文档库 最新最全的文档下载
当前位置:文档库 › EL34电子管特性参数

EL34电子管特性参数

EL34电子管特性参数
EL34电子管特性参数

EL34电子管特性参数表

下表是EL34的主要应用特性。由表可知,EL34作单端A类放大时,屏极负载阻抗2kΩ下最大输出功率为l 1 w(失真率10%)。当它作推挽放大时,屏一屏负载阻抗3.8kΩ下的最大输出功率可达36W(失真率5%)。

电子管EL34管脚图

EL34胆管参数

热丝加热

UH……………………………6.3 V IH……………………………1.5 A

极限额定值

阳极电压……………………… 800 V

第二栅极电压………………… 500 V

第一栅极电压………………… -100 V

阳极耗散功率………………… 25 W

第二栅极耗散功率…………… 8 W

阴极电流………………………150 mA

第一栅极电阻

自偏压时………………………0.7 MΩ

固定偏压时……………………0.5 MΩ

热丝阴极间电压………………±100 V

玻壳温度………………………250 ℃

极间电容

输入电容…………………… 15.2 PF

输出电容…………………… 8.4 PF

跨路电容…………………… 1.1 PF

第一栅极热丝间电容……… 1.0 PF

热丝阴极间电容…………… 10 PF

静态参数

Ua…………………………… 250 V

Ug2……………………………250 V

Ug3…………………………… 0 V

-Ug1…………………………12.2 V Ia…………………………… 100 mA

Gm…………………………… 11 mA/V ri…………………………… 15 kΩ

μg1-g2 (11)

推荐工作状态(参考值)

单管A1类放大(固定偏压)

Ua(b) …………………… 265 265 V Ua……………………………250 250 V

Ug2……………………… Rg2=2k Rg2=0 Ug3……………………………0 0 V

-Ug1……………………… 14.5 13.5 V

Ia(0) ………………………70 100 mA

Ig2(0) …………………… 10 14.9 mA Gm…………………………… 9 11 mA/V ri……………………………18 15 kΩRL…………………………… 3 2 kΩPout………………………… 8 11 W Dtot…………………………10 10 %

推挽B1类放大(固定偏压)Ua……………………………375 400 V

▲Rg2………………………… 600 800 ΩUg3………………………… 0 0 V

-Ug1………………………… 33 36 V

Ia(0) …………………2×30 2×30 mA

Ia(maxsig) ………2×107.5 2×110.5 mA Ig2(0) ………………2×4.7 2×4.5 mA Ig2(maxsig) ………2×23.5 2×23 mA

Rl(a-a) ………………3.5 3.5 kΩ

ü(g1-g1)(r.M.S) ……… 46.7 50 V Pout……………………48 54 W Dtot……………………2.8 1.6 %

▲ Rg2是两只管子共用。

推挽B1类放大超线性连接(自偏压)(43% tapping points) Ua………………………………430 V Rg2…………………………… 2×1 kΩIa(0) ………………………2×62.5 mA Ia(max.sig) ……………… 2×65 mA Ig2(0) ………………………2×10 mA Ig2(max.sig) …………… 2×10.2 mA Rk……………………………2×470 Ω?(g1-g1)(r.M.S) ……………35 V

RL(a-a) ……………………… 6 kΩPout……………………………20 W Dtot………………………… 0.35 %

电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要1 20W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,F U50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照 以下链接:/dispbbs.asp?boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。

常见大中功率管三极管参数(精)

