文档库 最新最全的文档下载
当前位置:文档库 › 光同步传输与波分复用系统

光同步传输与波分复用系统

光波分复用系统的基本原理

光波分复用系统的基本原理 本文简要介绍光波分复用系统的基本原理、结构组成、功能配置、关键技术部件和技术特点,说明光波分复用WDM系统是今后光通信发展的方向。 一、光波分复用(WDM)技术 光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。 二、WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

光纤通信波分复用系统的研究与设计

武汉工程大学邮电与信息工程学院 毕业设计(论文) 光纤通信波分复用系统的研究与设计 Research And Design Of Optical Fiber Communication Wavelength Division Multiplexing System 学生姓名谭辉 学号1030210221 专业班级通信技术1002(光纤通信方向) 指导教师陈义华 2013年5月

作者声明 本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注的地方外,没有任何剽窃、抄袭、造假等违反学术道德、学术规范的行为,也没有侵犯任何其他人或组织的科研成果及专利。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。如本毕业设计(论文)引起的法律结果完全由本人承担。 毕业设计(论文)成果归武汉工程大学邮电与信息工程学院所有。 特此声明。 作者专业: 作者学号: 作者签名: ____年___月___日

摘要 20世纪90年代以来光纤通信得到了迅速的发展,光纤通信中的新技术也在不断涌现,其中波分复用技术就是光纤通信中重要的技术之一。波分复用(WDM)是在同一根光纤中同时传输两个或众多不同波长光信号的技术。 本文首先介绍了光纤通信的发展、特点、基本组成和波分复用技术(WDM)的基础知识、应用状况及目前存在的问题和发展状况,其中重点介绍了稀疏波分复用(CWDM)技术和密集波分复用(DWDM)技术的特点及其应用。其次深入分析了波分复用技术的基本原理与基本结构,同时深入分析了WDM系统的基本形式和主要特点及存在的问题,最后对现在的WDM的发展方向和前景做了进一步的探讨。 关键词:光纤通信;波分复用;技术研究

波分复用系统WDM结构原理和分类

波分复用系统(WDM),波分复用系统(WDM)结构原理和分类 波分复用系统简要介绍 光波分复用技术是在一根光纤中传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。具体如下。 如图1所示。发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。每个光波承载1路信号。再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。若线路很长,光信号太弱,就加一光放大器,把光信号放大。在接收端有N个光滤波器(1-N)。滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。光接收机的作用是把载有信号的光信号还原为原信号。 光波分复用的关键器件 (1)分布反馈多量子阱激光器(DFB MQW—LD) (2)光滤波器 (3)光放大器

图1 波分复用系统原理 波分复用系统的发展与现状 WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。 WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。 在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。 通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。1998到1999年,中国

实验三光波分复用器的参数测试

实验三 光波分复用器的参数测试 一. 实验目的和任务 1. 了解光波分复用器的原理。 2. 了解光波分复用器各参数的测试方法。 3. 测量光波分复用器的中心波长、半最大值全宽、信道隔离度。 二. 实验原理 当两根光纤非常靠近时,一根光纤中的光波电场可能耦合到另一根光纤中去。耦合系数K 与纤芯之间的距离,纤芯形状及折射率分布有关。光纤方向耦合器结构如图3.1所示。 图3.1 利用合光纤耦合器的光纤型WDM 器件 它既可以作为光功率耦合器(此时K 值在一定的波长范围内基本为常数),也可以作为波分复用器(此时K 值在一定的波长范围内是变化的)。耦合器型波分复用器输出端光功率为 ))((cos )(2 01L K P P λλ= (3-1) ))((sin )(2 02L K P P λλ= (3-2) 式中L 是耦合区长度。在适当的波导结构(纤芯距离、折射率分布、纤芯形状)下,使)(λK 的取值为2/2)(1ππλ+=n L K ,当波长为2λ时,2/2)(1ππλ+=m L K , (n ,m 为整数)。此时1λλ=时,0)(11=λP ,012)(P P =λ,2λλ=时,021)(P P =λ,0)(22=λP ,图3.2是耦合器型波分复用器的输出曲线。适当的耦合系数下,光纤耦合器可作为1310/1550nm 双波长波分复用器。

