文档库 最新最全的文档下载
当前位置:文档库 › 高一数学基础练习专题15.不等式的基本性质及解法

高一数学基础练习专题15.不等式的基本性质及解法

高一数学基础练习专题15.不等式的基本性质及解法
高一数学基础练习专题15.不等式的基本性质及解法

15.专题:不等式的基本性质与不等式的解法

一、选择题

1.已知R d c b a ∈,,,,则下列选项正确的是( )

A

C 2

3.设log 2log 20a b <<,则( )

(A )01a b <<< (B )01b a <<< (C )1b a << (D ) 1a b <<

4.三个数0.73a =,30.7b =,3log 0.7c =的大小顺序为( ) A.b c a << B.b a c << C.c a b << D.c b a <<

5.若不等式0)(2

>--=c x ax x f 的解集为()2,1-,则函数)(x f y =的图像为( )

6.若不等式240ax bx +->的解集是{}12x <<,则a b +的值是( ) A 、4 B

、3 C 、2

D 、1

7. 若01a <<,则不等式 )

A B C

D 8.、设f(x),g(x)定

义域都是R,且f(x)≥0解为[),

解集为φ0)(,2,1≥x g 则不等式

)()(x g x f ?>0解集为( )

A [1,2)

B R

C φ

D [)+∞?∞,2)1,( 9.已知m ,n 之间的大小关系是( ) A . B. C. D.

10

C. 1a <

D.1a >

11.

( )

A.}1|{>x x

B.}1|{≥x x

C.}11|{-=≥x x x 或

D.}11|{=-≥x x x 或

12

) A 13的解为31x

-<<-或2x >,

则a 的取值为( ) A C D .-2

14.不等式

04

1

2

>--x x 的解集是 ( ) A.)1,2(- B. ),2(+∞ C. )1,2(-),2(+∞? D.

)2,(--∞),1(

+∞?

二、填空题 15a,b,c 的大小关系是 .

16.已知?

??<-≥=0,10

,1)(x x x f ,则不等式(2)(2)5x x f x ++?+≤的解集是 。

17>”或“<”)

18.设偶函数()f x 满足()24(0)x

f x x =-≥,则(2)0f x ->的解集为 .

三、解答题

19.本小题满分12分)

解关于x 的不等式541+-a ,且1≠a ).

20.解关于x 的不等式

01)1(2<++-x a ax .()a R ∈

21.本小题满分14分)若不等式012≥++ax x 对恒成立,求a 的最小值.

22.解下列不等式:若不等式04)2(2)2(2

<--+-x a x a 对一切R x ∈恒成立,试确定实数a 的取值范围.

23.解不等式:.1)1(log )2(log 2

-->--x x x a a

15.专题:不等式的基本性质与不等式的解法参考答案

1.C 试题分析:A 项错误,反例0m =;B 项错误,反例0c <;C 项同向不等式相加性;D 项错误,反例1,1a b ==-

2.D 试题分析:根据题意,故可知a 最大排除A,B 然后看c

3.B 试题分析:借助于对数函数的图象。因为log 2log 20a b <<,所以01b a <<<,故选B 。

4.D 试题分析:0.73a =031>=.30.7b =00.71<=,3log 0.7c =3log 10<=,所以

c b a <<.

5.B 试题分析:因为不等式0)(2

>--=c x ax x f 的解集为()2,1-,所以0,a <且2,1-为

方程20ax x c --=的两个根,所以函数图象为开口向下的抛物线,且与x 轴的交点为

()()

2,0,1,0.-

6.A 【解析】∵不等式2

40ax bx +->的解集是{}12x <<,∴1,2x x ==为方程

240ax bx +-=的解 ∴2,6a b =-= ∴4a b +=,

7.B 【解析】解析:∵01a <<,∴

∴原不等式的解集为{|x x a <,或 8.D 【解析】)()(x g x f ?>0得???

?<>??????<<>>0)x (g 0

)x (f 0)(0)(,0)x (g 0)x (f 0)(0)(,解集为或φx g x f x g x f 2x 1x R

x 2

x 1x ≥

?∈≥<或,综上或

9.A 【解析】110,20,2224;22a a m a a a a >->∴=+

=-++≥=-- 222211

0,22,()()4,22

x x x n --<->-∴=<=所以.m n >故选A

10.B

11.B 【解析】当1x =时,不等式成立;当1x ≠时,不等式可化为10

10

x x ->??+≥?,解得1;

x >综上,原不等式解集为{}|1.x x ≥故选B

12.C 试题分析:原不等式转化为()()1210x x -+>或10x -=,解得1x ≥或

13.D 试化为()()()130x a x x +++>,解集为31x -<<-或2x >,所以方程()()()130x a x x +++=的根为3,1,2--2a ∴=-

14

C

()0()()0()f x f x g x g x >?>21

0(1)(2)(2)04

x x x x x -∴>?--+>- 对于x>1时,则有x>2,当x<1时,则有-2

15.b>a>c 【解析】

试题分析:根据式子特点构造函数()ln f x x =,分别看作函数()ln f x x =图象上的点(2,f (2)),(3,f (3)),(5,f (5))与原点连线的斜率,结合图象可知当5

>3>2b>a>c

16 试题分析:因为??

