文档库 最新最全的文档下载
当前位置:文档库 › 基于ANSYS结构优化模块的加载反力架设计

基于ANSYS结构优化模块的加载反力架设计

基于ANSYS结构优化模块的加载反力架设计
基于ANSYS结构优化模块的加载反力架设计

四川建筑第31卷2期2011.04

基于ANSYS 结构优化模块的加载反力架设计

田文姜,邹

(中铁大桥局集团武汉桥梁科学研究院有限公司,湖北武汉410034)

【摘

要】结构优化设计因其涉及复杂的数学知识,对设计人员的数学水平要求较高,且在土木工程设

计中缺乏实用的设计程序,使得结构优化设计在实际工程中的应用受到了限制。在一个加载反力架的设计中,使用ANSYS 的结构优化模块,对反力架的外形尺寸进行了优化,得到了满意的结果。

【关键词】结构优化;ANSYS ;工程设计;反力架

【中图分类号】TU311.41

【文献标识码】B

[定稿日期]2010-04-30[作者简介]田文姜(1983 ),男,硕士,助理工程师,主要从事桥梁结构模型试验研究。

对梁、柱等简单构件组成的结构或构件,一般有现成的规范作为设计依据,或结合以往的设计经验来辅助设计,而对于三向尺寸相差不大的板、实体及其组合结构和构件,或其他一些样式独特、没有设计依据的新颖结构,往往缺乏成熟可靠的设计方法。通常需要借助有限元软件来分析和设

计,

并需多次调整参数以获得理想的设计结果。1ANSYS 及其结构优化模块简介

ANSYS 拥有功能强大的APDL 设计语言,它是一种参数

化设计语言,使用它可以将大多数设计变量参数化,这为它

的优化模块提供接极大便利,

也是其优化模块的功能基础。该模块有三大参数类,即设计变量、状态变量和优化函

数。设计变量一般是结构的尺寸、荷载、材料属性等,它们是给定的状态变量,是设计变量的函数,如应力、变形、振动频率等,目标函数则是需要最小化的变量,它也是设计变量的函数,但受状态变量约束(如应力和变形控制)。

ANSYS 软件提供了零阶方法和一阶方法是常用的两种。零阶方法属于直接法,通过调整设计变量的值,采用曲线拟合的方法去逼近状态变量和目标函数,该方法适合于大多数工程问题。一阶方法是间接方法,使用了状态变量对设计变量的导数,在每次迭代中梯度计算确定搜索方向。由于该方法在每次迭代中要产生一系列的子迭代,它所占用的时间较多,但其计算精度要高。ANSYS 可以将多种优化方法混合使用,为了提高收敛速度,用户可以先采用某种优化方法迭代几次,然后再利用其它方法进行迭代。

2优化的要点

设计者需要合理地选择设计变量,要根据具体情况综合考虑,尽量挑选对设计结果影响较大的参数,也可试运行优化来研究目标函数对某个设计变量的敏感性。设计变量要尽可能少,各设计变量要相互独立。设计变量总数不能超过60个,一般不超过10个,否则将大大降低优化效率。

状态变量要对设计变量形成足够和有效的约束,一般选为应力、变形、频率等。随着设计变量的改变,状态变量的最大值或最小值发生的位置也可能在变化,因此往往需要定义几个关键部位或关键构件的应力、变形或频率等。

设计变量和状态都需要指定合适的容差,以控制迭代在

什么情况下终止。实践表明,容差对优化结果有明显影响,所以设计者需要对容差做试探性调整,对不同容差产生的优化结果进行比较,这是一个实践性较强的操作。

优化开始之前,需要给各设计变量赋一个初始值,这个初始值对优化结果有明显影响,它可能使优化结果收敛于一个局部极小值,也可能会导致优化过程耗费大量时间而得不到可行的设计序列。因此,为了提高优化效率,一般需要先采用适当的优化工具来搜寻和研究设计域。ANSYS 优化模块提供的优化工具有随机搜索法、等步长搜索法、乘子计算法、最优梯度法等。例如,用搜索工具初步得到一些较好的设计序列,

缩小设计空间,排除一些局部最小值;采用扫描工具可以确定哪些设计变量对目标函数的影响较为明显,据此可以对这些变量指定更严格的收敛容差。

以上准备工作做好后,即可采用零阶方法作优化,一般均可得到较好的优化结果。如果对优化结果不满意,可再采用一阶方法,但一阶方法未必可以得到更好的结果,或其优化过程耗时太长而失去优势。

3试验反力架的优化步骤和结果

某模型试验对一座斜拉桥索塔的一个节段进行顶推加

载试验,

需设计一套反力架。荷载作用在反力架两端斜面上,

各斜面上均作用法向力3500kN 。为得到一个合理设计,节约钢材,现用ANSYS 的结构优化设计模块对该反力架进行优化设计(图1)。

反力架各板件均为Q345钢材。因模型高度、加载所用的千斤顶高度和加载坡面的角度均已确定,故反力架外形尺寸也确定,

各部位尺寸见图1。立柱为纯受拉构件,不参与优化。需要调整优化的参数为各板件厚度t i (i =1,

2,…,9)和横梁高度h ,

即设计空间为(t 1,t 2,…,t 9,h )T ,其中各板初始厚度均取10mm ,横梁高度取100mm 。各板厚度下限值需根据整体稳定及局部稳定要求逐一确定。

取板件的Von Mises 应力值作为状态变量。根据多次试2

11

四川建筑第31卷2期2011.04

图2

状态变量σ2对各设计变量的敏感度

(1)运行扫描工具,以考察各设计变量对所关心区域应

力值的影响。通过简单设置并运行,

即可得到图2所示的DV -SV 曲线,知腹板Von Mises 应力σ2对各设计变量的敏

感性。由计算结果知,中腹板厚度、梁高对顶板应力影响最为明显,

梁内横隔板厚度对底板应力最为明显,梁高和横隔板对腹板应力影响最为明显。同样,可以得到各设计变量对顶板应力、底板应力和目标函数的影响程度。根据以上分析,可以有针对性地设置设计变量的取值范围,对状态变量

