了计算的复杂度。通过主成分的提取,降低了部分冗余属性的影响,提高了计算的精度。 主成分分析的基本思想为:借助一个正交变换,将分量相关的原随机变量转换成分量不相关的新变量。从代数角度,即将原变量的协方差阵转换成对角阵;从几何角度,将原变量系统变换成新的正交系统,使之指向样本点散布最开的正交方向,进而对多维变量系统进行降维处理[43]。 定义4-1[44]:设12(,,...,)'p X X X X =为p 维随机向量,它的第i 主成分分量可表示'i i Y u X =,i =1,2,…, p 。其中i u 是正交阵U 的第i 列向量。并且满足: 1Y 是12,,...,p X X X 的线性组合中方差最大者; k Y 是与11,...k Y Y -不相关的12,,...,p X X X 的线性组合中方差最大。 (k =2,3,…p )。 定义4-2[45]: 设∑是随机向量12(,,...,)'p X X X X =的协方差矩阵,其特征值-特征向量对1122(,),(,),...(,)p p e e e λλλ,其中12...0p λλλ≥≥≥≥。则第i 个主成分为: 1122 '...i i i i i p p Y e X e X e X e X ==+++ i =1, 2, …p ………………….式

混合磷酸盐含量测定

NaH 2PO 4和Na 2HPO 4混合液中,各组分含量的测定方案 一、实验目的 1.掌握酸碱滴定原理及方法,了解准确分别滴定的条件; 2.测定混合液中NaH2PO4与NaHPO4的浓度以及浓度比; 3.通过对化学计量点的pH 的计算选择合理指示剂来指示滴定终点。 二、实验原理 1.在NaH 2PO 4和Na 2HPO 4混合液中,Ka 2=6.3*10- 8 ,Ka 3=4.4*10- 13,Ka 2/Ka 3>10-5,故可分别滴定 2.强碱NaOH 准确滴定H 2PO 4-,用百里酚酞做指示剂,滴定终点由无色变成微蓝色. 3.由于Na 2HPO 4的Ka 3很小,不能直接连续滴定,用HCL 滴定磷酸一氢根,用甲基橙做指示剂,终点时溶液由黄色变为橙色。 三、实验操作步骤 主要试剂和仪器: 试剂:邻苯二甲酸氢钾基准试剂 无水碳酸钠基准试剂 氢氧化钠 盐酸 酚酞指示剂 2g/L 乙醇溶液 甲基橙指示剂 1g/L 百里酚酞指示剂2g/L 磷酸一氢钠和磷酸二氢钠的混合液 仪器:移液管(25.00ml 20.00 ml) 锥形瓶 (250ml) 电子天平 容量瓶( 250ml) 酸式滴定管 碱式滴定管 洗瓶 实验步骤: 1 0.1mol/LNaOH 溶液的配制及标定 注:计算NaOH 的浓度,给出平均值,其相对偏差不应大于0.2%。 2 0.1mol/L HCl 溶液的标定 在天平上称取2.0 g NaOH 与小烧杯中,溶解后,置500 mL 的试剂瓶中稀释到刻度摇匀. 在分析天平上,准确称取0.4-0.5克无水邻苯二甲酸氢钾试样3份于洁净250 mL 锥形瓶中 m 1=0.4133 g m 2=0.5035 g m 3=0.4405 g 加入100ml 蒸馏水,溶解后,加 入3-4滴酚酞指示剂 用待标定0.10 mol/L NaOH 滴定到溶液呈微红色并保持半分钟不褪色为终点 V 1=21.85 mL V 2=26.63 mL V 3=23.30 mL 用量筒量取4.4mL 浓盐酸于小烧杯中,稀释后,置500 mL 的试剂瓶中稀释到刻度摇匀. 在分析天平上,准确称取0.4-0.5克无水邻苯二甲酸氢钾试样3份于洁净250 mL 锥形瓶中 在分析天平上,准确称取0.4-0.5克无水碳酸钠试样3份于洁净250 mL 锥形瓶中 m 1=0.1780 g m 2=0.1877 g 加入100ml 蒸馏水,溶解后,加 入3-4甲基 橙指示剂