图3.2 基于耦合器的WDM 器件的典型投射率曲线 如图3.1所示,当1310和1550nm 两个波长的光从耦合器的A 端输入时,波长为1310nm 的光从B 端输出,波长为1550nm 的光由D 端输出。反之,B 端输入波长为1310nm 的光,C 端输入波长1550nm 的光,A 端将同时输出1310nm 与1550nm 波长的光。因此,耦合器型波分复用同时可作波分复用与解复用器使用。 测试1310/1550nm 双波长波分复用器中心波长和半最大值宽度的实验原理图如图3.3所示。 1310nmLD 光源 1550nmLD 光源 1310nm 端口 1550nm 端口 适配器 PC 光谱仪 图3.3 光波分复用器中心波长和半最大值宽度测试原理图 波分复用器的一个主要指标是通道隔离度,其定义是,当A 端输入波长为1λ的光功率时,B 端的输出与D 端输出功率的比率(以分贝为单位)。 ) () (lg 10)(11121λλλP P Isolation = (3-3) 类似地,当A 端输入波长为2λ的光功率时,通道隔离度为 ) () (lg 10)(22212λλλP P Isolation = (3-4) 测试1310/1550nm 双波长波分复用器信道隔离度的实验原理图如图3.4所示。

波分测试

下表是典型测试仪表和附件的清单,验收测试可参考: 1.1.1 抖动传函(不推荐测试) 定义 抖动传递特性定义为输出STM-N信号的抖动与所加输入STM-N信号的抖动的比值随频率变化的关系,有关抖动传递特性的规范只适用于SDH再生器。抖动传递特性是表明再生器对抖动的抑制能力。 指标要求 表1抖动传递特性指标

图1. 抖动传函模板(G.958 的模板) 测试配置 参考错误!未找到引用源。: 测试步骤 a) 按上图连接好测试配置; b) 设置SDH测试仪的接口速率与被测单板的接口速率一致,调整光衰减器,使SDH测试仪和被测单板接收的光功率适中; c) 设置SDH测试仪为抖动传递测试方式,根据指标要求设置相关测试点和相关指标; d) 断开SDH测试仪与被测波长转换板的连接,用光纤环回SDH测试仪的收发,进行SDH自校准; e) 校验完成后,连接被测波长转换板,启动抖动传递特性进行自动测试,记录测试结果。 注意事项 测试抖动传递特性时,必需选择带有O.172建议的SDH测试仪进行测试,否则测试结果会不正确。O.172建议的仪表主要有ANT-20SE、HP37718A等,ANT-20E、MP1552B等是O.171建议的测试仪表,不能测试抖动传递特性。 1.1.2 光发送信号眼图(不推荐测试) 定义 眼图是表示光信号脉冲形状的特性,定义了上升、下降沿的时间和脉冲宽度。 指标要求 对于TWF/TRF/RWF应该满足ITU-T的G.691要求;TWC/RWC/TWB/RWB应该满足ITU-T的G.692要求。对于加前向纠错后的光信号眼图,若信号分析仪中无此模版,可参照相应速率的SDH光信号眼图进行测试。10G的TWF、RWF 单板发送眼图要符合FEC 10.66G模板G.691的要求。 表2眼图测试指标:

波分知识相关总结

WDM原理 A.把不同波长的光信号复用到同一根光纤中进行传送,这种方式我们把它叫做波分复用(WDM) B. WDM典型模型 C. WDM系统的划分 开放式WDM系统 集成式WDM系统 半开放式WDM系统 D.WDM信号光窗口范围 E.截止波长:单模光纤中光信号能以单模方式传播的最小波长; F. DWDM系统的关键技术 .光源光电检测器 .光放大器 .合波分波技术 .监控信道

G.激光器的调试方式 .直接调制光源 .间接调制光源-----1.电吸收强制光源(EA ) 2马赫-策恩德尔调制光源(M-Z) H.光电检测器 1.半导体光电检测器分为两类:PIN APD. 注: 2.放大器 .半导体光放大器 . 掺铒光纤放大器(EDFA) .l拉曼放大器 光功率调测 a输入光功率接收最佳范围:灵敏度+3 ~过载点-5 b.光功率公式 P合波=P单波 +10lgN N为合波信号的波数。 单波标称值=合波最大输入-10lg M M为波数 3.组网方式 点到点组网环型组网 链型组网 mesr型组网

4.OTM典型组网信号流

5.保护方式 NG WDM保护方案 1设备级保护 -----a.电源备份保护,b.单板1+1保护---时钟1+1保护 AUX板1+1保护主控1+1保护交叉1+1保护2光层保护-----光线路保护,板内1+1保护客户侧1+1保护3电层保护------ ODUK SNCP保护 SW SNCP保护支路SNCP 保护 ODUK环网保护 6.故障定位的基本原则 A 先外部后内部--首先排除外部设备的问题。这些外部设备问题包括光纤、接入SDH设备和掉电等问题 B.先网络后网元 ----传输设备出现故障时,有时不会只是一个单站出现告警信号,而是在很多单站同时会上报告警。这时我们就需要通过分析和判断缩小导致故障的范围,快速、准确地定位出是哪个站的问题。 C.先高级后低级----先分析高级别告警,后分析低级别告警 D先多波后单波---先分析多波信号告警,后分析单波信号告警E.先双向后单项---先分析双向信号告警,后分析单向信号告警F.先共性后个别---先分析共性告警,后分析个别告警 故障定位常用的方法 ●信号流分析法●告警性能分析法●替换法●仪表检测法●环回法

