文档库 最新最全的文档下载
当前位置:文档库 › 搓齿齿距累积超差原因分析简介

搓齿齿距累积超差原因分析简介

搓齿齿距累积超差原因分析简介
搓齿齿距累积超差原因分析简介

齿轮减速机详细原理介绍

齿轮减速机详细原理知识 一、齿轮减速机(马达)的作用: 1、降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速机额定扭矩; 2、减速同时降低了负载的惯量,惯量的减少为减速比的平方。 二、工作原理 减速机一般用于低转速大扭矩的传动设备,把电动机、内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。 三、主要区别 减速机与变频器区别:减速机是通过机械传动装置来降低电机不同种类的减速机(30张)(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。 蜗杆减速机和蜗轮蜗杆减速机区别:蜗杆减速机和蜗轮蜗杆减速机其实没多大的区别,都是由蜗轮和蜗杆组成,不过蜗杆减速机比较粗造,没蜗轮蜗杆减速机的精密度好,同规格的蜗杆减速机的扭力就比蜗轮蜗杆减速机的大,蜗轮蜗杆减速机主要的是铝合金比较多,但蜗杆减速机就只有铸铁,更大的区别是蜗杆减速机的价格比蜗轮蜗杆减速机的价格便宜很多。

四、主要分类减速机是一种相对精密的机械,使用它的目的是降低转速。 增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。 五、主要特点蜗轮蜗杆减速机的主要特点是具有反向自锁功能,可以有较大的减速比。 输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。谐波减速机的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。行星减速机其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。但价格略贵。齿轮减速机具有体积小,传递扭矩大的特点。齿轮减速机在模块组合体系基础上设计制造,有极多的电机组合、安装形式和结构方案,传动比分级细密,满足不同的使用工况,实现机电一体化。齿轮减速机传动效率高,耗能低,性能优越。摆线针轮减速机是一种采用摆线针齿啮合行星传动原理的传动机型,是一种理想的传动装置,具有许多优点,用途广泛,并可正反运转。

减速机漏油的原因分析及对策通用版

安全管理编号:YTO-FS-PD490 减速机漏油的原因分析及对策通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

减速机漏油的原因分析及对策通用 版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 减速机在电厂输煤系统中使用数量较多,一旦漏油,不仅造成能源损失,而且污染环境,严重时会引起减速机少油、断油,使齿轮啮合面磨损加剧,进而发生咬焊或剥离,导致设备事故。 1、减速机漏油的原因分析 1.1 减速机内外产生压力差 减速机运转过程中,运动副摩擦发热以及受环境温度的影响,使减速机温度升高,如果没有透气孔或透气孔堵塞,则机内压力逐渐增加,机内温度越高,与外界的压力差越大,润滑油在压差作用下,从缝隙处漏出。 1.2 减速机结构设计不合理 (1) 检查孔盖板太薄,上紧螺栓后易产生变形,使结合面不平,从接触缝隙漏油。 (2) 减速机制造过程中,铸件未进行退火或时效处理,未消除内应力,必然发生变形,产生间隙,导致泄漏。 (3) 箱体上没有回油槽,润滑油积聚在轴封、端盖、结

齿轮各项公差和极限偏差的分组

齿轮各项公差和极限偏差的分组 (1) 精度等级 齿轮的各项公差和极限偏差分成三个组。 根据使用的要求不同,允许各公差组选用不同的精度等级,但在同一公差组内,各项公差与极限偏差应保持相同的精度等级。参见齿轮传动精度等级选择 (2) 齿轮检验与公差根据齿轮副的使用要求和生产规模,在各公差组中选定检验组来检定和验收齿轮精度。(3) 齿轮副 的检验与公差齿轮副的要求包括齿轮副的切向综合误差ΔF ic′,齿轮副的一齿切向综合误差Δf ic′,齿轮副的接触班点位置和大小以及侧隙要求,如上述四方面要求均能满足,则此齿轮副即认为合格。(4) 齿轮侧隙齿轮副的侧隙要求,应根据工作条件用最大极限侧隙j nmax(或j tmax)与最小极限侧隙j nmin(或j tmin)来规定。中心距极限偏差(±f a)按“中心距极限偏差”表的规定。 齿厚极限偏差的上偏差E ss及下偏差E si从齿厚极限偏差表来选用。例如上偏差选用F(=-4f Pt),下偏差选用L(=-16f Pt),则齿厚极限偏差用代号FL表示。参看图“齿轮、齿轮副误差及侧隙的定义和代号”。若所选用的齿厚极限偏差超出齿厚极限偏差表所列14种代号时,允许自行规定。 (5) 齿轮各项公差的数值表 齿距累积公差F P及K个齿距累公差F PK齿向公差Fβ公法线长度变动公差F w 轴线平行度公差中心距极限偏差(±f a)齿厚极限偏差接触斑点 齿圈径向跳动公差F r径向综合公差F i″齿形公差F f齿距极限偏差(±f Pt) 基节极限偏差(±f Pb)一齿径向综合公差f i″齿坯尺寸和形状公差 齿坯基准面径向和端面跳动齿轮的表面粗糙度R a圆柱直齿轮分度圆上弦齿厚及弦齿高 (6) 图样标注 在齿轮零件图上应标注齿轮的精度等级和齿厚极限偏差的字母代号。标注示例 a) 齿轮三个公差组精度 同为7级,其齿厚上偏差为F, 下偏差为L: b) 第Ⅰ公差组精度为7级,第Ⅱ、Ⅲ公 差组精度为6级,齿厚上偏差为G,齿厚下 偏差为M: c) 齿轮的三个公差组精度同为4级, 其齿厚上偏差为-330μm,下偏差为 -405μm: 齿轮传动精度等级的选用按机器类型选择按速度、加工、工作条件选择