哈 希 常 见 算 法 及 原 理

计算与数据结构篇 - 哈希算法 (Hash) 计算与数据结构篇 - 哈希算法 (Hash) 哈希算法的定义和原理非常简单,基本上一句话就可以概括了。将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。 构成哈希算法的条件: 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法)对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同; 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小; 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。 哈希算法的应用(上篇) 安全加密 说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。 除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。

前面我讲到的哈希算法四点要求,对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。 不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1-2^128。 如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资-源下,哈希算法还是被很难破解的。 对于加密知识点的补充,md5这个算法固然安全可靠,但网络上也有针对MD5中出现的彩虹表,最常见的思路是在密码后面添加一组盐码(salt), 比如可以使用md5(1234567.'2019@STARK-%$#-idje-789'),2019@STARK-%$#-idje-789 作为盐码起到了一定的保护和安全的作用。 唯一标识(uuid) 我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。

哈希表的设计与实现-数据结构与算法课程设计报告

合肥学院 计算机科学与技术系 课程设计报告 2009 ~2010 学年第二学期 课程数据结构与算法 课程设计名称哈希表的设计与实现 学生姓名王东东 学号0804012030 专业班级08计本(2) 指导教师王昆仑、李贯虹 2010 年5 月

课程设计目的 “数据结构与算法课程设计”是计算机科学与技术专业学生的集中实践性环节之一, 是学习“数据结构与算法”理论和实验课程后进行的一次全面的综合练习。其目的是要达到 理论与实际应用相结合,提高学生组织数据及编写程序的能力,使学生能够根据问题要求和 数据对象的特性,学会数据组织的方法,把现实世界中的实际问题在计算机内部表示出来并 用软件解决问题,培养良好的程序设计技能。 一、问题分析和任务定义 1、问题分析 要完成如下要求:设计哈希表实现电话号码查询系统。 实现本程序需要解决以下几个问题: (1)如何定义一个包括电话号码、用户名、地址的节点。 (2)如何以电话号码和用户名为关键字建立哈希表。 (3)用什么方法解决冲突。 (4)如何查找并显示给定电话号码的记录。 (5)如何查找并显示给定用户名的记录。 2 任务定义 1、由问题分析知,本设计要求分别以电话号码和用户名为关键字建立哈希表,z在此基 础上实现查找功能。本实验是要我们分析怎么样很好的解决散列问题,从而建立一比较合理 的哈希表。由于长度无法确定,并且如果采用线性探测法散列算法,删除结点会引起“信息 丢失”的问题。所以采用链地址法散列算法。采用链地址法,当出现同义词冲突时,可以使 用链表结构把同义词链接在一起,即同义词的存储地址不是散列表中其他的空地址。 根据问题分析,我们可以定义有3个域的节点,这三个域分别为电话号码char num[30],姓名char name[30],地址char address[30]。这种类型的每个节点对应链表中的每个节点,其中电话号码和姓名可分别作关键字实现哈希表的创建。 二、数据结构的选择和概要设计 1、数据结构的选择 数据结构:散列结构。 散列结构是使用散列函数建立数据结点关键词与存储地址之间的对应关系,并提供多 种当数据结点存储地址发生“冲突”时的处理方法而建立的一种数据结构。 散列结构基本思想,是以所需存储的结点中的关键词作为自变量,通过某种确定的函 数H(称作散列函数或者哈希函数)进行计算,把求出的函数值作为该结点的存储地址,并 将该结点或结点地址的关键字存储在这个地址中。 散列结构法(简称散列法)通过在结点的存储地址和关键字之间建立某种确定的函数 关系H,使得每个结点(或关键字)都有一个唯一的存储地址相对应。 当需要查找某一指定关键词的结点时,可以很方便地根据待查关键字K计算出对应的“映像”H(K),即结点的存储地址。从而一次存取便能得到待查结点,不再需要进行若干次的 比较运算,而可以通过关键词直接计算出该结点的所在位置。