波分复用技术论文

波分复用技术 摘要波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 关键词波分复用技术(WDM),光纤,光传输网,交叉连接 引言 WDM是一种在光域上的复用技术,形成一个光层的网络既全光网,将是光通讯的最高阶段。建立一个以WDM和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。 1 波分复用技术 指在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复 用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。 光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的。光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。其主要特性指标为插入损耗和隔离度。通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。光波分复用的技术特点与优势如下: 1.1 充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。 1.2 具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。 1.3 对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。 1.4 由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。 1.5 有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 1.6 系统中有源设备得到大幅减少,这样就提高了系统的可靠性。目前,由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的

数字光纤通信系统及其设计

` 数字光纤通信系统及其设计 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、 SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。 关键字; 数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM) Digital optical communications system and its design ] Abstrac In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMAV), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to

波分测试3-答案

波分产品 一、填空题(共10题,每空2分,共24分) 1、为给光信号提供较高的频率精度和稳定度,ITU-T G.692建议中规定了DWDM系统的绝对参考频率为 193.1 THz。 2、调节光放板各波光功率在标准光功率±2dB范围内。 3、波长转换板的接收光功率调节到接收灵敏度和过载点的中间值,至少要在“过载点-5 ~接收灵敏度 +3 ”范围内 4、站内监控信道处理板的互连需要添加15dB固定光衰。 5、信噪比是DWDM系统受限的一个重要因素,而噪声的根源是在于系统中大量应用的 EDFA 放大器。 6、 80波系统里面频率为193.3THZ的波长对应第 56 通道波长。 7、BWS 1600G 系统使用的监控信道板有两类:TC1/TC2和SC1/SC2单板,这两类单板不可以(可以/不可 以)对接使用 8、普通型ALC 需要(需要或者不需要)配置MCA单板,增强型ALC 不需要(需要或者不需要) 配置MCA单板。 9、要求将光放板输入单波平均光功率尽量调整到输入单波标准光功率,输入单波标准光功率=输入最高光 功率-10lgN,N为光放满波波长数。 10、ALC中文解释。 二、判断题(正确的打“√”,错误的打“Ⅹ”,共5题,每题1分,共5分) 1、6100 V1R2系统中采用MB2+MR2组成的串行OADM站中,不可采用第5波的OTU板。(√) 2、拉曼放大器的反向输出光功率达到27dBm,千万小心。光纤连接器的接头要使用专用的APC光纤连接器,若使用PC光纤连接器,会形成很大的反射,烧坏光纤连接器。(√) 3、拉曼放大器上电后,激光器默认关闭,需要下发命令打开激光器。(√) 4、RAMAN放大器对近端线路光纤损耗要求非常严格,除连接到ODF架的一个端子外,0~20km之内最好不能有连接头,所有接续点不可以采用熔纤方式。(Ⅹ) 5、E3OAU单板PA与BA模块之间的电VOA衰减率,无法通过命令直接进行调节。(√) 三、单项选择题(共12题,每题2分,共24分) 1、下面哪些单板不提供MON口在线检测光信号 C 。 A、OAU; B、D40; C、OCU; D、FIU 2、1600G系统可以配置ALC功能,下面说法正确的是 A 。 A、普通型ALC链路是通过检测放大板输出光功率以及系统当前在用波数来进行链路调节的; B、ALC链路节点号必须从1开始编号,依照业务方向递增,可以间隔,但不可重复; C、ALC链路中放大板或光监控信道板单板有LOS告警或者BDSTATUS告警,仍能进行ALC链路调节; D、目前1600G设备所有主机版本均支持增强型ALC功能。 3、Metro 6040V2R2和Metro 6100V1R5进行版本融合,版本融合的第一个版本号是B A、6040V1R1&6100V1R5 B、6040V2R2&6100V1R5 C、6040V2R1&6100V1R4 D、6040V2R1&6100V1R4 //版本特性 4、1600G的的C波段40×10G系统不能升级到C波段80×10G系统,主要原因A A、C波段40×10G系统的波长转换板不能使用到C波段80×10G系统上 B、C波段40×10G系统的光放板不能使用到C波段80×10G系统上 C、C波段40×10G系统的合波分波板不能使用到C波段80×10G系统上 D、C波段40×10G系统需要增加ITL单板 5、192.3THZ波长的OTU单板,其输出接在Metro 6100V1R5设备M40的第 A 口 A、3 B、5 C、38 D、39 //V1R5沿用320G波长顺序