和目标函数影响大的设计变量要指定较大的设计范围,影响

小的设计变量的设计范围可适当缩小,

以提高优化效率。(2)运行随机搜索工具,设定的目标是随机得到200个

设计序列或100个可行设计序列。运行结束后,实际得到124个设计序列,其中100个为可行设计,可行设计中最优设

计对目标函数为0.385m 3

,该值给随后的进一步优化的目标函数的提供了一个上限值,即以后凡目标函数大于该值者皆非最优设计。随机搜索得到的一系列结果还可以作为分析设计变量与目标函数关系的依据。

(3)执行零阶优化。执行之前需设定最大迭代次数和允许的不可行设计序列数量,程序默认值分别为30和7。在

本次优化中,

分别使用100、30和200、30,两次优化结果相差微小,故可认为优化结果比较理想。优化得到的部分设计序

列见表1,其中带“*”者即90号序列对应最佳设计,其对应的设计参数t 1,t 2,…,t 9(限于篇幅表中未列)并非整数,可根

据材料选取的可行性,将其数值适当向上取整。

通过优化工作,不仅保证了该反力架的强度,还得到了合理的设计参数,实现结构的轻型化,节约了材料。

4结束语

在一些特殊结构(如本文的反力架)或重要结构的设计

中,

在构件截面尺寸、结构的形状和选材等问题上,尤其是涉及细部构造时,设计者往往缺乏经验,很难同时保证安全和

经济。在这种情况下,

通常需要采用结构优化设计方法。在结构优化设计的诸多方法中,选出实用且简便的一种

或几种,

是广大结构设计者的共同愿望,本文采用的方法即为这样一种方法。该方法使用现成的通用有限元软件,不涉

及过于复杂的数学运算,且可以通过APDL 语言完成整个设

计过程,操作简便,设计者乐于接受。

参考文献

[1]汪树玉,刘国华,包志仁.结构优化设计的现状与进展[J ]

.基建优化,

1999,20(4)[2]Design Optimization ,Release 10.0Documentation for ANSYS [3]钱倩.基于有限元分析的轻钢结构优化设计研究[J ].山西建

筑,

2008,34(7)[4]戴国欣.钢结构[M ].武汉:武汉理工大学出版社,2007

3

11

盾构反力架安装专项方案及受力计算书

目录 一、工程概况 (2) 二、反力架的结构形式 (2) 2.1、反力架的结构形式 (2) 2.2、各部件结构介绍 (2) 2.3、反力架后支撑结构形式 (4) 三、反力架安装准备工作 (5) 四、反力架安装步骤及方法 (5) 五、反力架的受力检算 (6) 5.1、支撑受力计算 (6) 5.2、斜撑抗剪强度计算 (8) 六、反力架受力及支撑条件 (8) 6.1、强度校核计算: (10) 6.2、始发托架受力验算 (11)

一、工程概况 东莞市轨道交通R2线2304标土建工程天宝站~东城站盾构区间工程起点位于天宝站,终点位于东城站。盾构机由天宝站南端盾构始发井组装后始发,利用吊装盾构机的260t履带吊安装反力架。 二、反力架的结构形式 2.1、反力架的结构形式 如图一所示。 图一反力架结构图 2.2、各部件结构介绍 (1) 立柱:立柱为箱体结构,主受力板为30mm钢板,筋板为

20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,具体形式及尺寸见图二。 图二立柱结构图 (2) 上横梁:结构为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,其结构与立柱相同。 (3) 下横梁:箱体结构,主受力板为30mm,筋板为20mm钢板,材质均为Q235-A,箱体结构截面尺寸为250mmX500mm,其结构如图三所示。 图三下横梁结构图

(4 )八字撑:八字撑共有4根,上部八字撑2根,其中心线长度为1979mm,下部八字撑2根,其中心线长度为2184mm,截面尺寸如图四所示。 图四八字撑接头结构图 2.3、反力架后支撑结构形式 后支撑主要有斜撑和直撑两种形式,按照安装位置分为立柱后支撑、上横梁后支撑、下横梁后支撑。 立柱支撑(以左线盾构反力架为例):线路中心左侧(东侧)可以直接将反力架的支撑固定在标准段与扩大端相接的内衬墙上;线路中心线右侧(西侧)材料均采用直径500mm,壁厚9mm的钢管。始发井东侧立柱支撑是3根直撑(中心线长度为1700mm),始发井西侧立柱是2根斜撑(中心线长度分别为5247mm和3308mm,与水平夹角均为45度)和一根直撑(底部)。如下图所示 1700

利用ansys APDL进行优化设计的例子

利用ansys APDL进行优化设计的例子 一、问题描述: 二、分析文件的APDL语句及注释:(可把该文件拷贝到一个文本文件,作为ansys的分析文件。) !第一步,初始化ANSYS系统环境 FINISH /CLEAR /filename,BeamOpt !第二步,定义参数化设计变量 B=1.4 !初始化宽度 H=3.8 !初始化高度 !第三步,利用参数创建有限元模型 /PREP7 !进入前处理 ET,1,BEAM3 !定义单元类型为BEAM3 AREA=B*H !梁的截面积

IZZ=(B*(H**3))/12 !绕Z轴的转动惯量 R,1,AREA,IZZ,H !定义单元实常数,以设计变量表示MP,EX,1,30E6 !定义材料性质 MP,PRXY,1,0.3 N,1 !创建节点1 N,11,120 !创建节点11 FILL E,1,2 EGEN,10,1,-1 !复制单元 FINISH !退出前处理 !第四步,执行求解 /SOLU ANTYPE,STATIC D,1,UX,0,,11,10,UY SFBEAM,ALL,1,PRES,20 !施加压力(单位长度上的负荷)=20 SOLVE FINISH !第五步,进入后处理并创建状态变量与目标变量 /POST1 SET,,,, NSORT,U,Y !以Uy为基准对节点排序 *GET,DMAX,SORT,,MAX !参数DMAX=最大位移ETABLE,VOLU,VOLU !VOLU=每个单元的体积ETABLE,SMAX_I,NMISC,1 !每个单元I节点处应力的最大值ETABLE,SMAX_J,NMISC,3 !每个单元J节点处应力的最大值