?<-≥=0

,10

,1)(x x x f ,所以20x +≥,2x ≥-时,

(2)(2)5x x f x ++?+≤化为(2)15

x x ++?≤,解得,所20x +<,2x <-时, (2)(2)5x x f x ++?+≤化为(2)(1)5x x ++?-≤,解得2x <-,

综上知,不等式(2)(2)5x x f x ++?+≤的解集是

考点:本题主要考查函数的概念,简单不等式解法。 点评:简单题,解答此类问题,可以利用“直接法”,分类讨论,也可以利用图象法,通过画图,观察得解。 17.>

18.(,0)(4,)-∞?+∞

【解析】解:因为偶函数()f x 满足()24(0)x

f x x =-≥,故函数()2402=-=∴=x

f x x 结合函数单调性可知,需满足22

(2)022->?->??

-<-?

x f x x ,解得则(2)0f x ->的解集为

(,0)(4,)-∞?+∞

19.试题分析:当01a <<时,函数x

y a =在R 上为减函数 . ……2由541+--,即2x < ……5分 当1a >时,函数x

y a =在R 上为增函数 . ……7分 由541+- . ……10分 综上,当01a <<时,原不等式的解集为

当1a >时,原不等式的解集为……12分

20.(1)0a >时,原不等式可化为(1)(1)0ax x --<

1,

当01a <<时,

当 1a =时, x ∈?, 此时原不等式解集为?

当1a >时,

(2)0a = 时,原不等式可化为10x -+< , 解得1x >, 此时原不等式解集为{|1}x x >

(3) 0a <时

1,

解得

21.解:因为012≥++ax x 所有

时,原不等式即为04<-,恒成立, 3分

当 2≠a 时,要使不等式04)2(2)2(2

<--+-x a x a 对一切R x ∈恒成立,

必须 2

204(2)44(2)0a a a -

,解得,22<<-a . …………………11分

综上所述,a 的取值范围是22≤<-a .………………12分

23.不等式的解集为}32|{<

【解析】原不等式变形为)22(log )2(log 2

122

1->--x x x .所以,原不等式

3230,203,01,

0)1)(2(22201,022

22<??????<->->+-???

???-<-->->--?x x x x x x x x x x x x x x . 故原不等式的解集为}32|{<

七年级下册不等式及其基本性质讲义

环球雅思教育学科教师讲义 年级:上课次数: 学员姓名:辅导科目:学科教师: 课题 课型□预习课□同步课复习课□习题课 授课日期及时段 教学内容? 【基础知识网络总结与新课讲解】 知识点一、不等式的有关概念: 1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。 注意:常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”. 例1.请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4 例2.列出表示下列各数量关系的不等式:(1)a是正数;(2)y与2的差是非负数;(3)a与6的和大于7;(4)y的一半不小于3;(5)8与x的3倍的和不大于1。 提示:注意一个数的"和","差","倍","分"的表示法以及"大于","不小于","不大于"应该用哪一个不等号来表示,另外。正数都大于0,负数都小于0,所以"是正数"可表示为">0","是负数"可表示为"<0","非负数"可表示为"≥0"。?参考答案: (1)a>0 (2)y-2≥0 (3)a+6>7 (4)≥3(5)8+3x≤1

,+ 4,-4,4.5?提示:把下列各值分别代入不等式的左边计算2x+1 2.5 ,- - 1,0,3 立?? 的值,若小于5则不等式成立;若不小于5则不等式不成立。 参考答案:当x=-1,0,-2.5,-4时,不等式2x+1<5成立。 说明:因为当x=1,0,-2.5,-4时,不等式2x+1<5成立,当x=2,+4,4.5时,不等式2x+1<5不成立,所以同方程类似,我们可以说-1,0,-2.5-4是不等式2x+1<5的解,而2,+4,4.5不是不等式2x+1<5的解。 例4.指出下面变形是根据不等式的哪一条基本性质。? (1)由2a>5,得a>(2)由a-7>,得a>7 (3)由- a>0,得a<0 (4)由3a>2a-1,得a>-1。 例5.设a>b;用">"或"<"号填空: (1) (2)a-5 b-5 (3)- a- b (4)6a6b (5)-(6)- a -b 参考答案:(1)>(2)> (3)< (4)> (5)<(6)< 例5.试比较下列两个代数式值的大小: (1)5a+2与4a+2 (2)x3+3x2-7与x3+2x2-7 提示:我们知道,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b,所以要比较a与b的大小,可以先求出a与b的差,再看这个差是正数、负数还是零。 参考答案:(1)(5a+2)-(4a+2)=5a+2-4a-2=a ∵a可取正数,负数或零,∴5a+2和4a+2间的大小关系有三种可能:?①当a>0时,5a+2>4a+2 ②当a=0时,5a+2=4a+2?③当a<0时,5a+ 2<4a+2。?(2)(x3+3x2-7)-(x3+2x2-7)=x3+3x2-2x2+7=x2∵x2≥0(对任意x) ∴x3+3x2-7≥x3+2x2-7 例6.已知二数a>2,b>2,试比较a+b与ab的大小。