摆线针轮减速机原理图

摆线针轮减速机原理图、结构图、性能及型号表示法 摆线针轮减速机原理/摆线减速机结构原理 行星摆线针轮减速机全部传动装置可分为三部分:输入部分、减速部分、输出部分。 在输入轴上装有一个错位180°的双偏心套,在偏心套上装有两个滚柱轴承,形成H机构,两个摆线轮的中心孔即为偏心套上转臂轴承的滚道,并由摆线轮与针齿轮上一组环形排列的针齿轮相啮合,以组成少齿差啮合减速机构,(为了减少摩擦,在速比小的减速机中,针齿上带有针齿套)。 当输入轴带着偏心套转动一周时,由于摆线轮上齿廊曲线的特点及其受针齿轮上针齿限制之故,摆线轮的运动成为即有公转又有自转的平面运动,在输入轴正转一周时,偏心套亦转动一周,摆线轮于相反方向上转过一个齿差从而得到减速,再借助W输出机构,将摆线轮的低速自转运动通过销轴,传递给输出轴,从而获得较低的输出转速。 武英牌摆线减速机原理/行星摆线针轮减速机结构、参数、性能及表示法 一、行星摆线针轮减速机/摆线减速机是一种比较新型的传动机构,其独特的平稳结构在许多情况下可替代普通圆柱齿轮减速机及蜗轮蜗杆减速机,因为摆线针轮减速机具有: 1、传动比大:摆线针轮减速机一级减速时传动比为1:7到1:87;两级减速时转动比为121~7569,用户也可以根据自己的实际需要选用减速比更大的三级减速! 2、传动效率高: 摆线针轮减速机由于该机啮合部位采用了滚动啮合,一般效率为可达90%以上。 3、保养方便(润滑方式): #6125以下使用不要保养的専用高级油脂; 4、体积小,重量轻: 摆线针轮减速机采用行星传动原理,输入轴和输出轴在同一轴线上而且有与电动机直联呈一体的独特之处,因而摆线针轮减速机本身具有结构紧凑,体积小、重量轻的特点。用它代替两级普通圆柱齿轮减速器,体积可减少1/2~2/3;重量约减轻1/3~1/2。 5、拆装方便,容易维修: 由于摆线针轮减速机结构设计合理、拆装简单便于维修,使用零件个数少以及润滑简单。 6、使用可靠、故障少、寿命长: 主要传动啮合件使用耐磨耗及耐疲劳性能良好的高炭铬轴承钢制造,经淬火处理(HRC58-62)获得高强度,因此摆线针轮减速机机械性能好,耐磨性能好;运转接触采用滚动磨

减速机漏油的原因

减速机漏油的原因 作者:日期:2011-2-4 15:34:14 人气:4 标签: 减速机一旦漏油,不仅造成能源损失,而且污染环境,严重时会导致设备事故。 1、减速机漏油的原因分析 (1)减速机内外产生压力差 减速机运转过程中,运动副摩擦发热以及受环境温度的影响,使减速机温度升高,如果没有透气孔或透气孔堵塞,则机内压力逐渐增加,机内温度越高,与外界的压力差越大,润滑油在压差作用下,从缝隙处漏出。 (2)减速机结构设计不合理 第一,检查孔盖板太薄,上紧螺栓后易产生变形,使结合面不平,从接触缝隙漏油。 第二,减速机制造过程中,铸件未进行退火或时效处理,未消除内应力,必然发生变形,产生间隙,导致泄漏。 第三,箱体上没有回油槽,润滑油积聚在轴封、端盖、结合面等处,在压差作用下,从间隙处向外漏。 第四,轴封结构设计不合理。早期的减速机多采用油沟、毡圈式轴封结构,组装时使毛毡受压缩产生变形,而将结合面缝隙密封起来。如果轴颈与密封件接触不十分理想,由于毛毡的补偿性能极差,密封在短时间内即失效。油沟上虽有回油孔,但极易堵塞,回油作用难以发挥。 (3)加油量过多 减速机在运转过程中,油池被搅动得很厉害,润滑油在机内到处飞溅,如果加油量过多,使大量润滑油积聚在轴封、结合面等处,导致泄漏。 (4)检修工艺不当 在设备检修时,由于结合面上污物清除不彻底,或密封胶选用不当、密封件方向装反、不及时更换密封件等也会引起漏油。 2、治理减速机漏油的对策 (1)改进透气帽和检查孔盖板 减速机内压大于外界大气压是漏油的主要原因之一,如果设法使机内、机外压力均衡,漏油就可以防止。减速机虽都有透气帽,但透气孔太小,容易被煤粉、油污堵塞,而且每次加油都要打开检查孔盖板,打开一次就增加一次漏油的可能性,使原本不漏的地方也发生泄漏。为此,制作了一种油杯式透气帽,并将原来薄的检查孔盖板改为6 mm厚,将油杯式透气帽焊在盖板上,透气孔直径为6 mm,便于通气,实现了均压,而且加油时从油杯中加油,不用打开检查孔盖板,减少了漏油机会。