CWDM DWDM双架构波分复用系统网管平台

CWDM/DWDM双架构波分复用系统网管平台 16槽机架式多业务网管系统可同时支持125M~2.5G/125M~4.25G/10G CWDM/DWDM双架构波分复用系统,是高可靠、低成本的传输设备。支持各种速率,单模/多模,单纤/双纤,SFP,SFP+,XFP等。此网管平台功能全面、设置简单,支持SNMP、WEB、CONSOLE及TELNET等网管方式,可实现多业务卡局端远端统一平台集中管理。 1.基于图形界面(GUI)的网络管理,软件操作简单,用户界面友好,设置不同的授权用户(普通用户、高级用户和管理员) 2.采用集中式管理方式,结合树形目录,可在一个软件界面内同时管理多台机架式设备;同时引入组管理方式,在管理中充分增强层次性,即使同时管理很多设备,也可以方便地对任意一台设备进行操作 3.提供主从式管理模块,可以级联3个子机架管理,管理模块失败不影响其他模块正常工作 4.支持基于Snmp、Web、Telnet和Console方式的图形化和命令行管理Console口管理:用户可以直接使用WINDOWS自带的超级终端,通过机架串口进行网络配置和设置用户权限,并可以显示/控制局端和远端设备工作状态;WEB管理:使用网络浏览器(IE等),通过WEB页面进行远程访问,可以进行网络配置和设置权限,并可以显示/控制远程设备的工作状态; 5.标准SNMP协议:提供MIB库文件,方便整合到第三方的SNMP网管软件;用户可以设置达四个TRA P地址,按用户需要选择TRAP触发条件,如TX由Link到Down、FX由Link到Down等; 6.专用网管软件:中心局专用网管软件在后台运行,采集信息以数据库的形式保存在网管PC机硬盘。可以设置用户权限和显示/控制局端和远端设备的工作状态。 7.网管系统支持网络设备自动发现与添加功能 8.可以显示和配置机架名称、地域信息、IP地址相关信息及软硬件版本号等系统信息 9.可查询详细的电源以及业务卡工作状态,显示机箱温度信息,有故障实时上报 10.支持SFP/XFP、CWDM SFP/XFP、DWDM SFP/XFP及显示SFP/XFP信息与数字诊断功能 11.支持远端掉电检测,能够通过对端发送的远端错误信号检测发送端光纤连接状态 12.支持故障转移(LFP)功能,能迅速定位故障发生的链路,为维护人员提供方便 13.支持远程重启,通过网管软件设置系统重启或单个模块重启 14.业务板卡可恢复出厂设置配置或拨码开关配置,掉电后配置信息自动保存

WDM波分复用技术

WDM波分复用技术 1 绪论 本论文主要研究的是WDM波分复用技术,其中包括WDM技术的产生背景,WDM 的基本概念和特点,WDM的关键技术,WDM的网络生存性,WDM技术发展现状及发展趋势等,下面将分别从以上几个方面讨论。 2 WDM技术产生背景 随着科学技术的迅猛发展,通信领域的信息传送量正以一种加速度的形式膨胀。信息时代要求越来越大容量的传输网络。近几年来,世界上的运营公司及设备制造厂家把目光更多地转向了WDM 技术,并对其投以越来越多的关注,增加光纤网络的容量及灵活性,提高传输速率和扩容的手段可以有多种,下面对几种扩容方式进行比较。 1. 空分复用SDM(Space Division Multiplexer) 空分复用是靠增加光纤数量的方式线性增加传输的容量,传输设备也线性增加。 在光缆制造技术已经非常成熟的今天,几十芯的带状光缆已经比较普遍,而且先进的光纤接续技术也使光缆施工变得简单,但光纤数量的增加无疑仍然给施工以及将来线路的维护带来了诸多不便,并且对于已有的光缆线路,如果没有足够的光纤数量,通过重新敷设光缆来扩容,工程费用将会成倍增长。而且,这种方式并没有充分利用光纤的传输带宽,造成光纤带宽资源的浪费。作为通信网络的建设,不可能总是采用敷设新光纤的方式来扩容,事实上,在工程之初也很难预测日益增长的业务需要和规划应该敷设的光纤数。因此,空分复用的扩容方式是十分受限。 2. 时分复用TDM(Time Division Multiplexer) 时分复用也是一项比较常用的扩容方式,从传统PDH 的一次群至四次群的复用,到如今SDH 的STM-1、STM-4、STM-16 乃至STM-64 的复用。通过时分复用技术可以成倍地提高光传输信息的容量,极大地降低了每条电路在设备和线路方面投入的成本,并且采用这种复用方式可以很容易在数据流中抽取某些特定的数字信号,尤其适合在需要采取自愈环保护策略的网络中使用。 时分复用的扩容方式有两个缺陷:第一是影响业务,即在“全盘”升级至更高的速率等级时,网络接口及其设备需要完全更换,所以在升级的过程中,不得不中断正在运行的设备;第二是速率的升级缺乏灵活性,以SDH 设备为例,当一个线路速率为155Mbit/s 的