盾构机反力架计算书

盾构机反力架计算书 太平桥站盾构始发反力架支撑计算书一、工程情况说明 哈尔滨地铁一号8标工业大学—太平桥区间投入一台德国海瑞克盾构机进行施工,编号S-285,从太平桥站西端头下井。我们对反力架采取水平撑加斜支撑的形式加固,将反作用力传递至车站底板、中板及侧墙。 二、反力架及支撑示意图 12 中板 侧反反 力力 墙 架架 底板底板 12 1-12-2 计算说明: 1、根据以往施工情况,始发盾构机推力按照800T进行计算,其中底部千斤顶油压按照200bar,两侧按照140bar,顶部千斤顶不施加推力; 2、通过管片和基准钢环调节,每组千斤顶所在区域按照均布荷载进行计算; 3、水平支撑采用200mm及250mm宽翼缘H型钢,分别支撑与车站底板及侧墙上,斜撑采用200mm宽翼缘H型钢,45度角撑于车站底板上; 4、反力架经几次始发使用,梁自身抗弯和抗剪无问题,本次不予计算。三、力学模型图

A 44.7t/m44.7t/mBD C 89.4t/m 盾构机在顶推过程中反力架提供盾构向前掘进的反力,通过焊接在反力架上的型钢支撑, 将力传递到车站结构上。为保证反力架能够提供足够的反力,以确保前方地层不会发生较大 沉降。要求型钢支撑强度足够。 四、计算步骤 1、模型简化 假设千斤顶推力平均分配到四个支撑边,即每边承受200t的压力。 2、轴力验算 1)底边 σ,F/A,F/(8,A,2,A),2000000/(8,6428,2,9218),28.6MPa 112 2 200mm H型钢截面面积A=6428mm1 2 250mm H型钢截面面积A=9128mm2 σ,σ,210MPa 1max 2)右侧边 σ,F/A,F/(10,A),2000000/(10,6428),31.1MPa 21 σ,σ,210MPa 2max 3)顶边 σ,F/A,F/(4,A),2000000/(4,6428),77.8MPa 31 σ,σ,210MPa 3max

基于ANSYS的结构优化设计有限元分析.

基于ANSYS 的结构优化设计有限元分析 收稿日期:2004211213 作者简介:郝金伟(19752,男,后勤工程学院结构工程专业在读硕士研究生,重庆400016 闫奕任(19752,男,1998年毕业于后勤工程学院营房工程专业,沈阳军区联勤部营房部,辽宁沈阳110005蒋懋(19752,男,后勤工程学院在读硕士研究生,讲师,后勤工程学院军事建筑工程系,重庆400016 郝金伟闫奕任蒋懋 摘要:为验证ANSYS 对结构优化设计的有效性,从理论上说明了结构优化设计的数学过程,介绍了ANSYS 优化的相

关概念、过程,结合某设计优化实例,为使用者提供了一套系统的思维模式,创造了良好的条件和方法。关键词:结构,优化设计,有限元分析中图分类号:TU318.1文献标识码:A 引言 据统计,与传统设计相比,采用优化设计可以使土建工程降低造价5%~30%[1]。自1973年Z ienkiewicz 利用有限元法做结构分析,Braibant 利用节点坐标为设计变 量做有限元分析以来,随 着计算机和有限元软件的发展,用计算机手段实现结构优化设计再度引起了工程师和研究者们的极大兴趣。大型通用有限元软件ANSYS 不仅可以做一般结构应力分析、动态系统模拟、热传导分析和磁场分析,也可以用来做优化设计。ANSYS 提供了两种优化方法:零阶方法是一个很完善的处理方法,可以很有效地处理大多数的工程问题;一阶方法基于目标函数对设计变量的敏感程度,因此,更加适合于精确的优化分析。对于这两种方法,ANSYS 提供了一系列的分析→评估→修正的循环过程,即对于初始设计进行分析,对分析结果就设计要求进行评估,然后修正,这一循环过程重复进行,直到所有的设计要求都满足为止。 1结构优化设计 1.1结构优化设计的数学过程 最优结构方案可以包括很多方面:可求出结构最好的几何形状;可选择各种构件尺寸使结构的造价最低;若构件本身的形状允许改变,也可选择构件的最好形状;若几何形状已定,则可以适当选取截面,使结构总重量最轻。结构优化设计具有如下特点: 1无论是以重量或造价为目标函数,其函数式中的各项系数均为正值,且目标函数值恒大于零,多为取极小化问题。2设计变量总是不小于零。3在数学模型中可以避免等式约束条件,它通常由结构分析来代替,因此约束条件多为不等式,约束函数一般是连续可导和非线性的。4最优解一定位于可行域的边界上,而不在可行域的内部。5设计变量多,约束条件多,且约束函数多为隐函数。

反力架受力计算

反力架受力计算 一、反力架的结构形式 1、反力架的结构形式如图一所示。 图一反力架结构图 2、各部件结构介绍 2.1 立柱:立柱为箱体结构,主受力板为30mm钢板,筋板为20mm钢板, 材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,具体形式及尺寸见图二。

图二立柱结构图 2.2 上横梁:结构为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,其结构与立柱相同。 2.3 下横梁:箱体结构,主受力板为30mm,筋板为20mm钢板,材质均为Q235-A,箱体结构截面尺寸为250mmX500mm,其结构如图三所示。 图三下横梁结构图 2.4 八字撑:八字撑共有4根,上部八字撑2根,其中心线长度为1979mm,下部八字撑2根,其中心线长度为2184mm,截面尺寸如图四所示。