驱动桥的工作原理

驱动桥的工作原理 驱动桥处于动力传动系的末端,其基本功能有如下三个方面: 1、增大由传动轴或变速器传来的转矩,并将动力传到驱动轮,产生牵引力。 2、通过差速器将动力合理的分配给左、右驱动轮,使左右驱动轮有合理的转速 差,使汽车在不同路况下行驶。 3、承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。 驱动桥的组成: 驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴;6-主减速器从动齿轮;7-主减速器主动锥齿轮 对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。 A、在主减速器内完成双级减速 为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿圆柱齿轮。 主动圆锥齿轮旋转,带动从动圆银齿轮旋转,从而完成一级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动 B、轮边减速: 将二级减速器设计在轮毂中,其结构是半轴的末端是小直径的外齿轮,周围有一组行星齿轮(一般5个),轮毂内有齿包围这组行星齿轮,以达到减速驱动的目的。 优点: a、由于半轴在轮边减速器之前,所承受扭矩减小,减速性能更好(驱动力加大); b、半轴、差速器等尺寸减小,车辆通过性能大大提高。 缺点: a、结构复杂,成本增加。 b、载质量大、平顺性小(故只用于重型车)。

圆柱齿轮齿形加工方法方案

圆柱齿轮齿形加工方法和加工方案 一个齿轮的加工过程是由若干工序组成的。为了获得符合精度要求的齿轮,整个加工过程都是围绕着齿形加工工序服务的。齿形加工方法很多,按加工中有无切削,可分为无切削加工和有切削加工两大类。 无切削加工包括热轧齿轮、冷轧齿轮、精锻、粉末冶金等新工艺。无切削加工具有生产率高,材料消耗少、成本低等一系列的优点,目前已推广使用。但因其加工精度较低,工艺不够稳定,特别是生产批量小时难以采用,这些缺点限制了它的使用。 齿形的有切削加工,具有良好的加工精度,目前仍是齿形的主要加工方法。按其加工原理可分为成形法和展成法两种。 成形法的特点是所用刀具的切削刃形状与被切齿轮轮槽的形状相同,如图9-3所示。用成形原理加工齿形的方法有:用齿轮铣刀在铣床上铣齿、用成形砂轮磨齿、用齿轮拉刀拉齿等方法。这些方法由于存在分度误差及刀具的安装误差,所以加工精度较低,一般只能加工出9 ~10级精度的齿轮。此外,加工过程中需作多次不连续分齿,生产率也很低。因此,主要用于单件小批量生产和修配工作中加工精度不高的齿轮。 展成法是应用齿轮啮合的原理来进行加工的,用这种方法加工出来的齿形轮廓是刀具切削刃运动轨迹的包络线。齿数不同的齿轮,只要模数和齿形角相同,都可以用同一把刀具来加工。用展成原理加工齿形的方法有:滚齿、插齿、剃齿、珩齿和磨齿等方法。其中剃齿、珩齿和磨齿属于齿形的精加工方法。展成法的加工精度和生产率都较高,刀具通用性好,所以在生产中应用十分广泛。 一、滚齿 (一)滚齿的原理及工艺特点

滚齿是齿形加工方法中生产率较高、应用最广的一种加工方法。在滚齿机上用齿轮滚刀加工齿轮的原理,相当于一对螺旋齿轮作无侧隙强制性的啮合,见图9-24所示。滚齿加工的通用性较好,既可加工圆柱齿轮,又能加工蜗轮;既可加工渐开线齿形,又可加工圆弧、摆线等齿形;既可加工大模数齿轮,大直径齿轮。 滚齿可直接加工8~9级精度齿轮,也可用作7 级以上齿轮的粗加工及半精加工。滚齿可以获得较高的运动精度,但因滚齿时齿面是由滚刀的刀齿包络而成,参加切削的刀齿数有限,因而齿面的表面粗糙度较粗。为了提高滚齿的加工精度和齿面质量,宜将粗精滚齿分开。(二)滚齿加工质量分析 1.影响传动精度的加工误差分析 影响齿轮传动精度的主要原因是在加工中滚刀和被切齿轮的相对位置和相对运动发生了变化。相对位置的变化(几何偏心)产生齿轮的径向误差;相对运动的变化(运动偏心)产生齿轮的切向误差。 (1)齿轮的径向误差齿轮径向误差是指滚齿时,由于齿坯的实际回转中心与其基准孔中心不重合,使所切齿轮的轮齿发生径向位移而引起的周节累积公差,如图9—4所示。 齿轮的径向误差一般可通过测量齿圈径向跳动△Fr反映出来。切齿时产生齿轮径向误差的主要原因如下: ①调整夹具时,心轴和机床工作台回转中心不重合。 ②齿坯基准孔与心轴间有间隙,装夹时偏向一边。 ③基准端面定位不好,夹紧后内孔相对工作台回转中心产生偏心。

减速机漏油的原因分析及对策(正式版)

文件编号:TP-AR-L6136 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 减速机漏油的原因分析及对策(正式版)

减速机漏油的原因分析及对策(正式 版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 减速机在电厂输煤系统中使用数量较多,一旦漏 油,不仅造成能源损失,而且污染环境,严重时会引 起减速机少油、断油,使齿轮啮合面磨损加剧,进而 发生咬焊或剥离,导致设备事故。 1、减速机漏油的原因分析 1.1 减速机内外产生压力差 减速机运转过程中,运动副摩擦发热以及受环境 温度的影响,使减速机温度升高,如果没有透气孔或 透气孔堵塞,则机内压力逐渐增加,机内温度越高, 与外界的压力差越大,润滑油在压差作用下,从缝隙