常见大中功率管三极管参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1402 1500V 5A 120W * * NPN 2SD1399 1500V 6A 60W * * NPN 2SD1344 1500V 6A 50W * * NPN 2SD1343 1500V 6A 50W * * NPN 2SD1342 1500V 5A 50W * * NPN 2SD1941 1500V 6A 50W * * NPN 2SD1911 1500V 5A 50W * * NPN 2SD1341 1500V 5A 50W * * NPN 2SD1219 1500V 3A 65W * * NPN 2SD1290 1500V 3A 50W * * NPN 2SD1175 1500V 5A 100W * * NPN 2SD1174 1500V 5A 85W * * NPN 2SD1173 1500V 5A 70W * * NPN 2SD1172 1500V 5A 65W * * NPN 2SD1143 1500V 5A 65W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1142 1500V 3.5A 50W * * NPN 2SD1016 1500V 7A 50W * * NPN 2SD995 2500V 3A 50W * * NPN 2SD994 1500V 8A 50W * * NPN 2SD957A 1500V 6A 50W * * NPN 2SD954 1500V 5A 95W * * NPN 2SD952 1500V 3A 70W * * NPN 2SD904 1500V 7A 60W * * NPN 2SD903 1500V 7A 50W * * NPN 2SD871 1500V 6A 50W * * NPN 2SD870 1500V 5A 50W * * NPN 2SD869 1500V 3.5A 50W * * NPN 2SD838 2500V 3A 50W * * NPN 2SD822 1500V 7A 50W * * NPN 2SD821 1500V 6A 50W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD348 1500V 7A 50W * * NPN 2SC4303A 1500V 6A 80W * * NPN 2SC4292 1500V 6A 100W * * NPN 2SC4291 1500V 5A 100W * * NPN 2SC4199A 1500V 10A 100W * * NPN 2SC3883 1500V 5A 50W * * NPN 2SC3729 1500V 5A 50W * * NPN 2SC3688 1500V 10A 150W * * NPN

电子管基础知识大全

电子管,电子管基础知识大全(图) 电子管的基本参数: 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7.阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v;10.内阻: kΩ。 几个常用值的计算: 放大因数μ=阳极电压Uak/栅极电压Ugk 表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。 跨导S=阳极电流Ia/栅极电压Ugk 表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的变化。 内阻Ri=栅极电压Uak/阳极电流Ia 表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的变化。 上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri 先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。 这回就先说电子管的构造和工作原理吧。照顾一下咱的老习惯,以后所涉及的管型和单元电路均以国产管为例,在最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。 在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。 不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅极。 先说二极管: 考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路电流。把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属,陶瓷)封装壳,再抽成几近真空,就是电子二极管。 需要说明的是由于制造工艺,杂质附着以及材料本身等原因,管内会残留微量余气,成品管都在管内涂敷了一层吸气剂。吸气剂一般使用掺氮的蒸散型锆铝或锆钒材料。目前除特殊用途外(如超高频和高压整流等),为便于使用和增加一至性,均为两只二极管,或二极三极,或三极三极以及二极五极等合装在一个管壳内,这就是复合管。

各国电子管特点

一、各厂牌电子管风格特点 1国产电子管 (1)曙光 中庸平和,解析力一般,音场稍小,一致性较好。 (2)南京 产品一致性略差,放大管声音通透,音场较大,音质不够、精致,整流管音乐味较好。 (3)北京 音乐味好但解析力不够。 (4)桂光 声音平衡,控制力好,一致性略差,未煲透前声音特别僵直生硬。 2、进口电子管 (1)日本 ①日本产电子管音质大多清淡、平庸,但有极少量日本工厂的OEM制品音质特好,甚至优于 大多数英国制品。 (2)俄罗斯 ①OTK/Sovtek/EH(Electro-Harmonix) 1959年以前(含部分1959年制品)的大把脚管为金属底箍,声音甜润、凝聚、平衡,1959年改为胶木座后的定位很好,但声音干燥,听起来易使人紧张。灯丝电压略降低些会有所改善,现在的EH管这方面略好。 ②Svetlana 与EH走向类似,但稍光滑、圆润些。 (3)欧洲 ①Philips(飞利浦) 甜美婉转,解析力一般,低频量感略欠(也有人认为恰到好处)。经常见到的是荷兰和美国的制品。荷兰的偏向于音乐性而美国的偏向于音响性,大多数人认为前者好于后者。 ②RT 法国产,近似于荷兰Philips,但稍清淡些。 ③Mullard(大盾) 各国OEM的制品很多,共性是音乐味较好至很好,尤以英国早期制品为最,乐音凝聚、洗炼传神,有点收不住,高频能量感也不足。 ④Tungsram(汤司兰) 匈牙利产,音乐味尚好但声音有点“蒙”,透明度不够。 ⑤RFT/WF 前东德产,音场较大而坚实,控制力不错,细腻度稍欠,音乐味一般。 ⑥Telefunken(德律风根) 德国产,小电流工作特性好,中频饱满凝聚,高频光滑细腻,延伸自然,能量感和穿透力好,独具其特有的“贵气”,低频线条感好而量感略欠,产品一致性非常好。型号中含有3位数字的更是其中的佼佼者,如ECC188、EF800、ECC801、ECC802、ECC803等。 ⑦Valvo(伏尔乌、富豪) 德国产,很Telefunken但高频延伸稍欠,中频更显厚实,贵气略逊于Telefunken。 ⑧Siemens(西门子) 解析力高,定位和高频延伸好,几乎无音染,胆味最淡的胆。