波分传输工程中对AGILENT86100宽频示波器的使用(020513)

波分传输工程中对AGLIENT86100宽频示波器的使用 本部用服 代勇 20020514 相关参考文档: 《AGLIENT 86100A user guide 》 Aglient 《光同步数字传输系统测试》 邓忠礼、赵辉编著 人民邮电出版社 1 仪表概述 1.1 简介 AGLIENT 86100A 宽频示波器(AGLIENT86100A WIDE-BANDWINDTH OSCILLOSCOPE )是美国AGLIENT 公司生产的一种通信信号分析仪,它的功能非常强大,可以对光口和电口等多速率数字信号进行波形分析(WAVEFORM ANALYSIS )、眼图模板(EYE DIAGRAM )、消光比(EXTINCTION RATIO )、抖动(JITTER )、信噪比(SIGNAL TO NOISE )、时域反射(TDR )、时域传输(TDT )、平均功率(AVERAGE POWER )等参数的分析和测试。 AGILENT86100A 是一种高灵敏度的触摸操作仪表,同时支持鼠标和键盘的操作。测试应用程序运行在WINDOWS 操作系统上。由于AGLIENT 86100A 宽频示波器对抖动(JITTER )、信噪比(SIGNAL TO NOISE )、平均功率(AVERAGE POWER )等参数的测试精度不高,因此在波分工程中使用AGLIENT86100A 主要对眼图(EYE DIAGRAM )和消光比(EXTINCTION RATIO )进行测试和分析。 1.2 仪表外观 AGLIENT86100A 仪表面板图如图1所示: 图1 AGILENT86100A 眼图分析仪面板图 自动坐标调整按钮 主显示区 (触摸屏幕) 操作模式选择 眼图/模板、时域、示波器模式 交流电源开关 标识按钮和微调 时钟触发设置 选择按钮、导入端、电平调整 快速测试按钮 启停和清屏按钮 软驱 横坐标调整和微调按钮 测试端口选择 出厂设置和本地操作端口1(光口)输入、横坐标调整和微调按钮 端口2(电口)输入、横坐标调整和微调按钮

光纤通信技术习题及答案(1、2)

光纤通信概论 一、单项选择题 1.光纤通信指的是: A 以电波作载波、以光纤为传输媒介的通信方式; B 以光波作载波、以光纤为传输媒介的通信方式; C 以光波作载波、以电缆为传输媒介的通信方式; D 以激光作载波、以导线为传输媒介的通信方式。 2 光纤通信所使用的波段位于电磁波谱中的: A 近红外区 B 可见光区 C 远红外区 D 近紫外区 3 目前光纤通信所用光波的波长范围是: A 0.4~2.0 B 0.4~1.8 C 0.4~1.5 D 0.8~1.6 4 目前光纤通信所用光波的波长有三个,它们是: A 0.85、1.20、1.80; B 0.80、1.51、1.80; C 0.85、1.31、1.55; D 0.80、1.20、1.70。 6 下面说法正确的是: A 光纤的传输频带极宽,通信容量很大; B 光纤的尺寸很小,所以通信容量不大; C 为了提高光纤的通信容量,应加大光纤的尺寸; D 由于光纤的芯径很细,所以无中继传输距离短。 二、简述题 1、什么是光纤通信? 2、光纤的主要作用是什么? 3、与电缆或微波等电通信方式相比,光纤通信有何优点? 4、光纤通信所用光波的波长范围是多少? 5、光纤通信中常用的三个低损耗窗口的中心波长分别是多少? 光纤传输特性测量 一、单项选择题 1 光纤的损耗和色散属于: A 光纤的结构特性; B 光纤的传输特性; C 光纤的光学特性; D 光纤的模式特性。 2 光纤的衰减指的是: A 由于群速度不同而引起光纤中光功率的减少; B 由于工作波长不同而引起光纤中光功率的减少; C光信号沿光纤传输时,光功率的损耗; D 由于光纤材料的固有吸收而引起光纤中光功率的减少。 3 光纤的色散指的是: A 光纤的材料色散;