高一数学集合与不等式测试题.

高一级数学单元测试题 集合与不等式 一、选择题:(4分×15=60分) 1、设{}|7M x x =≤,x = ( ) A. x ∈ M B. x M ? C .{}x M ∈ D .{x }∪M 2、下列不等式中一定成立的是( ). A .x >0 B . x 2≥0 C .x 2>0 D . |x |>0 3、已知集合A =[-1,1],B =(-2,0),则A ∩B =( )。 A .(-1,0) B .[-1,0) C .(-2,1) D .(-2,1] 4、下列表示①{0}=?、②{0}?∈、③{0}??、④0∈?中,正确的个数为( ) A.2 B.1 C.4 D.3 5、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )∪(C U B )= ( ) A {0} B {0,1} C {0,1,4} D {0,1,2,3,4} 6、已知 ?∪A ={1,2,3},则集合A 真子集的个数( ) A 5 B 6 C 7 D 8 设U =[-3,5],C U A =[-3,0)∪(3,5] 7、设p 是q 的必要不充分条件,q 是r 的充要条件,则p 是r 的( )。 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8、不等式()()012<+-x x 的解集是( ) A 、〔—1,2〕 B 、〔2,—1〕 C 、R D 、空集 9、设、、均为实数,且<,下列结论正确的是( )。 A. < B. < C. -<- D. < 10、若x 2-ax -b <0的解集是{x |20的解集为( ) A .11{|}23x x - ≤≤ B .11{|}23x x -<< C .11{|}23x x -<<-D .11{|}23 x x -≤≤- 11、一元二次方程x 2 – mx + 4 = 0 有实数解的条件是m ∈( ) A.(-4,4) B.[-4,4] C.(-∞,-4)∪(4, +∞) D.(-∞,-4]∪[4, +∞) 12、下列不等式中,与 3 2<-x 的解集相同的是 ( ) A 0542 <--x x B 051 ≤-+x x C 0)1)(5(<+-x x D 0542 <-+x x 14、设全集U={(x ,y )R y x ∈,},集合M={(x ,y ) 12 2 =-+x y },N={(x ,y )4-≠x y },那么 (C U M )(C U N )等于( ) A {(2,-2)} B {(-2,2)} C φ D C U N 15、已知集合M={直线},N={圆},则M ∩N 中的元素个数为( ) A 0个 B 0个或1个或2个 C 无数个 D 无法确定 二、填空题(5分×6=30分) 13、 p :a 是整数;q :a 是自然数。则p 是q 的 。

高一数学不等式解法例题.doc

典型例题一 例 1 解不等式:( 1)2x3 x2 15 x 0 ;(2) ( x 4)( x 5)2 (2 x)3 0 . 分析:如果多项式 f (x) 可分解为 n 个一次式的积,则一元高次不等式 f ( x) 0 (或f (x) 0 )可用“穿根法”求解,但要注意处理好有重根的情况. 解:( 1)原不等式可化为 x(2x 5)( x 3)0 把方程 x(2 x 5)( x 3) 0 的三个根 x1 0, x2 5 , x3 3顺次标上数轴.然后从右上2 开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为x 5 0或 x 3 x 2 ( 2)原不等式等价于 ( x 4)( x 5)2 (x 2)3 0 x 5 0 x 5 (x 4)( x 2) 0 x 4或 x 2 ∴原不等式解集为x x 5或 5 x 4或x 2 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或 奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿” ,其法如下图. 典型例题二 例 2 解下列分式不等式: ( 1) 3 1 2 ;(2) x2 4x 1 1 x 2 x 2 3x2 7x 2 分析:当分式不等式化为f (x) 0(或0) 时,要注意它的等价变形g( x)