处漏出。 1.2 减速机结构设计不合理 (1) 检查孔盖板太薄,上紧螺栓后易产生变形,使结合面不平,从接触缝隙漏油。 (2) 减速机制造过程中,铸件未进行退火或时效处理,未消除内应力,必然发生变形,产生间隙,导致泄漏。 (3) 箱体上没有回油槽,润滑油积聚在轴封、端盖、结合面等处,在压差作用下,从间隙处向外漏。 (4) 轴封结构设计不合理。早期的减速机多采用油沟、毡圈式轴封结构,组装时使毛毡受压缩产生变形,而将结合面缝隙密封起来。如果轴颈与密封件接触不十分理想,由于毛毡的补偿性能极差,密封在短时间内即失效。油沟上虽有回油孔,但极易堵塞,回油作用难以发挥。

减速机原理

减速机原理 减速机在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,减速机是一种相对精密的机械,使用它的目的是降低转速,上海减速机蜗杆减速机和行星齿轮减速机;按照传动级数不同可分为单级和多级减速机厂轮形状可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥-圆柱齿引轮减速机;按照传动的布置形式又可分为展开式、分流式和同进轴式减速机。减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动、齿轮-蜗杆传动所组成的独立部件,常用作原动件与工作机之间的减速传动装置。在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。 工作原理 减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩? 速比=电机输出转数÷减速机输出转数("速比"也称"传动比") 1.知道电机功率和速比及使用系数,求减速机扭矩如下公式:减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 2.知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数 它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速机、蜗杆减速机和行星齿轮减速机;按照传动级数不同可分为单级和多级减速机;按照齿轮形状可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥-圆柱齿轮减速机;按照传动的布置形式又可分为展开式、分流式和同轴式减速机。 产品分类 行星齿轮减速机 以下是常用的减速机分类: 1、摆线减速机 2、硬齿面圆柱齿轮减速器 3、行星齿轮减速机(车间现用) 1)齿圈固定,太阳轮主动,行星架被动。从演示中可以看出,此种组合为降速传动,通常传动比一般为2.5~5,转向相同。 行星齿轮减速机 4、软齿面减速机 5、三环减速机 6、起重机减速机 7、蜗杆减速机 8、轴装式硬齿面减速机 9、无级变速机 蜗轮蜗杆减速机的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。谐波减速机的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。行星减速机其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。但价格略贵。

齿轮精度等级、公差分解

齿轮精度等级、公差的说明 名词解释: 齿轮及齿轮副规定了12个精度等级,第1级的精度最高,第12级的精度最低。齿轮副中两个齿轮的精度等级一般取成相同,也允许取成不相同。齿轮的各项公差和极限偏差分成三个组齿轮各项公差和极限偏差的分组 -------------------------------------- 齿轮及齿轮副规定了12个精度等级,第1级的精度最高,第12级的精度最低。齿轮副中两个齿轮的精度等级一般取成相同,也允许取成不相同。齿轮的各项公差和极限偏差分成三个组齿轮各项公差和极限偏差的分组-------------------------------------------------------------------------------- 公差组公差与极限偏差项目误差特性对传动性能的主要影响ⅠFi′、FP、FPk Fi″、Fr、Fw 以齿轮一转为周期的误差传递运动的准确性Ⅱfi′、fi″、ff ±fPt、±fPb、ff β在齿轮一周内,多次周期地重复出现的误差传动的平稳性,噪声,振动ⅢFβ、Fb、±FPx 齿向线的误差载荷分布的均匀性根据使用的要求不同,允许各公差组选用不同的精度等级,但在同一公差组内,各项公差与极限偏差应保持相同的精度等级。齿轮传动精度等级的选用 -------------------------------------------------------------------------------- 机器类型精度等级机器类型精度等级测量齿轮3~5 一般用途减速器6~8 透平机用减速器3~6 载重汽车6~9 金属切削机床3~8 拖拉机及轧钢机的小齿轮6~10 航空发动机4~7 起重机械7~10 轻便汽车5~8 矿山用卷扬机8~10 内燃机车和电气机车5~8 农业机械8~11 关于齿轮精度等级计算的问题 某通用减速器中有一对直齿圆柱齿轮副,模数m=4mm,小齿轮z1=30,齿宽b1=40mm,大齿轮2的齿数z2=96,齿宽b2=40mm,齿形角α=20o。两齿轮的材料为45号钢,箱体材料为HT200,其线胀系数分别为α齿=11.5310-6K-1, α箱=10.5310-6K-1,齿轮工作温度为t齿=60oC,箱体工作温度t箱=30oC,采用喷油润滑,传递最大功率7.5KW,转速n=1280r/min,小批生产,试确定其精度等级、检验项目及齿坯公差,并绘制齿轮工作图。 回答你的问题: 1、齿轮精度主要是控制齿轮在运转时齿轮之间传递的精度,比如:传动的平稳性、瞬时速度的波动性、若有交变的反向运行,其齿侧隙是否达到最小,如果有冲击载荷,应该稍微提高精度,从而减少冲击载荷带给齿轮的破坏。 2、如果以上这些设计要求比较高,则齿轮精度也就要定得稍高一点,反之可以定得底一点 3、但是,齿轮精度定得过高,会上升加工成本,需要综合平衡 4、你上面的参数基本上属于比较常用的齿轮,其精度可以定为:7FL,或者7-6-6GM 精度标注的解释: 7FL:齿轮的三个公差组精度同为7级,齿厚的上偏差为F级,齿厚的下偏差为L级 7-6-6GM:齿轮的第一组公差带精度为7级,齿轮的第二组公差带精度为6级,齿轮的第三组公差带精度为6级,齿厚的上偏差为G级,齿厚的下偏差为M级 5、对于齿轮精度是没有什么计算公式的,因为不需要计算,是查手册得来的。 6、精度等级的确定是工程师综合分析的结果,传动要求精密、或者是高负载、交变负载……就将精度等级定高一点