波分及OTN---简答题(20题)

1、DWDM的关键技术有哪些? 答:①光源②光电监测器③光放大器④光复用器和光解复用器 2、请简要陈述WDM的优势。 答案:超大容量;对数据的“透明”传输;系统升级时能最大限度的保护已有投资高度的组网灵活性、经济性和可靠性;可兼容全光交换。 3、 DWDM系统光源的两个突出特点是什么? 答案:比较大的色散容纳值,标准而稳定的波长 4、光纤通信对光源器件的要求是什么? 答案:(1)发射光波长适中。(2)发射光功率足够大。(3)温度特性好。(4)发光谱宽窄。(5)工作寿命长。(6)体积小重量轻。 5、简述DWDM原理。 答案: DWDM技术是利用单模光纤的带宽以及低损耗的特性,采用多个波长作为载波,允许各载波信道在光纤内同时传输。 6、目前,光纤通信中经常使用的光源器件分为哪两大类? 答: LD和LED。 7、光通信系统可以按照不同的方式进行分类,如果按照信号的复用方式来进行分类,可分为哪四类? 答: 频分复用系统,时分复用系统,波分复用系统, 空分复用系统 8、光纤通信对光源器件的要求是什么? 答案:(1)发射光波长适中。(2)发射光功率足够大。(3)温度特性好。(4)发光谱宽窄。(5)工作寿命长。(6)体积小重量轻。 9、DWDM系统具有哪些特点? 答案:1.充分利用光纤带宽2.大容量长距离传输时节约光纤,降低成本; 3.同一种光纤上实现多种速率、多种业务的混合传输。 10、哪些原因可能会导致波分业务出现误码? 答案:1、色散补偿不合理,欠补或过补;2、入线路纤的光功率过高或过低;3、发端OTU单板的发送激光器性能劣化;4、开局或维护中拔出光纤接头测试后未用擦纤盒清洁就插回去。 11、1600G设备组网,其中有一网元配置有V40、D40、VA4等单板,某日该网元主控板故障, 更换主控板并通过T2000网管下载配置数据后,对端站点部分OTU单板上报光功率异常

实验1.9WDM光波分复用器

1.9 WDM光波分复用器 实验者:钦(12342080) 合作者:王唯一(12342057) (大学物理科学与工程技术学院,光信息科学与技术12级2班 B13) 2015年3月26日,19,70% c 一、实验目的和容 1、了解WDM光波分复用器的工作原理和制作工艺,即熔融拉锥技术。 2、认识WDM光波分复用器的基本技术参量的实际意义,学会测量插入损耗、附加损耗、隔离度、偏振相关损耗等。 3、分析测量误差的来源。 二、实验基本原理 在熔融拉锥技术中,具体制作方法一般是将两根(或者两根以上)除去涂覆层的裸光纤以一定方式靠近,在高温加热下熔融,同时向两侧拉伸,利用计算机监控其光功率耦合曲线,并根据耦合比与拉伸长度控制停火时间,最后形成双锥结构。采用熔融拉锥法实现光纤间传输光功率耦合的耦合系数与波长有关,光传输波长发生变化时,耦合系数也会变化,即耦合器的分光比发生变化。考虑到熔融拉锥的耦合是周期性的,耦合周期愈多,耦合系数与传输波长的关系越大,所以尽量减少熔融拉锥中耦合的次数,最好在一个周期完成耦合。合理改变熔融拉锥条件,能够获得不同功能的全光纤耦合器件。熔融拉锥机的控制原理模块图如图1所示。熔融拉锥型光纤耦合器工作原理示意图如图2所示。 图1 熔融拉锥机系统控制示意图 图2 熔融拉锥型光纤耦合器工作原理示意图 1、单模耦合器 HE信号。图3是单模光纤耦合器的迅衰场耦合示意图。但在单模光纤中传导模是两个正交的基模 11 传导模进入熔锥区时,随着纤芯的不断变细,归一化频率V逐渐减小,有越来越多的光功率掺入光纤包层中。实际上光功率是在由包层作为芯,纤外介质(一般是空气)作为包层的复合波导中传播的;在输出端,随着纤芯的逐渐变粗,V值重新增大,光功率被两根纤芯以特定比例“捕获”。在熔锥区,两光纤包层合并在一起,纤芯足够逼近,形成弱耦合。将一根光纤看做是另一光纤的扰动,在弱导近似下,并假设光纤是无吸收的,则有