① f ( x) f ( ) g ( ) 0 g( x) x x ② f ( x) f (x) g(x) f ( x) f ( x ) 0或 ( ) ( ) 0 或 g( x) g (x) 0 g (x) f x g x ( 1)解: 原不等式等价于 3 x 3 x 0 x 2 x 2 x 2 x 2 3( x 2) x( x 2) x 2 5x 6 ( x 2)( x 2) (x 2)( x 2) ( x 6)( x 1) 0 (x 6)( x 1)( x 2)(x 2) 0 ( x 2)( x 2) (x 2)( x 2) 0 用“穿根法” ∴原不等式解集为 ( , 2) 1,2 6, 。 ( 2)解法一 :原不等式等价于 2x 2 3x 1 0 3x 2 7x 2 (2x 2 3x 1)(3x 2 7 x 2) 0 2x 2 3x 1 0 2x 2 3x 1 3x 2 7x 2 或 3x 2 7x 2 1 或 1 x 或 x 2 x 2 1 3 ∴原不等式解集为 ( , 1 ) ( 1 ,1) (2, ) 。 3 2 解法二:原不等式等价于 ( 2x 1)( x 1) 0 (3x 1)( x 2) (2x 1)( x 1)(3x 1) (x 2) 0 用“穿根法” ∴原不等式解集为 ( , 1) ( 1 ,1) (2, ) 3 2 典型例题三 例 3 解不等式 x 2 4 x 2

不等式的基本性质知识点

不等式的基本性质知识点 不等式的基本性质知识点 1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。 ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。 ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 如证明y=x3为单增函数, 设x1, x2∈(-∞,+∞), x1<x2, f(x1)-f(x2)=x13-x23=(x1-x2)(x12+x1x2+x22)=(x1-x2)[( x1+)2 +x22] 再由(x1+)2+x22>0, x1-x2<0,可得f(x1)<f(x2), ∴ f(x)为单增。 2.不等式的性质: ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1) a>bb<a (对称性)

(2) a>b, b>ca>c (传递性) (3) a>ba+c>b+c (c∈R) (4) c>0时,a>bac>bc c<0时,a>bac<bc。 运算性质有: (1) a>b, c>da+c>b+d。 (2) a>b>0, c>d>0ac>bd。 (3) a>b>0an>bn(n∈N, n>1)。 (4) a>b>0>(n∈N, n>1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ② 关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高中数学不等式训练习题

不等式训练1 A 一、选择题(六个小题,每题5分,共30分) 1.若02522 >-+-x x ,则221442-++-x x x 等于( ) A .54-x B .3- C .3 D .x 45- 2.函数y =log 2 1(x +11+x +1) (x > 1)的最大值是 ( ) A .-2 B .2 C .-3 D .3 3.不等式x x --213≥1的解集是 ( ) A .{x| 43≤x ≤2} B .{x|4 3≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .b a 11< B . b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值 21和最大值1 B .最大值1和最小值4 3 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式组? ??->-≥32x x 的负整数解是____________________。 2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为____________________。 3.不等式0212<-+x x 的解集是__________________。 4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。 5.若f(n)=)(21)(,1)(,122N n n n n n n g n n ∈= --=-+?,用不等号 连结起来为____________.

高一数学一元二次不等式解法练习题及答案.doc

高一数学一元二次不等式解法练习题及答案 例若<<,则不等式--<的解是1 0a 1(x a)(x )01 a [ ] A a x B x a .<< .<<11 a a C x a D x x a .>或<.<或>x a a 1 1 分析比较与的大小后写出答案. a 1 a 解∵<<,∴<,解应当在“两根之间”,得<<. 选. 0a 1a a x A 11 a a 例有意义,则的取值范围是 .2 x x 2--x 6 分析 求算术根,被开方数必须是非负数. 解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2. 例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________. 分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理. 解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知 -=-+=-=-=-?? ?????b a a ()()1211122×得

a b ==-1212 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2-+- -+-3132 511 3 122x x x x x x >>()() 分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤3 2 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 1 1-x [ ] A .{x|x >0} B .{x|x ≥1} C .{x|x >1} D .{x|x >1 或x =0} 分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分. 解不等式化为+->, 通分得>,即>, 1x 0001 111 22 ----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C . 说明:本题也可以通过对分母的符号进行讨论求解.