减速机漏油的原因分析及对策参考文本

减速机漏油的原因分析及对策参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

减速机漏油的原因分析及对策参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 减速机在电厂输煤系统中使用数量较多,一旦漏油, 不仅造成能源损失,而且污染环境,严重时会引起减速机 少油、断油,使齿轮啮合面磨损加剧,进而发生咬焊或剥 离,导致设备事故。 1、减速机漏油的原因分析 1.1 减速机内外产生压力差 减速机运转过程中,运动副摩擦发热以及受环境温度 的影响,使减速机温度升高,如果没有透气孔或透气孔堵 塞,则机内压力逐渐增加,机内温度越高,与外界的压力 差越大,润滑油在压差作用下,从缝隙处漏出。 1.2 减速机结构设计不合理 (1) 检查孔盖板太薄,上紧螺栓后易产生变形,使结合

面不平,从接触缝隙漏油。 (2) 减速机制造过程中,铸件未进行退火或时效处理,未消除内应力,必然发生变形,产生间隙,导致泄漏。 (3) 箱体上没有回油槽,润滑油积聚在轴封、端盖、结合面等处,在压差作用下,从间隙处向外漏。 (4) 轴封结构设计不合理。早期的减速机多采用油沟、毡圈式轴封结构,组装时使毛毡受压缩产生变形,而将结合面缝隙密封起来。如果轴颈与密封件接触不十分理想,由于毛毡的补偿性能极差,密封在短时间内即失效。油沟上虽有回油孔,但极易堵塞,回油作用难以发挥。 1.3 加油量过多 减速机在运转过程中,油池被搅动得很厉害,润滑油在机内到处飞溅,如果加油量过多,使大量润滑油积聚在轴封、结合面等处,导致泄漏。 1.4 检修工艺不当

齿轮偏差的一些定义

实际转角与公称转角之差的总幅度值,差 f i ′——一齿切向综合公差。 定义:被测齿轮与理想精确的测量齿轮单面啮合时,在被测齿轮一齿距角内,实际转角与公称转角之差的最大幅度值,以分度圆弧长计值。 F i ″——径向综合误差 F i ″——径向综合公差。定义:被测齿轮与理想精确的测量齿轮双面啮合时,在被测齿轮一转内,双啮中心距的最大变动量。 f i ″——一齿径向综合误差 f i ″——一齿径向综合公差。定义:被测齿轮 与理想精确的测量齿轮双面啮合时,在被测齿轮一齿距角内,双啮中心距的最大变动量。 F P ——齿距累积误差 F P ——齿距累积公差。定义:在分度圆上任意两个同侧齿面间的 实际弧长与公称弧长之差的最大绝对值。 f Pt ——齿距偏差 f Pt ——齿距极限偏差。 定义:在分度圆上,实际齿距与公称齿距之差。 公称齿距是指所有实际齿距的平均值。 F Pk ——K 个齿距累积误差 F Pk ——K 个齿距累积公差。定义:在分度圆上,K 个齿距的实际弧长与公称弧长之差的最大绝对值,K 为2到小于z /2的整数。 F r ——齿圈径向跳动 F r ——齿圈径向跳动公差。定义:在齿轮一转范围内,测头在齿槽内于齿高中部双面接触,测头相对于齿轮轴线的最大变动量。 F w ——公法线长度变动 F w ——公法线长度变动公差。 定义:在齿轮一周范围内,实际公法线长度最大值与最小值之差。 F w =W max -W min f f ——齿形误差 f f ——齿形公差。定义:在端截面上,齿形工作部分内(齿顶 倒棱部分除外),包容实际齿形且距离为最小的两条设计齿形间的法向距离。设计齿形可以是修正的理论渐开线,包括修缘齿形、凸齿形等。

减速机漏油的原因分析及对策

减速机漏油的原因分析及 对策 Revised by Hanlin on 10 January 2021

减速机漏油的原因分析及对策减速机在电厂输煤系统中使用数量较多,一旦漏油,不仅造成能源损失,而且污染环境,严重时会引起减速机少油、断油,使齿轮啮合面磨损加剧,进而发生咬焊或剥离,导致设备事故。 1、减速机漏油的原因分析 1.1减速机内外产生压力差 减速机运转过程中,运动副摩擦发热以及受环境温度的影响,使减速机温度升高,如果没有透气孔或透气孔堵塞,则机内压力逐渐增加,机内温度越高,与外界的压力差越大,润滑油在压差作用下,从缝隙处漏出。 1.2减速机结构设计不合理 (1)检查孔盖板太薄,上紧螺栓后易产生变形,使结合面不平,从接触缝隙漏油。 (2)减速机制造过程中,铸件未进行退火或时效处理,未消除内应力,必然发生变形,产生间隙,导致泄漏。

(3)箱体上没有回油槽,润滑油积聚在轴封、端盖、结合面等处,在压差作用下,从间隙处向外漏。 (4)轴封结构设计不合理。早期的减速机多采用油沟、毡圈式轴封结构,组装时使毛毡受压缩产生变形,而将结合面缝隙密封起来。如果轴颈与密封件接触不十分理想,由于毛毡的补偿性能极差,密封在短时间内即失效。油沟上虽有回油孔,但极易堵塞,回油作用难以发挥。 1.3加油量过多 减速机在运转过程中,油池被搅动得很厉害,润滑油在机内到处飞溅,如果加油量过多,使大量润滑油积聚在轴封、结合面等处,导致泄漏。 1.4检修工艺不当 在设备检修时,由于结合面上污物清除不彻底,或密封胶选用不当、密封件方向装反、不及时更换密封件等也会引起漏油。 2、治理减速机漏油的对策 2.1改进透气帽和检查孔盖板