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

805电子管特性及其电路设计简析

805电子管特性及其电路设计简析 ——版权所有:HIFIDIY论坛Juline 805电子管是一种灵敏度高,性价比高的大功率电子管,容易制成20W以上输出功率的单管A类放大器。因此有不少玩家参与尝试制作,也产生了大量试制电路。但是,往往出现的问题是,频响不宽,音色不平衡,功率不大。本文就805管的本身特性展开一些简易分析,供大家设计制作参考。 1,805电子管特性概述。 805电子管原形是一款丙类发射用电子管, 屏耗 Pa = 125W 放大系数 u = 50 内阻 Ri = 10K, 其屏栅特性曲线见图: 2,按照常用线路的工作点分析: 现在常见电路工作点往往是: 屏压Ua = 1050V 屏流Ia = 100mA 负载阻抗RL = 7~10K

就此工作点,在屏栅特性曲线上简易作图,得: 对805动态工作情况简易分析如下: 805静态工作点, Ug1 = +18V,此时有栅流大致12mA 左右 Ua = 1050V Ia = 100mA 假设推动电压为对称 正弦波 当805电子管动作点移动到负半周某点A处: Ug1 = +45V Ua = 300V Ia = 168mA 此时如果要输出完整对称的正弦波,正半周A'点,根据特性曲线应当为:Ug1= -9V Ua = 1630V Ia = 40mA 输出功率根据负半周,大致为 Po = 0.5(1050 - 300)/(168 - 100)*1000 = 25W 此时栅极动作范围是Ug1 从-9V ~ 45V 栅流变化范围是0mA ~ 40mA (粗略值) 以上要说明的是,805在Ug1 = 0V ~ -9V 区间内,基本是无栅流的。 此时,805输入阻抗近似趋向无穷大(实测在10K左右)

EL34电子管特性参数

EL34电子管特性参数表 下表是EL34的主要应用特性。由表可知,EL34作单端A类放大时,屏极负载阻抗2kΩ下最大输出功率为l 1 w(失真率10%)。当它作推挽放大时,屏一屏负载阻抗3.8kΩ下的最大输出功率可达36W(失真率5%)。 电子管EL34管脚图

EL34胆管参数 热丝加热 UH……………………………6.3 V IH……………………………1.5 A 极限额定值 阳极电压……………………… 800 V 第二栅极电压………………… 500 V 第一栅极电压………………… -100 V 阳极耗散功率………………… 25 W 第二栅极耗散功率…………… 8 W 阴极电流………………………150 mA 第一栅极电阻 自偏压时………………………0.7 MΩ 固定偏压时……………………0.5 MΩ 热丝阴极间电压………………±100 V 玻壳温度………………………250 ℃ 极间电容 输入电容…………………… 15.2 PF 输出电容…………………… 8.4 PF 跨路电容…………………… 1.1 PF 第一栅极热丝间电容……… 1.0 PF 热丝阴极间电容…………… 10 PF 静态参数 Ua…………………………… 250 V Ug2……………………………250 V Ug3…………………………… 0 V -Ug1…………………………12.2 V Ia…………………………… 100 mA

Gm…………………………… 11 mA/V ri…………………………… 15 kΩ μg1-g2 (11) 推荐工作状态(参考值) 单管A1类放大(固定偏压) Ua(b) …………………… 265 265 V Ua……………………………250 250 V Ug2……………………… Rg2=2k Rg2=0 Ug3……………………………0 0 V -Ug1……………………… 14.5 13.5 V Ia(0) ………………………70 100 mA Ig2(0) …………………… 10 14.9 mA Gm…………………………… 9 11 mA/V ri……………………………18 15 kΩRL…………………………… 3 2 kΩPout………………………… 8 11 W Dtot…………………………10 10 % 推挽B1类放大(固定偏压)Ua……………………………375 400 V ▲Rg2………………………… 600 800 ΩUg3………………………… 0 0 V -Ug1………………………… 33 36 V Ia(0) …………………2×30 2×30 mA Ia(maxsig) ………2×107.5 2×110.5 mA Ig2(0) ………………2×4.7 2×4.5 mA Ig2(maxsig) ………2×23.5 2×23 mA Rl(a-a) ………………3.5 3.5 kΩ ü(g1-g1)(r.M.S) ……… 46.7 50 V Pout……………………48 54 W Dtot……………………2.8 1.6 %