七年级下册不等式及其基本性质讲义

环球雅思教育学科教师讲义年级:上课次数: 学员姓名:辅导科目:学科教师: 课题 课型□预习课□同步课□复习课□习题课 授课日期及时段 教学内容 【基础知识网络总结与新课讲解】 知识点一、不等式的有关概念: 1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。 注意:常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”. 例1.请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4 例2.列出表示下列各数量关系的不等式:(1)a是正数;(2)y与2的差是非负数;(3)a与6的和大于7;(4)y的一半不小于3;(5)8与x的3倍的和不大于1。 提示:注意一个数的"和","差","倍","分"的表示法以及"大于","不小于","不大于"应该用哪一个不等号来表示,另外。正数都大于0,负数都小于0,所以"是正数"可表示为">0","是负数"可表示为"<0","非负数"可表示为"≥0"。 参考答案:

(1)a >0 (2)y-2≥0 (3)a+6>7 (4) ≥3 (5)8+3x ≤1 注意:列不等式时应注意两点: ①"是正数"表示为>0","是负数"表示为<0";"非正数"表示为"≥0"。 ②"不大于"用"≤"表示,"不小于"用"≥"表示。 2.不等式的基本性质 (1)不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 用式子表示:如果a>b ,那a+c>b+c (或a –c>b –c ) (2)不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 用式子表示:如果a>b ,且c>0,那么ac>bc , c b c a >。 (3)不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 用式子表示:如果a>b ,且c<0,那么acb ,那么bb ,b>c 那么a>c 。 注意:不等式的基本性质是对不等式变形的重要依据。不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。 说明:常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ; ⑤若ab >0或0a b >,则a 、b 同号; ⑥若ab <0或0a b <,则a 、b 异号。 任意两个实数a 、b 的大小关系: ①a-b>O ?a>b ; ②a-b=O ?a=b ; ③a-b

(新)高一数学不等式测试题

高一数学不等式测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a <b <0,则 ( )A . b 11 2.若|a +c|<b ,则 ( )A . |a |<|b|-|c| B . |a |>|c| -|b| C . |a |>|b|-|c| D . |a |<|c|-|b| 3.设a =26c ,37b ,2-=-=,则a ,b,c 的大小顺序是 ( ) A . a >b >c B . a >c >b C . c >a >b D . b >c >a 4. 设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bd B . d b >c a C . a +c >b +d D . a -c >b -d 5.下列命题中正确的一个是 ( ) A .b a a b +≥2成立当且仅当a ,b 均为正数 B .222 2b a b a +≥+成立当且仅当a ,b 均为正数 C .log a b +log a b ≥2成立当且仅当a ,b ∈(1,+∞) D .|a +a 1 |≥2成立当且仅当a ≠0 6.函数y =log ??? ? ?-+?+-2134223x x x x 的定义域是 ( ) A .x ≤1或x ≥3 B .x <-2或x >1 C .x <-2或x ≥3 D .x <-2或x >3 7.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( ) A .甲是乙的充分条件,但不是乙的必要条件 B .甲是乙的必要条件,但不是乙的充要条件 C .甲是乙的充要条件 D .甲不是乙的充分条件,也不是乙的必要条件 8.已知实数x ,y 满足x 2+y 2=1,则代数式(1-x y)(1+x y)有 ( ) A .最小值21 和最大值1 B .最小值43 和最大值1 C .最小值21和最大值43 D .最小值1 9.关于x 的方程ax 2+2x -1=0至少有一个正的实根的充要条件是 ( ) A .a ≥0 B .-1≤a <0 C .a >0或-1<a <0 D .a ≥-1 10.函数y =x x x +++132 (x >0)的最小值是 ( ) A .23 B .-1+23 C .1+23 D .-2+23 二、填空题(本大题共4小题,每小题6分,共24分) 11.关于x 的不等式a x 2+b x +2>0的解集是}3 121|{<<-x x ,则a +b=_____________。 12.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________。 13.方程()02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 。

高一数学不等式解法经典例题92436

实用文档 标准文案大全典型例题一 例1解不等式:(1)015223???xxx;(2)0)2()5)(4(32????xxx. 分析:如果多项式)(xf可分解为n个一次式的积,则一元高次不等式0)(?xf(或0)(?xf)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 0)3)(52(???xxx 把方程0)3)(52(???xxx的三个根3,25,0321????xxx顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部 分. ∴原不等式解集为??????????3025xxx或 (2)原不等式等价于 ??????????????????????2450)2)(4(050)2()5)(4(32xxxxxxxxx或 ∴原不等式解集为??2455???????xxxx或或 说明:用“穿根法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”, 其法如下图. 典型例题二 例2 解下列分式不等式: (1)22123????xx;(2)12731422?????xxxx 分析:当分式不等式化为)0(0)()(??或xgxf时,要注意它的等价变形

实用文档 标准文案大全①0)()(0)()(????xgxfxgxf ② 0)()(0)(0)()(0)(0)()(0)()(?????????????xgxfxfxgxfxgxgxfx gxf或或 (1)解:原不等式等价于 ????????????????????????????????????????0)2)(2(0)2)(2)(1)(6(0)2 )(2()1)(6(0)2)(2(650)2)(2()2()2(302232232xxxxxxxxxxxx xxxxxxxxxxxxx 用“穿根法” ∴原不等式解集为????????????,62,1)2,(。 (2)解法一:原不等式等价于 027313222?????xxxx21213102730132027301320)273)(132(222222??? ???????????????????????????????xxxxxxxxxxxxxxx或或或 ∴原不等式解集为),2()1,21()31,(??????。 解法二:原不等式等价于0)2)(13()1)(12(?????xxxx 0)2()13)(1)(12(???????xxxx 用“穿根法” ∴原不等式解集为),2()1,21()31,(?????? 典型例题三 实用文档 标准文案大全 例3解不等式242???xx 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的