波分复用系统的基本原理

一、波分复用系统的基本原理 所谓波分复用(WDM),就是采用波分复用器(合波器)在发送端将规定波长的信号光载波合并起来,并送入一根光纤中传输;在接收侧,在由另一个波分复用器(分波器)将这些不同信号的光载波分开。由于不同波长的光载波信号可以看作相互独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。不同类型的光波分复用器,可以复用的波长数也不同,目前商用化的一般是8个波长、16个波长和32个波长的系统。波分复用系统的原理如图1-1所示。 图1-1 波分复用系统原理 在80年代初光纤通信兴起时,首先被采用的是1310nm/1550nm的两个波长复用系统(即在光纤的两个低损耗窗口1310nm和1550nm各传送一路光波长信号),也叫粗波分复用系统。这种系统比较简单,一般采用熔融的波分复用器,插入损耗小,在每个中继站,两个波长都进行解复用和光/电/光再生中继。随着1550nm窗口EDFA的商用化,光传输工程可以利用EDFA对传送的光信号进行放大,实现超长距离无电再生中继传输,在1550nm窗口传送多个波长信号,这些信号相邻波长间隔较窄,且工作在一个共享的EDFA工作带宽内,这种波长间隔紧密的WDM系统称为密集型波分复用系统(DWDM)。其频谱分布如图1-2所示。ITU-T G.692建议,DWDM系统的绝对参考频率为193.1THz(对应波长1552.52nm),不同波长的频率间隔为100GHz的整数倍(对应波长间隔约为0.8.nm的整数倍)。由于密集波分复用系统的波长间隔较小,必须采用高分辨率的波分复用器件,熔融的波分复用器一达不到要求。不加特别说明,波分复用系统通常指DWDM系统。 λ1λ2λ3λ 4 λ5λ6λ7λ8 波长 图1-2 DWDM系统的频谱分布 (一)DWDM的工作方式 双纤单向传输:一根光纤只完成一个方向信号的传输,反向光信号的传输由另一根光纤来完成,统一波长在两个方向上可以重复利用(如图1-3所示)。这种DWDM系统可以

实验五 波分复用(WDM)光纤通信系统

实验五 波分复用(WDM )光纤通信系统 一、实验目的 1、熟悉波分复用器的使用方法。 2、掌握波分复用技术及实现方法。 二、实验内容 1、了解波分复用技术原理。 2、掌握波分复用技术在光纤通信中的应用。 三、实验原理 波分复用(WDM )技术,就是为了充分利用单模光纤低损耗区带来的巨大带宽资源,根据每一信道光波的波长(或频率)不同,可以将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端利用波分复用器(合波器),将不同波长的信号光载波合并起来,送入一根光纤中进行传输;在接收端再由另一波分复用器(分波器),将这些不同波长承载不同信号的光载波分开,实现一根光纤中同时传输几个不同波长的光信号。 由于不同波长的光载波信号可以看作互相独立的(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输,以增加光纤传输系统的信息容量。波分复用系统原理框图如图5-1所示。 光源A1光源A2 光源An ···· 分波器 合波器 检波A1 检波A2 检波An ···· 信道1信道2 信道n 信道1信道2 信道n 图5-1 波分复用系统原理框图 作为波分复用器的单模光纤耦合器可单向运用,也可双向运用。在单向运用时,如图 5-2所示。两个不同波长的光载波信号分别从端口2、3注人,则输出端口1中有两个不同波长光波信号的合成输出,这是合波器;反之,从端口1注入两个不同波长的合成光波信号,输出端口2、3分别有不同波长的光载波信号输出,这是分波器;合波器、分波器分别应用在波分复用光纤传输系统的发送端和接收端。 图5-2 波分复用器单向运用传输系统 在双向运用时,正方向和反方向所传输的光载波信号的波长不同,如图5-3所示,