哈 希 常 见 算 法 及 原 理 ( 2 0 2 0 )

哈希算法乱谈(摘自知乎) 最近【现场实战追-女孩教-学】初步了解了Hash算法的相关知识,一些人的见解让我能够迅速的了解相对不熟悉的知识,故想摘录下来,【QQ】供以后温故而知新。 HASH【⒈】算法是密码学的基础,比较常用的有MD5和SHA,最重要的两【О】条性质,就是不可逆和无冲突。 所谓不【1】可逆,就是当你知道x的HASH值,无法求出x; 所谓无【б】冲突,就是当你知道x,无法求出一个y,使x与y的HA【9】SH值相同。 这两条性【⒌】质在数学上都是不成立的。因为一个函数必然可逆,且【2】由于HASH函数的值域有限,理论上会有无穷多个不同的原始值【6】,它们的hash值都相同。MD5和SHA做到的,是求逆和求冲突在计算上不可能,也就是正向计算很容易,而反向计算即使穷尽人类所有的计算资-源都做不到。 顺便说一下,王小云教授曾经成功制造出MD5的碰撞,即md5(a) = md5(b)。这样的碰撞只能随机生成,并不能根据一个已知的a求出b(即并没有破坏MD5的无冲突特性)。但这已经让他声名大噪了。 HASH算法的另外一个很广泛的用途,就是很多程序员都会使用的在数据库中保存用户密码的算法,通常不会直接保存用户密码(这样DBA就能看到用户密码啦,好危险啊),而是保存密码的HASH值,验

证的时候,用相同的HASH函数计算用户输入的密码得到计算HASH值然后比对数据库中存储的HASH值是否一致,从而完成验证。由于用户的密码的一样的可能性是很高的,防止DBA猜测用户密码,我们还会用一种俗称“撒盐”的过程,就是计算密码的HASH值之前,把密码和另外一个会比较发散的数据拼接,通常我们会用用户创建时间的毫秒部分。这样计算的HASH值不大会都是一样的,会很发散。最后,作为一个老程序员,我会把用户的HASH值保存好,然后把我自己密码的HASH值保存到数据库里面,然后用我自己的密码和其他用户的用户名去登录,然后再改回来解决我看不到用户密码而又要“偷窥”用户的需要。最大的好处是,数据库泄露后,得到用户数据库的黑客看着一大堆HASH值会翻白眼。 哈希算法又称为摘要算法,它可以将任意数据通过一个函数转换成长度固定的数据串(通常用16进制的字符串表示),函数与数据串之间形成一一映射的关系。 举个粒子,我写了一篇小说,摘要是一个string:'关于甲状腺精灵的奇妙冒险',并附上这篇文章的摘要是'2d73d4f15c0db7f5ecb321b6a65e5d6d'。如果有人篡改了我的文章,并发表为'关于JOJO的奇妙冒险',我可以立即发现我的文章被篡改过,因为根据'关于JOJO的奇妙冒险'计算出的摘要不同于原始文章的摘要。 可见,摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡

哈希算法介绍

哈希算法简介

目录 1哈希算法概念 (2) 2哈希函数 (3) 3冲突的解决方法 (3) 4哈希算法应用 (4)

关键词: 算法、哈希、c语言 摘要: 哈希算法在软件开发和Linux内核中多次被使用,由此可以见哈希算法的实用性和重要性。本文介绍了哈希算法的原理和应用,并给出了简略的代码实现,以便读者理解。