浅析减速机的漏油原因及处理方案

浅析减速机的漏油原因及处理方案 摘要针对减速机的漏油问题, 对泄漏原因进行了分析, 提出了处理方案。 关键词减速机漏油回油槽 减速机是轧钢生产线中的重要的传动设备,一旦漏油,不仅造成经济损失,漏油严重时会引起减速机齿轮啮合面磨损加剧, 从而引起齿面胶合剥离影响到生产的连续进行。在减速机制造和使用过程中,润滑油渗漏问题,成为比较普遍存在的难题。本文对制造过程中出现的问题进行了分析,提出了改进方案。 一、减速机漏油的原因分析 1.减速机内外产生压力差 减速机运转过程中,每一对齿轮相互啮合发生摩擦而产生热量,随着运转时间的加长,使减速机箱内温度逐渐升高,则机箱内压力逐渐增加,机内温度越高,则与外界的压力差越大,润滑油在压差作用下从缝隙处漏出。 2.减速机结构设计不合理 1)箱体上没有回油槽,润滑油积聚在轴封、端盖、结合面等处,在压差作用下,从间隙处向外泄漏。 2)减速机制造过程中,铸件未进行退火或时效处理,未消除内应力,焊接件未消除焊接应力,必然发生变形,产生间隙,导致泄漏。 3)检查孔盖板太薄,上紧螺栓后易产生变形,使结合面不平,从接缝处漏油。 4)轴封结构设计不合理。早期的减速机多采用油沟、毡圈式轴封结构,组装时毛毡受压缩产生变形,而将结合面缝隙密封起来。如果轴颈与密封件接触不十分理想,由于毛毡的补偿性能极差,密封在短时间内即失效,油沟上虽有回油孔,但极易堵塞,回油作用难以发挥。 3.加油量过多 减速机在运转过程中,油池被搅动得很厉害,润滑油在机内到处飞溅,如果加油量过多,使大量润滑油积聚在轴封、结合面等处,导致泄漏。 二、治理减速机漏油的方法 1. 合理选择透气塞和通气罩及检查孔盖板 减速机内压力大于外界大气压是漏油的主要原因之一,减速机工作时,使箱内空气膨胀,为防止箱体分合面和轴的密封处漏油,必须使箱内热空气能排出,冷空气进入,应合理选择透气塞和通气罩,透气塞一般用于小尺寸及发热小的减速机,通气罩一般用于较大型减速机上。检查孔盖板在设计时,厚度应在6mm 以上,防止螺栓拧紧后,因结合面不平而漏油。 2.消除内应力,防止箱体变形引发泄漏。 焊接结构的减速机箱体,焊后应消除焊接应力。铸铁或铸钢减速机箱体,当最大边长>1400mm时,粗加工后消除应力。当最大边长≤1400mm时,铸后消除应力。 3. 回油通畅 减速机箱体采用分口面加工成后,在其表面上铣出一道回油槽,这样从分口面渗出的油通过回油槽又流回了箱体内;轴承上多余的润滑油不在轴封处积聚,须使多余的润滑油沿一定方向流回油池,即做到畅流,具体的做法是在轴承座的

齿轮齿距偏差与齿距累积误差的测量

齿轮齿距偏差与齿距累积误差的测量 一、实验目的 1.熟悉用相对测量法测量周节偏差与周节累积误差的方法及其测量结果的处理; 2.加深理解周节偏差及周节积累误差的定义。 二、实验内容 1.用齿轮周节检查仪测量圆柱齿轮周节相对偏差; 2.用六表计算法或作圆法求解周节累积误差。 三、测量原理及仪器说明 齿化的周节偏差△fw是指在分度圆上,实际周节与公 称周节之差(用相对法测量时,公称周节是指所有实际周 节的平均值)。周节累积误差△fp是指在分度圆上,任意 两个同侧齿面间的实际弧长与公称弧长之差的最大绝对 值。 用相对法测量周节是以某一周节作为基准周节,测量 其余的周节对基准周节的偏差,然后,通过数据处理来求 解周节偏差△fw和周节累积误差△fp。测量时应在齿高中 部同一圆周上进行,这就要求保证测量基准的精度。齿轮 的测量基准可选用齿轮内孔,齿顶圆和齿根圆。本实验以 齿顶圆定位,因而对齿轮外圆的的径向圆跳动应有相应的要求,否则将造成过大的测量误差。 图4-5为手持式齿轮周节检查仪,它以齿顶圆做为测量基准,指示表的分度值为0.001mm,测量范围为模数2-15mm。周节检查仪的活动量爪3通过杠杆臂将测量位移传递给指示表7,根据被测齿轮模数,并用锁紧螺钉加以固定。定位杆4,5,8用来作齿顶圆定位,同样可以在底版导槽内移动,并用相应的锁紧螺钉固定。 四、测量步骤 1.调整测量爪的位置:根据被测齿轮模数,调整并固定好固定量爪2。 2.调整定位杆的相对位置 将测量仪和齿轮平放在检验平板上,调整测量仪定位杆4和5的位置,使量爪2和3在齿轮分度圆附近与两相临同侧齿面接触,接触点分别与两齿顶距离接近相等,然后用螺钉6固紧。 3.调节指示表零位