常用国产电子管参数

常用国产电子管参数

常用国产电子管参数 参数 类别 典型特性参数极限运用参数 用途备注 参数名称 灯丝阳极 第一 (控 制) 栅压 帘栅 内 阻 互(跨) 导 放 大 系 数 灯丝 最高 阳极 电压 最大 阳极 功耗 帘栅电 压 电 流 电 压 电 流 第 二 栅 压 第 二 栅 流 电压 (大) 电压 (小) 最高 电压 最大 功耗 符号U f I f U a I a U g1U g2Ig 2R i Sμ U f max U f min U a max P a M U g2m ax P g2 max 单位V A V mA V V mA kΩmA — v —V V V W V W 型 号 二

5AR 4 5 1.9 2 × 55 14 8 极 管 ZB 2= 75 n R l =2 k Ω 5Z1P52± 0.2 2× 500 125—————— 5.5 4.51400 6 2—— 5Z2P52± 0.2 2× 400 125—————— 5.5 4.51400 5 0—— 负载 2.7k Ω 5Z3P52± 0.3 2× 500 230—————— 5.5 4.51500115—— 负载 2kΩ 5Z4P52± 0.2 2× 500 122—————— 5.5 4.51300 6 0—— 负载 4.7k Ω

5Z8P52± 0.7 2× 500 400—————— 5.5 4.51700200—— 负载 1kΩ 5Z9P52± 0.3 2× 500 190—————— 5.5 4.51700100—— 负载 2.2k Ω 6Z4 6.30.62× 350 72——————7 5.71000 2 5—— 负载 5.2k Ω 6Z5P6.30.62× 400 70—————— 6.9 5.71100 3 0—— 负载 5.7k Ω 6H Z 6.30.3 2× 150 17——————7 5.74503—— 负载 10k Ω 300 B-98 5 30 45 -60 56 三极 管 300 BC 5 1.2 30 60 -60 5.3

微型电子管6C6B的特性及应用

微型电子管6C6B的特性及应用 一、概述 微型电子管6c6B是电子管家族中的小兄弟,又称超小型电子管或“毛毛管”,直径8mm,高33mm,重2g。由于体积小重量轻,故广泛应用于氢气球气象探空仪中携带的微波发射机,将探空仪所探测到的高空温度、湿度等气象资料数据,转口成微波讯号发送回地面,通过地面雷达站接收,处理还原出所探测到的气象资料数据,为天气预报提供依据。用6c6B 制作小型音响,体积小重量轻,耗电少,既能用交流亦能用直流供电,便于在移动场台使用。因而受到胆机爱好者的青睐。 二、应用举例 1双声道单管放大器 图1为单管立体声小功率放大器,由v1、V2分别担任左、右声道放大,并分别从输出变压器B1、B2输出100mw音频功率推动一对32Ω的立体声耳机Rj放音。电源采用直流电源供电。甲电Ea为一只6V 10Ah的铅酸蓄电池,为灯丝供电乙电Eb为34只3.6V 2.6Ah 锂电池串接成122V,给屏极供电。充次电可连续放音24小时。 2阴极输出放大嚣 图2是采用3只6c6B组成的小功率放大器,其中v1担任电压放大,V2、V3为阴极输出器构成的推挽电路。音频讯号电压从V1栅极输入,经v1放大后从其屏极输出的音频电流,经输入变压器RB初级绕组,在次级两个绕组上感应出两个音频电压分别加到v1、V2管的栅极。这两个电压大小相等方向相反,即被倒相了。经V2、V3作推挽放大后从接在阴极电路中的输出变压器cB输出0.4w的音频功率推动喇叭Y发音。Y是一只8Ω0.5W的电脑小音箱。 输出变压器CB绕成自耦变压器,喇叭直接从电子管回路中吸取音频功率,放音效果更好,效率更高。输入变压器次级绕组不再沿用通常的一个线圈带中心抽头接地的方式,而改用由两个独立绕组分别接两功放管阴极与栅极的交连方式。这种方式避免了从输出变压器的