图四八字程接头结构图 二、反力架后支撑结构形式 后支撑主要有斜撑和直撑两种形式,按照安装位置分为立柱后支撑、上横梁后支撑、下横梁后支撑。 1、立柱支撑:材料均采用直径500mm,壁厚9mm的钢管,内部浇灌混凝 土提高稳定性。始发井西侧立柱支撑是2根直撑(中心线长度为3875mm),始发井东侧立柱是2根斜撑(中心线长度分别为8188mm和4020mm,与 水平夹角分别是29度和17度)。如下图所示 西侧立柱直撑型式东侧立柱斜撑型式 2、上横梁支撑:材料均采用直径500mm,壁厚9mm的钢管,内部浇灌混 凝土提高稳定性,中心线长度分别为4080mm、4141mm、4201mm,其 轴线与反力架轴线夹角为15度。

最新ansys 优化设计(含几个实例)资料

ANSYS 优化设计 1.认识ANSYS优化模块 1.1 什么时候我需要它的帮忙? 什么是ANSYS优化?我想说明一个例子要比我在这里对你絮叨半天容易理解的多。 注意过普通的水杯吗?底面圆圆的,上面加盖的哪一种。仔细观察一下,你会发现比较老式的此类水杯有一个共同特点:底面直径=水杯高度。 图1 水杯的简化模型 为什么是这样呢?因为只有满足这个条件,才能在原料耗费最少的情况下使杯子的容积最大。在材料一定的情况下,如果水杯的底面积大,其高度必然就要小;如果高度变大了,底面积又大不了,如何调和这两者之间的矛盾?其实这恰恰就反应了一个完整的优化过程。 在这里,一个水杯的材料是一定的,所要优化的变量就是杯子底面的半径r和杯子的高度h,在ANSYS的优化模块里面把这些需要优化的变量叫做设计变量(DV);优化的目标是要使整个水杯的容积最大,这个目标在ANSYS的优化过程里叫目标函数(OBJ);再者,对设计变量的优化有一定的限制条件,比如说整个杯子的材料不变,这些限制条件在ANSYS 的优化模块中用状态变量(SV)来控制。下面我们就来看看ANSYS中怎么通过设定DV、SV、OBJ,利用优化模块求解以上问题。 首先参数化的建立一个分析文件(假设叫volu.inp),水杯初始半径为R=1,高度为H =1(DV),由于水杯材料直接喝水杯的表面积有关系,这里假设水杯表面积不能大于100,这样就有S=2πRH+2πR2<100(SV),水杯的容积为V=πR2H(OBJ)。 File:volu.inp (用参数直接定义也可或者在命令栏内直接写) R=1 H=1 S=2*3.14*R*H+2*3.14*R*R V=10000/(3.14*R*R*H) 然后再建一个优化分析文件(假设叫optvolu.inp),设定优化变量,并求解。 /clear,nostart /input,volu,inp /opt opanl,volu,inp opvar,R,dv,1,10,1e-2 opvar,H,dv,1,10,1e-2 opvar,S,sv,,100,1e-2 opvar,V,obj,,,1e-2 opkeep,on optype,subp opsave,optvolu,opt0 opexec 最后,打开Ansys6.1,在命令输入框中键入“/input,optvolu,inp”,整个优化过程就开始了。

反力架计算书汇总

目录 一、设计、计算总说明 (1) 二、计算、截面优化原则 (1) 三、结构计算 (1) 3.1 反力架布置形式 (1) 3.2力学模型 (2) 3.3 荷载取值 (3) 3.4力学计算 (3) 四、截面承载能力复核 (6) 4.1 截面参数计算 (6) 五、截面优化分析 (8) 六、水平支撑计算 (9) 七、螺栓连接强度设计 (10) 7.1计算参数确定 (10) 7.2 弯矩设计值Mmax和剪力设计值Vmax (10)

一、设计、计算总说明 该反力架为广州市地铁21号线11标[水西站~长平站]盾构区间右线盾构机始发用。 反力架外作用荷载即盾构机始发的总推力乘以动荷载效应系数加所有不利因素产生的荷载总和,以1600吨水平推力为设计值。 反力架内力计算采用中国建筑科学研究院开发的PKPM2005版钢结构STS 模块为计算工具。对于螺栓连接、角焊缝连接处的设计,仅仅计算其最大设计弯矩和剪力值,而不作截面形式设计,可根据提供弯矩、剪力设计值来调整截面是否需要做加固处理。 二、计算、截面优化原则 1、以偏向于安全性的原则。所有计算必须满足实际结构受力的情况,必须满足强度、刚度和稳定性的要求。 2、在满足第1项的前提下以更符合经济性指标为修改结构形式、截面参数等的依据。 3、参照以往施工项目的设计经验为指导,借鉴其成熟的结构设计形式,以修改和复核计算为方向进行反力架结构设计。 4、但凡构件连接处除采用螺栓连接外,需要视情况进行必要的角焊缝加固,特殊情况下,可增设支托抗剪、焊钢板抗弯,以保证连接处强度不低于母体强度。 三、结构计算 3.1 反力架布置形式 由两根立柱和两根横梁以及水平支撑组成。立柱与横梁采用高强螺栓连接,为加强整体性一般按照以往施工项目的施工经验另需在连接处焊接,故