不等式及其基本性质测试题

不等式及其基本性质测试题 7.1不等式及其基本性质测试卷 一、填空 1.在式子① ② ③ ④ ⑤ ⑥ 中属于不等式的有.(只填序号)2.如果,那么. 3.若,用<>填空. ⑴ ⑴ ⑴ ⑴ ⑴ 二、选择 4.的倍减的差不大于,那么列出不等式正确的是()A.B. C.D. 5.已知,则下列不等式正确的是() A.B. C. D. 6.下列说法正确的是() A.若,则 B.若,则 C.若,则D.若,则 7.已知,a为任意有理数,下列式子正确的是( )

A. B. C. D. 8.已知4 3,则下列结论正确的() ① ② ③ A. ①② B. ①③ C. ②③ D. ①②③ 9.某种品牌奶粉合上标明蛋白质,它所表达的意思是() A.蛋白质的含量是20%. B.蛋白质的含量不能是20%. C.蛋白质大含量高于20%. D.蛋白质的含量不低于20%. 10.如图7-1-1天平右边托盘里的每个砝码的质量都是1千克,那么图中显示物体的质量范围是() A.大于2千克B.小于3千克 C.大于2千克小于3千克 D.大于2千克或小于3千克 11.如果a<b<0,下列不等式中错误的是() A. B. C. D. 12. 下列判断正确的是()

A.<<2 B.2<+<3 C.1<-<2 D.4<<5 13. 用a,b,c 表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为() A.B. C.D. 三、解答题 14.用不等式表示下列句子的含义. ⑴ 是非负数. ⑴ 老师的年龄比赵刚的年龄的倍还大. ⑴ 的相反数是正数. ⑴ 的倍与的差不小于. 15.用不等式表示下列关系. ⑴ 与3的和的2倍不大于-5. ⑴ 除以2的商加上4至多为6. ⑴ 与两数的平方和为非负数. 16.(1)用两根长度均为㎝的绳子,分别围成正方形和圆,如图7-1-2

(完整)高中数学一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

高中数学不等式单元测试题(含有详细答案--

高中数学不等式综合测试题 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1.(文)设a b <,c d <,则下列不等式中一定成立的是( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ (理)已知a <0,-1> B .2ab ab a >> C .2ab ab a >> D .2 ab a ab >> 2.“0>>b a ”是“2 2 2b a ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(文)关于x 的不等式(1)ax b a ><-的解集为( ) A .R B .φ C .),(+∞a b D .(,)b a -∞ (理)不等式b ax >的解集不可能...是( ) A .φ B .R C .),(+∞a b D .),(a b --∞ 4.不等式022>++bx ax 的解集是)3 1,21(-,则b a -的值等于( ) A .-14 B .14 C .-10 D .10 5.(文)不等式|1|2x -<的解集是( ) A .{|03}x x ≤< B .{|22}x x -<< C .{|13}x x -<< D .{|1,3}x x x <-> (理)不等式||x x x <的解集是( ) A .{|01}x x << B .{|11}x x -<< C .{|01x x <<或1}x <- D .{|10,1}x x x -<<> 6.(文)若0b a <<,则下列结论不正确... 的是( ) A . 11a b < B .2b ab < C .2>+b a a b D .||||||b a b a +>+ (理)若011<+b a a b D .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化 8.下列各式中最小值是2的是( ) A .y x +x y B .4 5 22++x x C .tan x +cot x D .x x -+22 9.下列各组不等式中,同解的一组是( ) A .02>x 与0>x B .01 )2)(1(<-+-x x x 与02<+x C .0)23(log 2 1>+x 与123<+x D .112≤--x x 与112≤--x x 10.(文)如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是( ) A .}8|{a a C .}8|{≥a a D .}8|{≤a a

2.1.1 不等式的基本性质(含答案)

【课堂例题】 例1.利用性质1和性质2证明: (1)如果a b c +>,那么a c b >-; (2)如果,a b c d >>,那么a c b d +>+ 例2.利用性质3证明: 如果0,0a b c d >>>>,那么ac bd >. (选用)例3.利用不等式的性质证明: 如果0a b >>,那么110a b < <.