齿轮齿形精度等级详解

齿轮精度等级 1、齿轮精度主要是控制齿轮在运转时齿轮之间传递的精度,比如:传动的平稳性、瞬时速度的波动性、若有交变的反向运行,其齿侧隙是否达到最小,如果有冲击载荷,应该稍微提高精度,从而减少冲击载荷带给齿轮的破坏。 2、如果以上这些设计要求比较高,则齿轮精度也就要定得稍高一点,反之可以定得底一点 3、但是,齿轮精度定得过高,会上升加工成本,需要综合平衡 4、你上面的参数基本上属于比较常用的齿轮,其精度可以定为:7FL,或者7-6-6GM 精度标注的解释: 7FL:齿轮的三个公差组精度同为7级,齿厚的上偏差为F级,齿厚的下偏差为L级 7-6-6GM:齿轮的第一组公差带精度为7级,齿轮的第二组公差带精度为6级,齿轮的第三组公差带精度为6级,齿厚的上偏差为G级,齿厚的下偏差为M级 5、对于齿轮精度是没有什么计算公式的,因为不需要计算,是查手册得来的。 6、精度等级的确定是工程师综合分析的结果,传动要求精密、或者是高负载、交变负载……就将精度等级定高一点 7、精度等级有5、6、7、8、9、10级,数值越小精度越高 8、(齿厚)偏差等级也是设计者综合具体工况给出的等级,精密传动给高一点,一般机械给低一点,闭式传动给高一点,开式传动给低一点。

9、(齿厚)偏差等级有C、D、E、F、G、H、J、K、L、M、N、P、R、S 级,C级间隙最大,S级间隙最小。 10、不管是精度等级,还是偏差等级,定得越高,加工成本也越高,需要综合分析之后再具体的给出一个恰当的精度等级和偏差等级。 11、对于齿轮的常规检验项目,分为3组检验项目,分别如下: 12、第一组检验项目主要是保证传递运动的准确性,其项目包括:切向综合公差Fi'、周节累积公差Fp、k个周节累积公差Fpk、径向综合公差Fi"、齿圈径向跳动公差Fr、公法线长度变动公差Fw 13、第二组检验项目主要是保证传递运动的平稳性、噪声、振动,其项目包括:切向一齿综合公差fi'、基节极限偏差fpb、周节极限偏差fpt、径向一齿综合公差fi" 14、第三组检验项目主要是保证载荷分布的均匀性,其项目包括:齿向公差Fβ、接触线公差Fb、轴向齿距极限偏差Fpx 15、齿轮的齿坯公差的精度等级为:5、6、7、8、9、10级 16、齿轮中间的孔公差、及其形位公差:IT5、IT6、IT7、IT8级 17、齿轮轴的尺寸公差、及其形位公差:IT5、IT6、IT7 18、顶圆直径公差:IT7、IT8、IT9 19、基准面的径向跳动、基准面的端面跳动:根据直径的大小,按照5、6、7、8、9、10级查表 20、需要说明一下:我给出的·第一组、第二组、第三组检验项目是比较全的,但是,在实际中,在实际的图纸上,我们列出的检验项目没有这么多,太多了不但给检验带来麻烦,还增加制造成本,所以,在图纸上只检验其中的几项即可,你可以参看一下专业的齿轮图纸,也可以在《机械设计手册》上看看例题,在此给你列出常规要检查的、在图纸上

减速机的工作原理

减速机的工作原理: 减速机的工作原理概述:就是利用各级齿轮传动来达到降速的目的.减速器就是由各级齿轮副组成的.比如用小齿轮带动大齿轮就能达到一定的减速的目的,再采用多级这样的结构,就可以大大降低转速了. 减速机一般用于低转速大扭矩的传动设备,把电动机.内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。减速机是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。减速机的作用:在目前用于传递动力与运动的机构中,减速机的应用范围相当广泛,几乎在各式机械的传动系统中都可以见到它的踪迹,从 交通工具的船舶,汽车,机车,建筑用的重型机具,机械工业所用的加工机具及自动化生产设备,到日常生活中常见的家电,钟表等等.其应用从大动力的传输工作,到小负荷,精确的角度传输都可以见到减速机的应用,且在工业应用上,减速机具有减速及增加转矩功能,因此广泛应用 在速度与扭矩的转换设备. 减速机是一种动力传达的机构,在应用上于需要较高扭矩以及不需要太高转速的地方都用的到它.例如:输送带,搅拌机,卷扬机,拍板机,自动化专用机…,而且随着工业的发展和工厂的自 动化,其利用减速机的需求量日益成长.通常减速的方法有很多,但最常用的方法是以齿轮来 减速,可以缩小占用空间及降低成本,所以也有人称减速机为齿轮箱(GearBox).通常齿轮箱是一些齿轮的组合,因齿轮箱本身并无动力,所以需要驱动组件来传动它,其中驱动组件可以是 马达,引擎或蒸汽机…等.而使用减速机最大的目的有下列几种:1.动力传递2.获得某一速度3.获得较大扭矩.但除了齿轮减速机外,由加茂精工所开发的球体减速机,提供了另一项价值,就是高精度的传动,且传动效率高,为划时代的新传动构造。 液力耦合器的模型与工作原理 液力耦合器是一种利用液体介质传递转速的机械设备,其主动输入轴端与原传动机相联结,从动输出轴端与负载轴端联结,通过调节液体介质的压力,使输出轴的转速得以改变。理想状态下,当压力趋于无穷大时,输出转速与输入转速相等,相当于钢性联轴器。当压力减小时,输出转速相应降低,连续改变介质压力,输出转速可以得到低于输入转速的无级调节。 液力耦合器的功控调速原理与效率 根据液力耦合器的上述特点,可以等效为图1所示的模型