运用ANSYS Workbench 快速优化设计

2006年用户年会论文 运用ANSYS Workbench快速优化设计 陈杰 [中国船舶重工集团第七一○研究所,443003] [ 摘要 ] 从易用性和高效性来说AWE下的DesignXplorer/VT模块为优化设计提供了一个几乎完美的方案,CAD模型需改进的设计变量可以传递到AWE环境下,并且在DesignXplorer/VT下设 定好约束条件及设计目标后,可以高度自动化的实现优化设计并返回相关图表。本文将结合实 际应用介绍如何使用Pro/E和ANSYS软件在AWE环境下如何实现快速优化设计过程。 [ 关键词 ] 有限元分析、集成、ANSYS Workbench [Abstract:] DesignXplorer/VT module in AWE provides an user-friendly and highly efficient method to optimize the design. Design variables in CAD models can be directly handled in AWE. After goals in DesignXplorer/VT are defined by user, the optimization can be completed automatically and relevant data and charts can be delivered to user. This paper introduce how to use Pro/E and ANSYS in AWE to achieve rapid design optimization by a practical case. 1前言 ANSYS系列软件是融合结构、热、流体、电磁、声于一体的大型通用多物理场有限元分析软件,在我国广泛应用于航空航天、船舶、汽车、土木工程、机械制造等行业。ANSYS Workbench Environment(AWE)是ANSYS公司开发的新一代前后处理环境,并且定为于一个CAE协同平台,该环境提供了与CAD软件及设计流程高度的集成性,并且新版本增加了ANSYS很多软件模块并实现了很多常用功能,使产品开发中能快速应用CAE技术进行分析,从而减少产品设计周期、提高产品附加价值。 现今,对于一个制造商,产品质量关乎声誉、产品利润关乎发展,所以优化设计在产品开发中越来越受重视,并且方法手段也越来越多。从易用性和高效性来说AWE下的 DesignXplorer/VT模块为优化设计提供了一个几乎完美的方案,CAD模型需改进的设计变量可以传递到AWE环境下,并且在DesignXplorer/VT下设定好约束条件及设计目标后,可以高度自动化的实现优化设计并返回相关图表,本文将结合实际应用介绍如何使用Pro/E 和ANSYS软件在AWE环境下如何实现快速优化设计过程。

运用ANSYS Workbench快速优化设计

运用ANSYS Workbench快速优化设计 摘要:从易用性和高效性来说AWE下的DesignXplorer/VT模块为优化设计提供了一个几乎完美的方案,CAD模型需改进的设计变量可以传递到AWE环境下,并且在DesignXplorer/VT下设定好约束条件及设计目标后,可以高度自动化的实现优化设计并返回相关图表。本文将结合实际应用介绍如何使用Pro/E和ANSYS软件在AWE环境下如何实现快速优化设计过程。 关键词:有限元分析、集成、ANSYS Workbench 1 前言 ANSYS系列软件是融合结构、热、流体、电磁、声于一体的大型通用多物理场有限元分析软件,在我国广泛应用于航空航天、船舶、汽车、土木工程、机械制造等行业。ANSYS Workbench Environment(AWE)是ANSYS公司开发的新一代前后处理环境,并且定为于一个CAE协同平台,该环境提供了与CAD软件及设计流程高度的集成性,并且新版本增加了ANSYS很多软件模块并实现了很多常用功能,使产品开发中能快速应用CAE技术进行分析,从而减少产品设计周期、提高产品附加价值。 现今,对于一个制造商,产品质量关乎声誉、产品利润关乎发展,所以优化设计在产品开发中越来越受重视,并且方法手段也越来越多。从易用性和高效性来说AWE下的DesignXplorer/VT模块为优化设计提供了一个几乎完美的方案,CAD模型需改进的设计变量可以传递到AWE环境下,并且在DesignXplorer/VT下设定好约束条件及设计目标后,可以高度自动化的实现优化设计并返回相关图表,本文将结合实际应用介绍如何使用Pro/E 和ANSYS软件在AWE环境下如何实现快速优化设计过程。 2 优化方法与CAE 在保证产品达到某些性能目标并满足一定约束条件的前提下,通过改变某些允许改变的设计变量,使产品的指标或性能达到最期望的目标,就是优化方法。例如,在保证结构刚强度满足要求的前提下,通过改变某些设计变量,使结构的重量最轻最合理,这不但使得结构耗材上得到了节省,在运输安装方面也提供了方便,降低运输成本。再如改变电器设备各发热部件的安装位置,使设备箱体内部温度峰值降到最低,是一个典型的自然对流散热问题的优化实例。在实际设计与生产中,类似这样的实例不胜枚举。 优化作为一种数学方法,通常是利用对解析函数求极值的方法来达到寻求最优值的目的。基于数值分析技术的CAE方法,显然不可能对我们的目标得到一个解析函数,CAE计算所求得的结果只是一个数值。然而,样条插值技术又使CAE中的优化成为可能,多个数值点可

始发架反力架基座结构受力计算书

始发架、结构受力检算书编制: 审核: 审批: 1

附件8 始发基座结构承载能力计算书 始发基座结构受力检算书 一、设计资料 始发架主受力结构为纵梁、横梁、并与连接杆焊接成一个整体,形成整体受力结构,盾构作用在轨道梁上,通过轨道传力到底座上,最后传递到始发架井底地基,轨道梁和支架采用螺栓、焊接形式连接,其结构图如下: 支承架主视图 支承架侧视图 二、受力分析 2.1如上图所示,盾身重力荷载作用在轨道上,通过支架传递到底座基础,斜纵梁是受力主体,横梁把荷载传递到基础。 2.2受力验算 盾构总重G=377t 其中:盾构刀盘重量G1=60t 长度L1=1.645m 前盾总成重量G2=

110t L2=2.927m 中盾重量G3=110t 长度L3=3.63m,盾尾重量G4=35t,长度L4=4.045m, 由上面盾构节段位置的重量和长度,可知结构最不利位置在前盾总成,因此只需检算盾构前盾总成下方的支承架是否满足受力要求即可。 取荷载分项系数取 1.2,动载系数取 1.25,则盾构前盾总成下方每根钢轨荷载为:P=1.2x1.25x1100/(2x2.927)=281.86kN/m, 假设钢轨荷载均匀分布传递到支承架纵梁,则纵梁荷载q=281.86kN/m; 取支架单元支架计算: 纵梁受力检算: 按简支梁计算 Mmax=ql2/8=281.86× 0.892 /8=27.91kN/m max max 6 27910 48.1579.810x M Mpa W -σ= ==? 满足刚度要求 2.3底横梁检算: F =P ×cos62.32°=130.94t,平均分配到4根横梁上,则每根横梁拉力T1=32.74t T=2T1=65.48 465480062.56[]181104.6710F Mpa Mpa A -σ= ==σ=? 满足受力要求 2.4支架横梁中连接螺栓计算:

Ansys在复合材料结构优化设计中的应用_图文(精)

A一13玻璃钢学会第十六届玻璃钢/复合材料学术年会论文集2006年 Amys在复合材料结构优化设计中的应用 覃海艺,邓京兰 (武汉理工大学材料科学与工程学院,武汉430070 摘要:优化设计方法在复合材料结构设计中起着十分重要的作用。本文详细介绍了Ansys两种优化设计方法.目标函数最优设计和拓扑优化设计的过程,并运用目标函数最优设计方法对复合材料夹层结构进行了最优结构层合设计和运用拓扑优化设计方'法对玻璃钢圆凳进行了最佳形状设计。结果证明Ansys优化设计方法在复合材料结构设计中的有效性。 关键词:Ansys;优化设计方法;目标函数最优设计;拓扑优化设计;复合材料 l前言 复合材料是由两种或多种性质不同的材料组成,具有比强度、比刚度高、耐疲劳性能好及材料与性能可设计强等特点,广泛应用于汽车、建筑、航空、卫生等领域。复合材料通过各相组分性能的互补和关联获得优异的性能,因此复合材料各组分之间及材料整体结构的合理布置,充分发挥复合材料的性能已成为设计的关键所在…。Ansys软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。优化设计是一种寻找确定最优设计方案的技术,Ansys强大的优化设计功能已广泛地应用于复合材料制品的结构设计心J。 2Ansys中的优化设计方法【3娟j 2.1目标函数最优设计 “最优设计”是指满足所有的设计要求,而且所需(如重量、面积、体积、应力、费用等的方案最小,即目标函数值最小。也就是说,最优设计方案是一个最有效率的方案。在Ansys中设计方案的任何方面都是可以优化的,如尺寸(如厚度、形状(如过

渡圆角的大小、支撑位置、制造费用、自然频率、材料特性等。实际上,所有可以参数化的Ansys选项都可以作优化设计。目标函数最优设计是通过改变设计变量(自变量的数值,使状态变量(设计变量的函数,因变量在满足一定条件时,目标函数(因设计变量的改变而有所改变的值最小。 目标函数最优设计的一般步骤为①生成循环所用的分析文件,该文件须包括整个分析的过程,并满足以下条件:参数化建立模型(PREIy7,对模型进行初次求解(SOLUTION,对初次求解的结果提取并指定状态变量和目标函数(POSTl/POST26;②在Ansys数据库里建立与分析文件中变量相对应的参数,这一步是标准的做法,但不是必须的(BEGIN或OPT;③进入OPT优化处理器,指定要进行优化设计循环的分析文件(oPT;④声明优化变量:指定哪些参数是设计变量,哪些参数是状态变量,哪个参数是目标函数;⑤选择优化工具或优化算法:优化算法是使单个函数(目标函数在控制条件下达到最小值的传统算法,包括零阶算法和一阶算法;⑥指定优化循环控制方式,每种优化方法和工具都有相应的循环控制参数,比如最大迭代次数等;⑦进行优化分析;⑧查看设计序列结果(OPT和后处理(POSTl/POST26。 2.2拓扑优化设计 拓扑优化是指形状优化,有时也称为外型优化。拓扑优化的目标是寻找承受单载荷或多作者简介:覃海艺(1980?,男,在读硕士。 49 载荷的物体的最佳材料分配方案。与目标函数最优设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量是程序内部预定义好的。用户只需给出结构的参数(材料特性、模型、载荷等和要省去的材料百分比,即可通过优化计算得到结构的最佳外形设计。拓扑优化的目标是在满足结构约束的情况下减少结构的变形能,从而提高结构的刚度,所以在优化中表现为“最大刚度”设计。

始发架反力架基座结构受力计算书

. . 始发架、结构受力检算书编制: 审核: 审批:

附件8 始发基座结构承载能力计算书 始发基座结构受力检算书 一、设计资料 始发架主受力结构为纵梁、横梁、并与连接杆焊接成一个整体,形成整体受力结构,盾构作用在轨道梁上,通过轨道传力到底座上,最后传递到始发架井底地基,轨道梁和支架采用螺栓、焊接形式连接,其结构图如下: 支承架主视图 支承架侧视图 二、受力分析 2.1如上图所示,盾身重力荷载作用在轨道上,通过支架传递到底座基础,斜纵梁是受力主体,横梁把荷载传递到基础。 2.2受力验算

盾构总重G=377t 其中:盾构刀盘重量G1=60t 长度L1=1.645m 前盾总成重量G2=110t L2=2.927m 中盾重量G3=110t 长度L3=3.63m,盾尾重量G4=35t,长度L4=4.045m, 由上面盾构节段位置的重量和长度,可知结构最不利位置在前盾总成,因此只需检算盾构前盾总成下方的支承架是否满足受力要求即可。 取荷载分项系数取 1.2,动载系数取 1.25,则盾构前盾总成下方每根钢轨荷载为:P=1.2x1.25x1100/(2x2.927)=281.86kN/m, 假设钢轨荷载均匀分布传递到支承架纵梁,则纵梁荷载q=281.86kN/m; 取支架单元支架计算: 纵梁受力检算: 按简支梁计算 Mmax=ql2/8=281.86× 0.892 /8=27.91kN/m max max 6 27910 48.1579.810x M Mpa W -σ= ==? 满足刚度要求 2.3底横梁检算: F =P ×cos62.32°=130.94t,平均分配到4根横梁上,则每根横梁拉力T1=32.74t T=2T1=65.48 465480062.56[]181104.6710F Mpa Mpa A -σ= ==σ=?