(整理)常用晶体管参数表

常用晶体管参数表 索引晶体管型号反压Vbeo 电流Icm 功率Pcm 放大系数特征频率管子类型9011 50V 0.03A 0.4W * 150MHZ NPN 9012 50V 0.5A 0.6W * * PNP 9013 50V 0.5A 0.6W * * NPN 9014 50V 0.1A 0.4W * 150MHZ NPN 9015 50V 0.1A 0.4W * 150MHZ PNP 9018 30V 0.05A 0.4W * 1GHZ NPN 2N2222 60V 0.8A 0.5W 45 * NPN 2N2369 40V 0.5A 0.3W * 800MHZ NPN 2N2907 60V 0.6A 0.4W 200 * NPN 2N3055 100V 15A 115W * * NPN2N 2N3440 450V 1A 1W * * NPN 2N3773 160V 16A 150W * * NPN 2N5401 160V 0.6A 0.6W * 100MHZ PNP 2N5551 160V 0.6A 0.6W * 100MHZ NPN 2N5685 60V 50A 300W * * NPN 2N6277 180V 50A 300W * * NPN 2N6678 650V 15A 175W * * NPN 2SA 2SA1009 350V 2A 15W ** PNP 2SA1012Y 60V 5A 25W ** PNP 2SA1013R 160V 1A 0.9W * * PNP 2SA1015R 50V 0.15A 0.4W * * PNP 2SA1018 150V 0.07A 0.75W * * PNP 2SA1020 50V 2A 0.9W * * PNP 2SA1123 150V 0.05A 0.75W * * PNP 2SA1162 50V 0.15A 0.15W * * PNP 2SA1175H 50V 0.1A 0.3W * * PNP 2SA1216 180V 17A 200W * * PNP 2SA1265 140V 10A 30W ** PNP 2SA1266Y 50V 0.15A 0.4W * * PNP 2SA1295 230V 17A 200W * * PNP 2SA1299 50V 0.5A 0.3W * * PNP 2SA1300 20V 2A 0.7W * * PNP 2SA1301 200V 10A 100W * * PNP 2SA1302 200V 15A 150W * * PNP 2SA1304 150V 1.5A 25W ** PNP 2SA1309A 25V 0.1A 0.3W * * PNP 2SA1358 120V 1A 10W *120MHZ PNP 2SA1390 35V 0.5A 0.3W * * PNP 2SA1444 100V 1.5A 2W * 80MHZ PNP 2SA1494 200V 17A 200W * 20MHZ PNP 2SA1516 180V 12A 130W * 25MHZ PNP

常用场效应管和晶体管参数大全

常用场效应管和晶体管参数大全 常用场效应管和晶体管参数大全 IRFU020 50V 15A 42W * * NMOS场效应IRFPG42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应IRFP140 100V 30A 150W * * NMOS场效应IRFP054 60V 65A 180W * * NMOS场效应IRFI744 400V 4A 32W * * NMOS场效应IRFI730 400V 4A 32W * * NMOS场效应IRFD9120 100V 1A 1W * * NMOS场效应IRFD123 80V 1.1A 1W * * NMOS场效应IRFD120 100V 1.3A 1W * * NMOS场效应IRFD113 60V 0.8A 1W * * NMOS场效应IRFBE30 800V 2.8A 75W * * NMOS场效应IRFBC40 600V 6.2A 125W * * NMOS场效应IRFBC30 600V 3.6A 74W * * NMOS场效应IRFBC20 600V 2.5A 50W * * NMOS场效应IRFS9630 200V 6.5A 75W * * PMOS场效应IRF9630 200V 6.5A 75W * * PMOS场效应IRF9610 200V 1A 20W * * PMOS场效应IRF9541 60V 19A 125W * * PMOS场效应IRF9531 60V 12A 75W * * PMOS场效应IRF9530 100V 12A 75W * * PMOS场效应IRF840 500V 8A 125W * * NMOS场效应IRF830 500V 4.5A 75W * * NMOS场效应IRF740 400V 10A 125W * * NMOS场效应IRF730 400V 5.5A 75W * * NMOS场效应IRF720 400V 3.3A 50W * * NMOS场效应IRF640 200V 18A 125W * * NMOS场效应IRF630 200V 9A 75W * * NMOS场效应IRF610 200V 3.3A 43W * * NMOS场效应IRF541 80V 28A 150W * * NMOS场效应