【知识再现】 1.不等式性质的基础: a b >? ;a b =? ;a b >,则 ; 性质2.(加法性质) 若a b >,则 ; 性质3.(乘法性质) 若,0a b c >>,则 ; 若,0a b c ><,则 . 3.几条比较有用的推论: 性质4.(同向可加性) 若,a b c d >>,则 ; 性质5.(正数同向可乘性) 若0,0a b c d >>>>,则 ; 性质6.(正数的倒数性质) 若0a b >>,则 ; 性质7.(正数的乘方性质) 若0a b >>,则 *()n N ∈; 性质8.(正数的开方性质) 若0a b >>,则 *(,1)n N n ∈>. 【基础训练】 1.请用不等号表示下列关系: (1)a 是非负实数, ; (2)实数a 小于3,但不小于2-, ; (3)a 和b 的差的绝对值大于2,且小于等于9, . 2.判断下列语句是否正确,并在相应的括号内填入“√”或“×”. (1)若a b >,则a b c c >;( ) (2)若ac bc <,则a b <;( ) (3)若a b <,则1 1 a b <; ( ) (4)若22ac bc >,则a b >;( ) (5)若a b >,则n n a b >;( ) (6)若0,0a b c d >>>>,则a b c d >;( ) 3.用“>”或“<”号填空: (1)若a b >,则a - b -; (2)若0,0a b >>,则b a 1b a +; (3)若,0a b c >>,则d ac + d bc +; (4)若,0a b c ><,则()c d a - ()c d b -; (5)若,,0a b d e c >><,则d ac - e b c -. 4.(1)如果a b >,那么下列不等式中必定成立的是( ) (A) 1 1 a b <; (B) 22a b >; (C)22ac bc >; (D)2211 a b c c >++. (2)如果0a b >>,那么下列不等式不一定成立的是( ) (A) 1 1 a b <; (B) 2ab b >; (C)22ac bc >; (D) 22a b >. 5.已知,x y R ∈,使1 1 ,x y x y >>同时成立的一组,x y 的值可以是 .

高一数学不等式测试题

一、选择题(本大题共10小题,每小题5分,共50分) 1.若a <b <0,则 ( )A . b 11 2.若|a +c|<b ,则 ( )A . |a |<|b|-|c| B . |a | >|c|-|b| C . |a |>|b|-|c| D . |a |<|c|-|b| 3.设a =26c ,37b ,2-=-=,则a ,b,c 的大小顺序是 ( ) A . a >b >c B . a >c >b C . c >a >b D . b >c >a 4. 设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bd B . d b > c a C . a +c >b + d D . a -c >b -d 5.下列命题中正确的一个是 ( ) A .b a a b +≥2成立当且仅当a ,b 均为正数 B .2 222b a b a +≥+成立当且仅当a ,b 均为正数 C .logb +logb ≥2成立当且仅当a ,b ∈(1,+∞) D .|a +a 1|≥2成立当且仅当a ≠0 6.函数y =log ?? ? ??-+? +-2134223x x x x 的定义域是 ( ) A .x ≤1或x ≥3 B .x <-2或x >1 C .x <-2或x ≥3 D .x <-2或x >3 7.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( ) A .甲是乙的充分条件,但不是乙的必要条件 B .甲是乙的必要条件,但不是乙的充要条件 C .甲是乙的充要条件 D .甲不是乙的充分条件,也不是乙的必要条件 8.已知实数x ,y 满足x +y =1,则代数式(1-x y)(1+x y)有 ( ) A .最小值21和最大值1 B .最小值43和最大值1 C .最小值21和最大值43 D .最小值1 9.关于x 的方程ax +2x -1=0至少有一个正的实根的充要条件是 ( ) A .a ≥0 B .-1≤a <0 C .a >0或-1<a <0 D .a ≥-1 10.函数y =x x x +++132 (x >0)的最小值是 ( ) A .23 B .-1+23 C .1+23 D .-2+23 二、填空题(本大题共4小题,每小题6分,共24分) 11.关于x 的不等式a x 2+b x +2>0的解集是}3 121|{<<-x x ,则a +b=_____________。 12.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________。 13.方程() 02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 。 14.建造一个容积83m ,深为m 2长的游泳池,若池底和池壁的造价每平方米分别为120元和80元,则游泳池的最低总造

高一数学不等式的解法人教版知识精讲

高一数学不等式的解法人教版 【同步教育信息】 一. 本周教学内容: 不等式的解法 二. 数学目标: 1. 会解c b ax c b ax >+<+,两类不等式。 2. 了解一元二次不等式、一元二次函数、一元二次方程的联系。 3. 掌握一元二次不等式的解法步骤,能熟练地解一元二次不等式。 三. 知识讲解: c b ax c b ax >+?>+或)0(>-<+c c b ax )0(><+<-?<+c c b ax c c b ax 4. 分式不等式的解法: 利用不等式的性质可以把分式不等式 0)()(0)()(>??>x g x f x g x f ???≠≥??≥0 )(0)()(0)() (x g x g x f x g x f