轧机减速机漏油的原因分析与防治

轧机减速机漏油的原因分析与防治 漏油问题一直是影响轧机减速机使用的主要因素之一,在宣钢轧钢设备维护工作中,如何预防和处置减速机漏油一直以来是维护工作的重点内容之一,文章结合实际工作经验,对减速机漏油的原因和对策进行了整理,以应对生产中的实际问题,起到推动此项工作的作用。 标签:减速机;漏油;结合面;油封 引言 轧机减速机是轧钢生产中的关键设备,但实际运行的减速机基本都存在或轻或重的漏油问题,漏油问题一直是影响减速机正常使用的主要因素。减速机的渗漏油不仅浪费大量的润滑油,造成经济损失,污染环境,而且还威胁设备的安全使用和生产的顺利进行,严重的时候还会引起减速机内部齿轮和轴承因为缺油得不到充分的润滑,导致齿面磨损加剧以及轴承烧坏,从而引发设备事故的发生。 1 减速机漏油原因分析 减速机漏油的部位主要集中在观察孔、箱体结合面和输入输出轴孔三个部位,可以导致减速机漏油的原因有很多,可以通过总结归纳为以下几点: 1.1 结合面处漏油 造成结合面处漏油的主要原因就是结合面在制造时的平整程度没有达到设计的要求,同时后期安装时候联接紧固螺栓紧固力矩不均匀以及零部件的热变形都会造成结合面处渗油。 1.2 输入输出端漏油 (1)油封损坏,导致油封损坏的原因有两种,一种是装配原因,在进行油封装配时油封外径和端盖内径两者的同轴度控制的不合格,这样在轴转动过程中,会造成油封和端盖之间地磨损从而导致温度升高,温度是油封损坏的关键条件,长期高速运转,会使得油封和轴之间的磨损加剧从而导致长期的高温,这样就会造成油封材质发生碳化从而弹性失效,直到损坏漏油;另外一种情况就装有油封的端盖其外端面和所连接的轴之间存在摩擦现象,随着运行,会造成端盖的温度升高,从而导致油封温度升高,这种情况一旦发生,由于短时间内产生的热量较大,会直接导致油封唇口受热产生变形,削弱密封的作用。 (2)轴的磨损,减速机经过长时间运行后,势必会在安装油封的轴外表面产生磨损现象,这样就改变了设备安装的公差配合情况,轻微的磨损会一定程度上影响骨架油封的密封效果,严重的情况就是油封彻底失效。同时,减速机轴表面的粗糙程度也会影响油封的磨损,应该控制在可以建立润滑油膜粗糙度要求的

齿轮偏差的一些定义

F i′——切向综合误差 F i′——切向综合误差。定义:被测齿轮与理想精确的测量齿轮 单面啮合时,被测齿轮一转内,实际转角与公称转角之差的总幅度值, 以分度圆弧长计值。 f i′——一齿切向综合误 差 f i′——一齿切向综合公差。 定义:被测齿轮与理想精确的测量 齿轮单面啮合时,在被测齿轮一齿 距角内,实际转角与公称转角之差 的最大幅度值,以分度圆弧长计 值。 F i″——径向综合误差 F i″——径向综合公差。定义:被测齿轮与理想 精确的测量齿轮双面啮合时,在被测齿轮一转内,双 啮中心距的最大变动量。 f i″——一齿径向综合误差 f i″——一齿径向综合公差。定义:被测齿轮 与理想精确的测量齿轮双面啮合时,在被测齿轮一 齿距角内,双啮中心距的最大变动量。 F P——齿距累积误差 F P——齿距累积公差。定义:在分度圆上任意两个同侧齿面间的 实际弧长与公称弧长之差的最大绝对值。 f Pt——齿距偏差 f Pt——齿距极限偏差。 定义:在分度圆上,实际齿距 与公称齿距之差。 公称齿距是指所有实际齿距 的平均值。 F Pk——K个齿距累积误差 F Pk——K个齿距累积公差。定义:在分度圆上,K 个齿距的实际弧长与公称弧长之差的最大绝对值,K 为2到小于z/2的整数。 F r——齿圈径向跳动 F r——齿圈径向跳动公差。定义:在齿轮一转 范围内,测头在齿槽内于齿高中部双面接触,测头 相对于齿轮轴线的最大变动量。

F w——公法线长度变动 F w——公法线长度变动公差。 定义:在齿轮一周范围内,实际 公法线长度最大值与最小值之差。 F w =W max -W min f f——齿形误差 f f——齿形公差。定义:在端截面上,齿形工作部分内(齿顶 倒棱部分除外),包容实际齿形且距离为最小的两条设计齿形间的 法向距离。设计齿形可以是修正的理论渐开线,包括修缘齿形、凸 齿形等。 F Px——轴向齿距偏差 F Px——轴向齿距极限偏差。定义:在与齿轮基准轴线平行面大 约通过齿高中部的一条直线上,任意两个同侧齿面间的实际距离与 公称距离之差。沿齿面法线方向计值。 f Pb——基节偏差 f Pb——基节极限偏差。定义:实 际基节与公称基节之差。 实际基节是指基圆柱切平面所截 两相邻同侧齿面的交线之间的法向距 离。 f fβ——螺旋线波度误差 f fβ——螺旋线波度公差。定义:宽 斜齿轮齿高中部实际齿线波纹的最大波 幅,沿齿面法线方向计值。 Fβ——齿向误差 Fβ——齿向公差。定义:在分度圆柱面上,齿宽有效部分范 围内(端部倒角部分除外),包容实际齿线且距离为最小的两条 设计齿线之间的端面距离。 设计齿线可以是修正的圆柱螺旋线,包括鼓形线,齿端修薄

相关文档