部分电子管参数

常用电子管资料 12c 3p 三极管分米波振荡 12g 2p 复合管检波, 低频电压放大和自动音量控制 12h3p 二极管超高频检波及变频 12j1s 锐截止五极管小功率放大及高频振荡 12k3p 遥截止五极管高频电压放大 13p1p 输出五极管束射四极管低频功率放大 1b2 复合管检波和低频电压放大 1k2 遥截止五极管高频电压放大 1z1 二极管电视行回扫回程脉冲电压整流 1z11 二极管电视行扫描回程脉冲电压整流 1z1b 二极管电视行扫描回程脉冲电压整流 1z7b 二极管高频脉冲整流 2d1p 二极管分米波波段作检波用 2j14b 锐截止五极管高频电压放大 2j27 锐截止五极管高频电压放大 2j27s 锐截止五极管小功率放大及高频振荡 2p19b 输出五极管束射四极管功率放大 2p2 输出五极管束射四极管低频功率放大 2p29 输出五极管束射四极管小功率发射 2p29o 输出五极管束射四极管小功率发射 2p29s 输出五极管束射四极管功率放大及高频振荡 2p3 输出五极管束射四极管功率放大 2z2p 二极管高压整流 2z2p-t 二极管高压整流 4j1s 锐截止五极管小功率放大及高频振荡 4p1s 输出五极管束射四极管振荡及功率放大

5z1p 二极管小功率全波整流 5z2p 二极管小功率全波整流 5z3p 二极管小功率全波整流 5z3pa 二极管专用设备整流 5z4p 二极管小功率全波整流 5z4pa 二极管小功率全波整流 5z8p 二极管全波整流 5z9p 二极管全波整流 6b8p 复合管高频和低频电压放大, 检波和自动音量控制6c 1 三极管高频电压放大 6c 11 三极管超高频振荡 6c 12 三极管栅地电路中作低噪声超高频放大 6c 16 三极管宽频带电压放大 6c 19 三极管稳压电路中作电压调整管 6c 1j 三极管超高频振荡 6c 3 三极管宽频带高频电压放大 6c 3-q 三极管宽频带高频电压放大 6c 31b-q 三极管电压放大 6c 32b-q 三极管电压放大 6c 4 三极管宽频带高频电压放大 6c 4-q 三极管宽频带高频电压放大 6c 5d 三极管分米和厘米波波段的小功率振荡 6c 5p 三极管检波和低频电压放大 6c 6b 三极管低频电压放大及高频振荡 6c 6b-m 三极管低频电压放大及高频振荡 6c 6b-q 三极管低频电压放大及高频振荡 6c 7b 三极管低频电压放大 6c 7b-q 三极管低频电压放大 6c 8p 三极管高频脉冲振荡 6d3d 二极管分米波和厘米波的上限作检波用

电子管基础知识

常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为 核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础且对电子管工作原理有一 定了解的 (1)整机及各单元级估算1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W 左右 输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10- 20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有左右。由输出功率确定输出电压有效值:Uout="—(P?R),其中P为输出功率,R为额定负载阻抗。例如某8W俞出功率的功放,额定负载8欧姆,则其Uout= 8V,输入电压Uin记, 则整机所需增益A= Uout/Uin = 16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不 在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%- 25%,这 里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%- 30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右关于电子管特性曲线的知识可以参照 以下链接:/boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。 链接如下: /boardID=10&ID=8354&skin=0 在决定输出级用管和电路程式之后,根据输出级功率管满 功率输出时所需推动电压Up(峰峰值)和输入音源信号电压U'in (这里的U'in需要折算成峰峰值)确定电压放大级增益。Au= Up/U'in。例如2A3单管单端所需推动电压峰峰