0)()(0)()(+++++x x x (*) 解: (1)当3-------x x x ,∴ 3-++----x x x ,∴ 3-++++--x x x ,∴ 1->x ,x 无解 (4)当1-≥x 时,(*)化为3321>+++++x x x ,∴ 1->x ,∴ 1->x 综上,不等式的解集为}1,3|{->---+x x (*) 解: (1)当3--+--x x ,即36>,∴ 3--++x x ,23>x ,∴ 23>x 或2 3 -,∴ 3≥x 综合(1)(2)(3)得}2 3 ,23|{>---+x x 或333-<--+x x ,略。 [例4] 解不等式1032 <+x x 解:2501032 <<-?<-+x x x ,∴ 20<≤x ,∴ 22<<-x ∴ 原不等式的解集为}22|{<<-x x 另解:原不等式化为???<-+≥010302x x x 或? ??<--<01030 2x x x 解得22<<-x [例5] 解不等式4652 2-<+-x x x 解:原不等式化为???<+->+-?-<+-<-0 1050 252465422 2 2 x x x x x x x ∴ 2>x ∴ 原不等式的解集为}2|{>x x

不等式及其基本性质

不等式及其基本性质 设u=f(x1,x2,…,x n),v=g(x1,x2,…,x n)是两个取值为实数的函数,若u-v是正数,就说u大于v,记成u>v,也说v小于u,记成v<u. 用记号“>”、“<”、“≥”或“≤”连结两个这样的函数所组成的式子,叫做不等式. 设上面两个函数的定义域分别为D f,D g,则称D f∩D g为下列不等式的允许值集: f(x1,x2,…,x n)>g(x1,x2,…,x n) (或f(x1,x2,…,x n)<g(x1,x2,…,x n), 或f(x1,x2,…,x n)≥g(x1,x2,…,x n), 或f(x1,x2,…,x n)≤g(x1,x2,…,x n). 不等式两边的函数,如果都是代数函数,则称这个不等式为代数不等式;如果至少有一个是超越函数,则称这个不等式为超越不等式.前者可以划分为有理不等式(整式不等式和分式不等式)和无理不等式;后者包括指数不等式、对数不等式、三角不等式和反三角不等式等. 不等式具有如下的基本性质(本文所用字母除特别声明以外,均表示实数). 定理1 若a>b,b>c,则a>c. 定理2 在a>b,a=b,a<b中有且只有一个成立. 定理3 若a>b,则a+c>b+c. 推论1 可以把不等式中任何一项变为相反的符号后,从一边移到另一边. 推论2 若a>b,c>d,则a+c>b+d. 一般地,若a i>b i,i=1,2,…,n,则 a1+a2+…+a n>b1+b2+…+b n. 推论3 若a≥b,c<d,则a-c>b-d.

定理4若a>b,则当c>0时,ac>bc;当c<0时,ac<bc;当c=0时,ac=bc. 推论1 若a>b>0,c>d>0,则ac>bd. 一般地,若a i>b i>0,i=1,2,…,n,则 a1a2…a n>b1b2…b n. 推论2 若a≥b>0,0<c<d,则a/c>b/d. 推论3 若a>b>0,整数n>1,则a n>b n. 含有绝对值符号的不等式还具有如下的常用性质. 定理5 设a>0,则|x|<a的充要条件是-a<x<a;|x|>a的充要条件是x >a或x<-a. 定理6 |a+b|≤|a|+|b|, 其中等号当且仅当ab≥0时成立. 推论1|a+b|≥||a|-|b||. 推论2 |a1±a2±…±a n|≤|a1|+|a2|+…+|a n|.

最新高一数学不等式练习题

高一数学不等式练习题 1、不等式1 1 2x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .()0,∞-?(2,)+∞ 2、不等式2 01x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-, 3、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( ) (A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3} 4 ) A. D. 5、不等式203x x ->+的解集是( ) (A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞) 6、若不等式210x ax ++≥对一切102x ?? ∈ ???,成立,则a 的最小值为( ) A.0 B.2- C.5 2- D.3- 7、设x 、y 为正数,则有(x+y)(1 x +4 y )的最小值为( ) A .15 B .12 C .9 D .6 8、.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( ) (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 9、下面给出的四个点中,位于???>+-<-+01, 01y x y x 表示的平面区域内的点是( ) (A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0) 10、已知函数()???≥ -<+-=01 1x x x x x f ,则不等式()()111≤+++x f x x 的解集是( ) (A) {}121|-≤≤-x x (B) { }1|≤x x (C) {}12|-≤x x (D) {}1212|-≤≤--x x

相关文档 最新文档