1哈希算法概念 哈希(hash 散列,音译为哈希) 算法将任意长度的二进制值映射为固定长度的较小二进制值,这个小的二进制值称为哈希值。 哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希算法都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。 哈希表是根据设定的哈希函数H(key)和处理冲突方法将一组关键字映象到一个有限的地址区间上,并以关键字在地址区间中的项作为记录在表中的存储位置,这种表称为哈希表,所得存储位置称为哈希地址。作为线性数据结构与表格和队列等相比,哈希表无疑是查找速度比较快的一种。 查找一般是对项的摸个部分(及数据成员)进行,这部分称为键(key )。例如,项可以由字符串作为键,附带一些数据成员。 理想的哈希表数据结构只不过是一个包含一些项的具有固定大小的数组。 通常的习惯是让项从0到 TableSize-1之间变化。 将每个键映射到0到TableSize-1 这个范围中的某个数 ,并且将其放到适当的单元中,这个映射就称为散列函数(hash funciton )。 如右图,john 被散列到3,phil 被散列到4,dave 被散列到6,mary 被散列到7. 这是哈希的基本思想。剩下的问题则是要选择一个函数,决定当两个键散列到同一个值的时候(称为冲突),应该做什么。

磷酸铁锂 碳含量测定

磷酸铁锂化学分析方法 范围 本标准规定了磷酸铁锂中磷、铁、锂以及碳的分析方法. 本标准适用于磷酸铁锂产品、半成品及磷铁矿的分析. 1.0 引用标准 1.1 GB/T601-88 化学试剂滴定分析(容量分析)用标准溶液的制备; 1.2 GB/T4701.7-1994 《磷铁的化学分析方法》; 1.3 GB/T 3885.4-1983 锂辉.锂云母精矿化学方法火焰原子吸收光度法测定锂量. 2.0 铁量的测定 2.1 方法提要 在盐酸溶液中,用二氯化锡将铁(Ⅲ)还原成铁(Ⅱ),然后加入氯化高汞以氧化过量的二氯化锡, 用二苯胺磺酸钠为指示剂,以重铬酸钾标准溶液滴定,其反应式如下: 2Fe3++Sn2++6Cl- →SnCl62-+2Fe2+ 4Cl-+Sn2++2HgCl2 →SnCl62-+Hg2Cl2 2Fe2++Cr2O72-+14H+ →6Fe3++2Cr3++7H2O 2.2试剂 2.2.1盐酸:(1+1); 2.2.2 硫酸—磷酸混酸:将150ml硫酸慢慢地加入500ml水中,冷却后加入150ml磷酸,用水稀释至1L,混匀; 2.2.3 二氯化锡溶液(100g/L ):称取10g氯化锡溶于10ml(1+1)盐酸中,用水稀释至100ml (若溶液浑浊则需过滤); 2.2.4 二苯胺磺酸钠指示剂(0.5%): 2.2.5 氯化高汞饱和溶液 【C(1/6K2Cr2O7)=0.0500mol/L】溶液:称取2.4518g预先在150度烘干1h的重铬酸钾(基准试剂)于250ml烧杯中,以少量水溶解后移入1L容量瓶中,用水定容。 2.3 分析步骤 称取0.2000g试样于250ml三角瓶中,加入10ml盐酸溶液,置于低温电炉上加热至完全溶解,取下稍冷,加入30ml水,加热至沸,趁热滴加二氯化锡溶液至黄色消失后再过量1~2滴,流水冷却至室温,加入10ml氯化高汞饱和溶液,混匀,静置2min后,用水稀释至80ml,加入20ml硫磷混酸溶液,4~5滴二苯胺磺酸钠指示剂,用重铬酸钾标准溶液滴定,溶液由绿色转变成蓝紫色为终点。 2.4 计算: 按下式计算铁的百分含量: Fe(%) = C x V x 0.05584 × 100 m 式中:C——重铬酸钾标准溶液的浓度,mol/L; V——滴定所消耗重铬酸钾标准溶液的体积,ml; m——称取试样的质量,g。 0.05584系数——为铁的摩尔质量,单位为g/mol 。 注意事项: (1)还原必须有足量的盐酸存在,为了使三价铁全部还原为铁,以及阻止二价铁再被氧化,二氯化锡必须 稍过量。