最新常用晶体管参数查询

常用晶体管参数查询

常用晶体管参数查询 Daten ohne Gewahr 2N109 GE-P 35V 0.15A 0.165W | 2N1304 GE-N 25V 0.3A 0.15W 10MHz 2N1305 GE-P 30V 0.3A 0.15W 5MHz | 2N1307 GE-P 30V 0.3A 0.15W B>60 2N1613 SI-N 75V 1A 0.8W 60MHz | 2N1711 SI-N 75V 1A 0.8W 70MHz 2N1893 SI-N 120V 0.5A 0.8W | 2N2102 SI-N 120V 1A 1W <120MHz 2N2148 GE-P 60V 5A 12.5W | 2N2165 SI-P 30V 50mA 0.15W 18MHz 2N2166 SI-P 15V 50mA 0.15W 10MHz | 2N2219A SI-N 40V 0.8A 0.8W 250MHz 2N2222A SI-N 40V 0.8A 0.5W 300MHz | 2N2223 2xSI-N 100V 0.5A 0.6W >50 2N2223A 2xSI-N 100V 0.5A 0.6W >50 | 2N2243A SI-N 120V 1A 0.8W 50MHz 2N2369A SI-N 40V 0.2A .36W 12/18ns | 2N2857 SI-N 30V 40mA 0.2W >1GHz 2N2894 SI-P 12V 0.2A 1.2W 60/90ns | 2N2905A SI-P 60V 0.6A 0.6W 45/100 2N2906A SI-P 60V 0.6A 0.4W 45/100 | 2N2907A SI-P 60V 0.6A 0.4W 45/100 2N2917 SI-N 45V 0.03A >60Mz | 2N2926 SI-N 25V 0.1A 0.2W 300MHz 2N2955 GE-P 40V 0.1A 0.15W 200MHz | 2N3019 SI-N 140V 1A 0.8W 100MHz 2N3053 SI-N 60V 0.7A 5W 100MHz | 2N3054 SI-N 90V 4A 25W 3MHz 2N3055 SI-N 100V 15A 115W 800kHz | 2N3055 SI-N 100V 15A 115W 800kHz 2N3055H SI-N 100V 15A 115W 800kHz | 2N3251 SI-P 50V 0.2A 0.36W 2N3375 SI-N 40V 0.5A 11.6W 500MHz | 2N3439 SI-N 450V 1A 10W 15MHz 2N3440 SI-N 300V 1A 10W 15MHz | 2N3441 SI-N 160V 3A 25W POWER

电子管特性参数

电子管特性参数 Document number:PBGCG-0857-BTDO-0089-PTT1998

EL34电子管特性参数表 下表是EL34的主要应用特性。由表可知,EL34作单端A类放大时,屏极负载阻抗2kΩ下最大输出功率为l 1 w(失真率10%)。当它作推挽放大时,屏一屏负载阻抗Ω下的最大输出功率可达36W(失真率5%)。 电子管EL34管脚图 EL34胆管参数 热丝加热 UH…………………………… V IH……………………………1.5 A 极限额定值 阳极电压……………………… 800 V 第二栅极电压………………… 500 V 第一栅极电压………………… -100 V 阳极耗散功率………………… 25 W 第二栅极耗散功率…………… 8 W 阴极电流………………………150 mA 第一栅极 自偏压时………………………0.7 MΩ 固定偏压时……………………0.5 MΩ 热丝阴极间电压………………±100 V 玻壳温度………………………250 ℃ 极间 输入电容…………………… PF 输出电容…………………… PF 跨路电容…………………… PF 第一栅极热丝间电容……… PF 热丝阴极间电容…………… 10 PF 静态参数 Ua…………………………… 250 V

Ug2……………………………250 V Ug3…………………………… 0 V -Ug1………………………… V Ia…………………………… 100 mA Gm…………………………… 11 mA/V ri…………………………… 15 kΩ μg1-g2 (11) 推荐工作状态(参考值) 单管A1类放大(固定偏压) Ua(b) …………………… 265 265 V Ua……………………………250 250 V Ug2……………………… Rg2=2k Rg2=0 Ug3……………………………0 0 V -Ug1……………………… V Ia(0) ………………………70 100 mA Ig2(0) …………………… 10 mA Gm…………………………… 9 11 mA/V ri……………………………18 15 kΩRL…………………………… 3 2 kΩPout………………………… 8 11 W Dtot…………………………10 10 % 推挽B1类放大(固定偏压)Ua……………………………375 400 V ▲Rg2………………………… 600 800 ΩUg3………………………… 0 0 V -Ug1………………………… 33 36 V Ia(0) …………………2×30 2×30 mA Ia(maxsig) ………2× 2× mA Ig2(0) ………………2× 2× mA Ig2(maxsig) ………2× 2×23 mA Rl(a-a) ……………… kΩ ü(g1-g1) ……… 50 V Pout……………………48 54 W