运用ansysworkbench快速优化设计

运用A N S Y S W o r k b e n c h快速优化 设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

运用ANSYS Workbench快速优化设计 编辑条目 12.15 60次 1人 1个 [字号:大中小] [我来说两句 (0) ] 摘要:从易用性和高效性来说AWE下的DesignXplorer/VT模块为优化设计提供了一个几乎完美的方案,CAD模型需改进的设计变量可以传递到AWE环境下,并且在DesignXplorer/VT下设定好约束条件及设计目标后,可以高度自动化的实现优化设计并返回相关图表。本文将结合实际应用介绍如何使用 Pro/E和ANSYS软件在AWE环境下如何实现快速优化设计过程。 关键词:有限元分析、集成、ANSYS Workbench 1 前言 ANSYS系列软件是融合结构、热、流体、电磁、声于一体的大型通用多物理场有限元分析软件,在我国广泛应用于航空航天、船舶、汽车、土木工程、机械制造等行业。ANSYS Workbench Environment(AWE)是ANSYS 公司开发的新一代前后处理环境,并且定为于一个CAE协同平台,该环境提供了与CAD软件及设计流程高度的集成性,并且新版本增加了ANSYS很多软件模块并实现了很多常用功能,使产品开发中能快速应用CAE技术进行分析,从而减少产品设计周期、提高产品附加价值。 现今,对于一个制造商,产品质量关乎声誉、产品利润关乎发展,所以优化设计在产品开发中越来越受重视,并且方法手段也越来越多。从易用性和高效性来说AWE下的DesignXplorer/VT模块为优化设计提供了一个几乎完美的

基于Ansys的框架结构优化设计

基于Ansys的框架结构优化设计 摘要:在实际工程问题中,经常遇到各种框架结构的优化问题,大多基于Ansys分析软件求解已知载荷、稳定条件下的框架结果最小体积,即最小质量以减少施工材料控制最优成本。本文通过对一常见的矩形截面的四边框架结构进行优化设计分析,提高了对Ansys分析软件的运用能力,加深了对起运行机制的认识,为以后熟练地运用该软件打下基础。 关键词:框架结构矩形截面优化设计Ansys软件 1.工程背景 框架结构由于具有自重轻、造价较低和施工简单等诸多优点,在包括大型工业厂房在内的工程领域得到了广泛的应用[1].随着对设计质量要求的不断提高,人们一直在探索如何在保证框架结构安全的前提下,减少材料用量,降低成本,以满足经济性的要求。 框架结构的优化设计思想从MICHELL[2]框架理论的出现至今已有近百年历史,BENDSOE等[3]提出的多工况拓扑优化方法标志着对优化设训一研究进入了新的阶段。国内学者也在该领域进行了大量的研究,如隋允康等对框架结构离散变量的优化问题进行了研究,通过函数变换找到了满应力的映射解,并结合框架拓扑优化特点提出了ICM(独立、连续、映射)方法[4]。随着计算机技术的发展,人们开始利用ANSYS等软件对工程结构进行有限元分桁和优化设计。APDL是ANSYS参数化设计语言,它是一种通过参数化变量方式建立分桁模型的脚本语言[5-6], ANSYS提供了两种优化方法即零阶方法和一阶方法。除此之外,用户还可以利用自己开发的优化算法替代ANSYS本身的优化方法进行优化设计。本文利用APDL优化设计模块编制用户程序,对一个实际框架进行了结构优化。结果表明运用ANSYS进行框架结构优化设训一可以有效提高设计质量,具有广泛的运用前景。 2.框架结构模型假设 在工程应用中,实际的析架结构形式和各杆件之间的联结以及所用的材料是

反力架、托架计算

附件2 反力架验算 反力架与结构间用双拼56b工字钢管撑,支撑布置见下图。 反力架支撑受力验算 实际始发掘进正常推力一般不超过1000t,且加设钢环对应力起均衡作用,考虑不均匀受力和安全系数,总推力按3000t计算。四个集中力P按3000t平均分配计算,四个集中受力范围内P按3000t平均分配计算,管片承受总推力为3000t,集中受力点平均分配得750t。反力架本身刚度可达到要求,不会因推力而变形考虑,若图中所示四个受力区域可满足推力要求,则反力架支撑稳定,先计算四个角的钢支撑受力面积。左侧立柱为斜支撑受力最不利,按750t平均分配

到4个支撑点,每点受力为188t ,其中双拼工字钢截面面积为29327mm 2: 斜支撑受力最为不利,若此区域可满足最不利受力条件,则反力架稳定,按最不利受力状态,平均分配计算,每个角支撑所受压力为750t,双拼工字钢受力为188t ;双拼工字钢应力为188t/29327mm 2cos38°=50.5N/mm 2, 钢材设计强度为235N/mm 2,故支撑可满足盾构始发要求,即反力架稳定。 附件3 始发基座验算 (1)计算简图: 12 34 盾构托架使用250x255H 型钢制作,共13道横向支撑,上图为一道横向支撑的半侧,主要受力梁为2号与4号梁。 盾构机按照374t 计算,由受力分析可得发射架每边承受总力: ?=? 27sin 125 sin 374 1G ,得t 278.207G 1= 发射架共13道横向支撑,共12个区间,每个区间受力: KN 73.172 /1278.2072G ==, 最后力传递至横向支撑,由13个支撑承受,得水平力: KN F 39.7263cos 13 78 .2072=??= (2)2号梁计算: 按照图纸取每个区间支撑钢板0.89m 支撑钢板截面积为:2 4m 102670.03.890 A -?=?=,2号梁长0.567m L =。

ANSYS优化设计揭密(适合初学者)