几种字符串哈希HASH算法的性能比较

几种字符串哈希HASH算法的性能比较 2011年01月26日星期三 19:40 这不就是要找hash table的hash function吗? 1 概述 链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1)。 设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无法比拟的,Hash 链表的构造和冲突的不同实现方法对效率当然有一定的影响,然而Hash函数是Hash链表最核心的部分,本文尝试分析一些经典软件中使用到的字符串 Hash函数在执行效率、离散性、空间利用率等方面的性能问题。 2 经典字符串Hash函数介绍 作者阅读过大量经典软件原代码,下面分别介绍几个经典软件中出现的字符串Hash函数。 2.1 PHP中出现的字符串Hash函数 static unsigned long hashpjw(char *arKey, unsigned int nKeyLength) { unsigned long h = 0, g; char *arEnd=arKey+nKeyLength; while (arKey < arEnd) { h = (h << 4) + *arKey++; if ((g = (h & 0xF0000000))) { h = h ^ (g >> 24); h = h ^ g; } } return h; } 2.2 OpenSSL中出现的字符串Hash函数 unsigned long lh_strhash(char *str) { int i,l; unsigned long ret=0; unsigned short *s; if (str == NULL) return(0); l=(strlen(str)+1)/2; s=(unsigned short *)str; for (i=0; i ret^=(s[i]<<(i&0x0f)); return(ret);

城市污水中磷(总磷、溶解性磷酸盐和溶解性总磷)的测定方法

城市污水中磷(总磷、溶解性磷酸盐和溶解性总磷) 测定方法 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,他们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷(如磷脂等),它们存在于溶液中,腐殖质粒子中或水生生物中。 一般天然水中磷酸盐含量不高。化肥、冶炼、合成洗涤剂等行业的工业废水及生活污水中常含有较大量磷。磷是生物生长必需的元素之一。但水中磷含量过高(如0.2mg/L超过),可造成藻类的过度繁殖,甚至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。磷是评价水质的重要指标。 1、方法选择 水中磷的测定,通常按其存在形式而分别测定总磷、溶解性正磷酸盐和总溶解性磷,如图所示。 正磷酸盐的测定可采用离子色谱法、钼锑抗光度法、氧化亚锡还原钼蓝法(灵敏度较低,干扰较多),而孔雀绿–磷钼杂多酸法灵敏度较高,且容易普及的方法。罗丹明6G荧光分光光度法灵敏度最高。 2、样品的采集与保存 总磷的测定,于水样采集后,加硫酸酸化至PH≤1保存。溶解性正磷酸盐的测定,不加任何保存剂,于2~50C冷处保存,在24h内进行分析。 (一)水样的预处理 采集的水样立即经0.45μm微孔滤膜过滤,其滤液供可溶性正磷酸盐的测定。

滤液经下述强氧化剂的氧化分解,测的可溶性总磷。取混合水样(包括悬浮物),也经下述强氧化剂分解,测得水中总磷含量。 过硫酸钾消解法 1、仪器 ①医用手提式高压蒸汽消毒器或一般民用压力锅,1~1.5kg/㎝2。 ②电炉2K W。 ③调压器,2KVA,0~220V。 ④50(磨口)具塞刻度管。 2、试剂 5%过硫酸钾溶液:溶解5g过硫酸钾于水中,并稀释至100ml。 3、步骤 ①吸取25.0ml混匀水样(必要时,酌情少取水样,并加水至25ml,使含磷量不超过3 0μg)于50ml具刻度管中,加过硫酸钾溶液4ml,加塞后管口包一小块纱布并用线扎紧,以免加热时玻璃塞冲出。将具塞刻度管放在大烧杯中,置于高压蒸汽消毒器或压力锅中加热,待锅内压力达1.1kg/cm2(相应温度为1200C)时,调节电炉温度保持此压力30s后,停止加热,待压力表指针降至零后,取出冷放。如溶液混浊,则用滤纸过滤,洗涤后定容。 ②试剂空白和标准溶液系列也经同样的消解操作。 4、注意事项 ①如采样时水样用酸固定,则用过硫酸钾消解前将水样调至中性。 ②一般民用压力锅,在加热前至顶压阀出气孔冒气时,锅内温度约为1200C