常见的电子管功放设计

常见的电子管功放是由功率放大、电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道 电源供给部分为放大通道工作提供多种量值的电能。 一般而言 电子管功放的工作器件由有源器件 电子管、晶体管 、电阻、电容、电感、变压器等主要器件组成 其中电阻、电容、电感、变压器统称无源器件。以各有源 器件 为核心并结合无源器件组成了各单元级 各单元级为基础组成了整个放大器。功放的设计主 要就是根据整机要求 围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础 最好有一定的实做基础 且对电子管工作原理有一定了解 一、整机及各单元级估算 1、由于功放常根据其输出功率来分类。因此 先根据实际需求确定自己所需要设计功 放的 输出功率。 对于95db的音箱 一般需要8W输出功率 90db的音箱需要20W左右输出功率

84db音箱需要60W左右输出功率 80db音箱需要120W左右输出功率。当然 实际可以根据个人需求调整。 2、根据功率确定功放输出级电路程式。 对于10W以下功率的功放 通常可以选择单管单端输出级 10~20W可以选择单管 单端功放 也可以选择推挽形式 而通常20W以上的功放多使用推挽 甚至并联推挽 如 果选择单管单端或者并联单端 通常代价过高 也没有必要。 3、根据音源和输出功率确定整机电压增益。 一般 现代音源最大输出电压为2Vrms 而平均电压却只有0.5Vrms左右。由输出 功率确定输出电压有效值 Uout √ˉ(P?R) P为输出功率 R为额定负载阻抗 。例如 某8W输出功率的功放 额定负载8欧姆 则其Uout 8V 输入电压Uin记0.5V 则整 机所需增益A Uout/Uin 16倍。

常用场效应管和晶体管参数大全

常用场效应管和晶体管参数大全2010年03月04日 10:13 www.elecfans.co 作者:佚名用户评论(1)关键字:晶体管参数(6)场效应管(6) 常用场效应管和晶体管参数大全 IRFU020 50V 15A 42W * * NMOS场效应 IRFPG42 1000V 4A 150W * * NMOS场效应 IRFPF40 900V 4.7A 150W * * NMOS场效应 IRFP9240 200V 12A 150W * * PMOS场效应 IRFP9140 100V 19A 150W * * PMOS场效应 IRFP460 500V 20A 250W * * NMOS场效应 IRFP450 500V 14A 180W * * NMOS场效应 IRFP440 500V 8A 150W * * NMOS场效应 IRFP353 350V 14A 180W * * NMOS场效应 IRFP350 400V 16A 180W * * NMOS场效应 IRFP340 400V 10A 150W * * NMOS场效应 IRFP250 200V 33A 180W * * NMOS场效应 IRFP240 200V 19A 150W * * NMOS场效应 IRFP150 100V 40A 180W * * NMOS场效应 IRFP140 100V 30A 150W * * NMOS场效应 IRFP054 60V 65A 180W * * NMOS场效应 IRFI744 400V 4A 32W * * NMOS场效应 IRFI730 400V 4A 32W * * NMOS场效应 IRFD9120 100V 1A 1W * * NMOS场效应 IRFD123 80V 1.1A 1W * * NMOS场效应 IRFD120 100V 1.3A 1W * * NMOS场效应 IRFD113 60V 0.8A 1W * * NMOS场效应 IRFBE30 800V 2.8A 75W * * NMOS场效应 IRFBC40 600V 6.2A 125W * * NMOS场效应 IRFBC30 600V 3.6A 74W * * NMOS场效应 IRFBC20 600V 2.5A 50W * * NMOS场效应 IRFS9630 200V 6.5A 75W * * PMOS场效应 IRF9630 200V 6.5A 75W * * PMOS场效应 IRF9610 200V 1A 20W * * PMOS场效应 IRF9541 60V 19A 125W * * PMOS场效应 IRF9531 60V 12A 75W * * PMOS场效应 IRF9530 100V 12A 75W * * PMOS场效应 IRF840 500V 8A 125W * * NMOS场效应

相关文档