波分知识点总结

DWDM原理部分: 1.波分复用的概念: 2.单向wdm和双向wdm:一般的波分复用系统采用单向wdm形式,两个方向的光信号 可以安排在相同的波长处,监控信号的波长为1510nm 3.开放式和集成式波分复用系统,实际工程一般采用开放式,注意区别 4.波分复用系统的基本构件 5.CWDM和DWDM的区别 6.光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗 7.OSC和ESC的区别:从降低产品成本的角度出发,产品提出了利用固定帧结构业务中 的开销字节进行DCC通信的思路,这样就可以直接通过OTU单板的对接实现网元间的通信,这就是电监控信道(ESC)。 与OSC不同的是ESC是采用随路的方式,即监控信息随主业务信号一起传送,到对端再将他们分离,这种方式不再另外占用波长资源。 8.WDM网元有如下5种类型: 光终端复用设备OTM(Optical Terminal Multiplexer) 光线路放大设备OLA(Optical Line Amplifier) 光分插复用设备OADM(Optical Add/Drop Mulitiplexer) 光均衡设备OEQ(Optical Equalizer) 电中继设备REG(Regenerator 9.影响波分传输系统主要有3个因素:衰耗、色散及信噪比 10.192.1~196.1THz(C波段)和186.9~190.9THz(L波段)。 1600G硬件部分: 1. OptiX BWS 1600G系统主要用于国家级干线、省级干线作长距离大容量传输 2. 了解:I型系统是160波×10G系统,通道间隔为50GHZ,应用于SSMF/G.655 光纤的C波段和L波段,支持以400Gbit/s模块为单位的系统升级,最大容量达到了1600Gbit/s;在400Gbit/s模块内支持以10Gbit/s的速率为单位的单波升级。单通道接入最大速率为10Gbit/s。 II型系统是80波×10G系统,有两种规格,C+L波段的800G系统的通道间隔为100GHz,C波段800G系统的通道间隔为50GHz 。业务接入容量可以从400Gbit/s升级到800Gbit/s,在400Gbit/s模块内支持以10Gbit/s的速率为单位的单波升级;单通道接入最大速率为10Gbit/s。 III型系统是40波×10G系统,该系统也是在我国大量使用的波分系统规格,通道间隔为100GHZ,应用于SSMF/LEAF光纤的C波段偶数波长通道,单通道接入最大速率为10Gbit/s。最大的业务接入能力为400G。 IV型系统是40波×10G系统,但该系统是专用于G.653光纤的波分系统,它的通道间隔为100GHZ,使用的是L波段奇数波长通道,最大业务接入容量是400Gbit/s,支持以10Gbit/s的速率为单位的单波升级;单通道接入最大速率为10Gbit/s。 V型系统是40波×2.5G系统,也是1600G产品中的一种重要的应用类型,应用于G.652/G.655光纤。该系统的通道间隔为100GHZ,和III型系统一样,使用的是单模光纤的C波段偶数波长通道,单通道接入最大速率为2.5Gbit/s。最大的

波分复用技术

波分复用技术研究 1.产生背景 1.1全球形势 随着全球互联网(Internet)的迅猛发展,以因特网技术为主导的数据通信在通信业务总量中的比列迅速上升,因特网业务已成为多媒体通信业中发展最为迅速、竞争最为激烈的领域。同时,无论是从数据传输的用户数量还是从单个用户需要的带宽来讲,都比过去大很多。特别是后者,它的增长将直接需要系统的带宽以数量级形式增长。因此如何提高通信系统的性能,增加系统带宽,以满足不断增长的业务需求成为大家关心的焦点。 面对市场需求的增长,现有通信网络的传输能力的不足的问题,需要从多种可供选择的方案中找出低成本的解决方法。缓和光纤数量的不足的一种途径是敷设更多的光纤,这对那些光纤安装耗资少的网络来说,不失为一种解决方案。但这不仅受到许多物理条件的限制,也不能有效利用光纤带宽。另一种方案是采用时分复用(TDM)方法提高比特率,但单根光纤的传输容量仍然是有限的,何况传输比特率的提高受到电子电路物理极限限制。第三种方案是波分复用(WDM)技术, WDM系统利用已经敷设好的光纤,使单根光纤的传输容量在高速率TDM 的基础上成N倍地增加。WDM能充分利用光纤的带宽,解决通信网络传输能力不足的问题,具有广阔的发展前景。 WDM波分复用并不是一个新概念,在光纤通信出现伊始,人们就意识到可以利用光纤的巨大带宽进行波长复用传输,但是在20世纪90年代之前,该技术却一直没有重大突破,其主要原因在于TDM的迅速发展,从155Mbit/s到622Mbit/s,再到2.5Gbit/s系统,TDM速率一直以过几年就翻4倍的速度提高。人们在一种技术进行迅速的时候很少去关注另外的技术。1995年左右,WDM系统的发展出现了转折,一个重要原因是当时人们在TDM10Gbit/s技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上,WDM系统才在全球范围内有了广泛的应用。 1.2 发展过程 1.2.1 发展阶段 光纤通信飞速发展,光通信网络成为现代通信网的基础平台。光纤通信系统经历

相关文档