哈希表查找成功和不成功的算法

哈希表查找不成功怎么计算? 解答:先建好表,然后可以算出每个位置不成功时的比较次数之和,再除以表空间个数! 例如:散列函数为hash(x)=x MOD 13,用线性探测,建立了哈希表之后,如何求查找不成功时的平均查找长度!? 地址:0 1 2 3 4 5 6 7 8 9 10 11 12 数据: 39 1228154244 625-- 36- 38 成功次数: 1 3 1 2 2 1 191 1 不成功次数:98 7 65 4 3 2 1 1 2 110 查找成功时的平均查找长度:ASL=(1+3+1+2+2+1+1+9+1+1)/10 =2.2 查找不成功时的平均查找长度:ASL=(9+8+7+6+5+4+3+2+1+1+2+1+10)/13=4.54 说明: 第n个位置不成功时的比较次数为,第n个位置到第1个没有数据位置的距离。至少要查询多少次才能确认没有这个值。 (1)查询hash(x)=0,至少要查询9次遇到表值为空的时候,才能确认查询失 败。 (2)查询hash(x)=1,至少要查询8次遇到表值为空的时候,才能确认查询失 败。 (3)查询hash(x)=2,至少要查询7次遇到表值为空的时候,才能确认查询失 败。 (4)查询hash(x)=3,至少要查询6次遇到表值为空的时候,才能确认查询失 败。 (5)查询hash(x)=4,至少要查询5次遇到表值为空的时候,才能确认查询失 败。 (6)查询hash(x)=5,至少要查询4次遇到表值为空的时候,才能确认查询失 败。

(7)查询hash(x)=6,至少要查询3次遇到表值为空的时候,才能确认查询失败。 (8)查询hash(x)=7,至少要查询2次遇到表值为空的时候,才能确认查询失败。 (9)查询hash(x)=8,至少要查询1次遇到表值为空的时候,才能确认查询失败。 (10)查询hash(x)=9,至少要查询1次遇到表值为空的时候,才能确认查询失败。 (11)查询hash(x)=10,至少要查询2次遇到表值为空的时候,才能确认查询失败。 (12)查询hash(x)=11,至少要查询1次遇到表值为空的时候,才能确认查询失败。 (13)查询hash(x)=12,至少要查询10次遇到表值为空(循环查询顺序表)的时候,才能确认查询失败。 下面看下2010年2010年全国硕士研究生入学统一考试计算机科学与技术学科联考计算机学科专业基础综合试题中一个考哈希表的题。 Question1: 将关键字序列(7、8、30、11、18、9、14)散列存储到散列表中。散列表的存储空间是一个下标从0开始的一维数组,散列函数为:H(key) = (keyx3) MOD 7,处理冲突采用线性探测再散列法,要求装填(载)因子为0.7。 (1) 请画出所构造的散列表。 (2) 分别计算等概率情况下查找成功和查找不成功的平均查找长度。 Ans: (1).首先明确一个概念装载因子,装载因子是指所有关键子填充哈希表后饱和的程度,它等于关键字总数/哈希表的长度。根据题意,我们可以确定哈希表的长度为 L = 7/0.7 = 10;因此此题需要构建的哈希表是下标为0~9的一维数组。根据散列函数可以得到如下散列函数值表。 H(Key) = (keyx3) MOD 7, 例如key=7时, H(7) = (7x3)%7 = 21%7=0,其他关键字同理。

相关文档
相关文档 最新文档