ANSYS优化揭密 引子 时下ANSYS高手颇多,但还有很多FEA战友对ANSYS的优化过程用之不熟,这里抛砖引玉,写下自己对ANSYS优化模块的使用心得,不当之处敬请指正。 deform@smth Aug. 14,2002 1.认识ANSYS优化模块 1.1 什么时候我需要它的帮忙? 什么是ANSYS优化?我想说明一个例子要比我在这里对你絮叨半天容易理解的多。 注意过普通的水杯吗?底面圆圆的,上面加盖的哪一种。仔细观察一下,你会发现比较老式的此类水杯有一个共同特点:底面直径=水杯高度。 图1 水杯的简化模型 为什么是这样呢?偷偷的告诉你:因为只有满足这个条件,才能在原料耗费最少的情况下使杯子的容积最大。可不是,在材料一定的情况下,如果水杯的底面积大,其高度必然就要小;如果高度变大了,底面积又大不了,如何调和这两者之间的矛盾?其实这恰恰就反应了一个完整的优化过程。 在这里,一个水杯的材料是一定的,所要优化的变量就是杯子底面的半径r 和杯子的高度h,在ANSYS的优化模块里面把这些需要优化的变量叫做设计变量(DV);优化的目标是要使整个水杯的容积最大,这个目标在ANSYS的优化过程里叫目标函数(OBJ);再者,对设计变量的优化有一定的限制条件,比如说整个杯子的材料不变,这些限制条件在ANSYS的优化模块中用状态变量(SV)来控制。

闲话少说,下面我们就来看看ANSYS中怎么通过设定DV、SV、OBJ,利用优化模块求解以上问题。 首先参数化的建立一个分析文件(我假设叫volu.inp),水杯初始半径为R =1,高度为H=1(DV),由于水杯材料直接喝水杯的表面积有关系,这里我假设水杯表面积不能大于100,这样就有S=2πRH+2πR2<100(SV),水杯的容积为V=πR2H (OBJ)。 File:volu.inp R=1 H=1 S=2*3.14*R*H+2*3.14*R*R V=10000/(3.14*R*R*H) 然后再建一个优化分析文件(我假设叫optvolu.inp),设定优化变量,并求解。 File:optvolu.inp /clear,nostart /input,volu,inp /opt opanl,volu,inp opvar,R,dv,1,10,1e-2 opvar,H,dv,1,10,1e-2 opvar,S,sv,,100,1e-2 opvar,V,obj,,,1e-2

反力架计算书-附件(修改)

要说明 、工程说明 盾构机始发时盾构推力一般不大于8000kN。 反力架总受力取最大推力为15000 kN; 左、右线两台盾构机推力均按相同考虑。 二、反力架结构验算 本区间所采用的反力架立柱和横梁为宽度为600mm长度为 1000mm厚度为20mn1的Q235钢板焊接成受力箱梁形式板,反力架支撑采用500*600,厚度20mm的Q235钢板焊接,底部采用焊接形式,焊缝高度20mm 按图纸建模,考虑到反力架中各杆件都是钢板焊接成的箱室单元,可按梁单元进行计算。

反力架支撑结构图 1、强度验算 把反力架圆环分成三个部分,上钢环,中钢环和下钢环,受到盾构力的反力上钢环15%中钢环40%下钢环45%考虑,不考虑上端与下端的支撑。采用midas civil 建模如下图。

荷载如果按规范,把压力看成动载,和自重进行组合,压力按照1500T 验算。 强度上:N= 1.2*G+1.4*P 刚度上:F = G+P 计算结果 最大应力在176Mpa 左右,满足要求。 . i-76410c+00 5 L44377e+€D5 —-a.03105s +004 ——4.B27S0# +004 ——1.52450e +0D 斗 □ ,00000e *000 4.732D9e ―-7.385365+004 -1.1 LBS -i-OO 5 -1.75953&+O0S CB:霉雙 MAX 1 1 MITJ ! 49 壬牟T 廊樣壬录1 ~ 单扫khl/m r Z; 口,二 ES 2、最大变形验算 最大变形在上部4.2mm 左右。这是不考虑上部支撑与下部支撑, 且力进行了组合,而且强度上是压力的1.4倍计算的结果,如果加上 支撑,按实际力进行计算,变形及应力要小很多,完全满足要求。 MIDAS^ivil POSTPROCESSOR SEAM STRESS

反力架受力计算

反力架受力计算 反力架的结构形式 1、反力架的结构形式如图一所示 图一反力架结构图 2、各部件结构介绍 2.1立柱:立柱为箱体结构,主受力板为 30mm钢板,筋板为20mm钢板,材质均 为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,具体形式及尺寸见图二。

匚:亠: '、:g § 图二立柱结构图 2.2上横梁:结构为箱体结构,主受力板为30mm钢板,筋板为20mm钢板, 材质均 为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,其结构与立柱相同。 2.3下横梁:箱体结构,主受力板为 30mm,筋板为20mm钢板,材质均为 2.4八字撑:八字撑共有4根,上部八字撑2根,其中心线长度为1979mm, 下部八 字撑2根,其中心线长度为2184mm,截面尺寸如图四所示。

0 701 125 | 125 | 125 丨 125 , 十 匸十5十s 十1 -4 >4-4 4. > 4 700 图四八字程接头结构图 反力架后支撑结构形式 后支撑主要有斜撑和直撑两种形式,按照安装位置分为立柱后支撑、上 横梁后支撑、下横梁后支撑。 1、立柱支撑:材料均采用直径 500mm,壁厚9mm 的钢管,内部浇灌混凝 土提高稳 定性。始发井西侧立柱支撑是2根直撑(中心线长度为3875mm ), 始发井东 侧立柱是2根斜撑(中心线长度分别为8188mm 和4020mm,与 水平夹角分别是29度和17度)。如下图所示 凝土提高稳定性,中心线长度分别为 4080mm 、4141mm 、4201mm ,其 轴线与反力架轴线夹角为15度。 西侧立柱直撑型式 2、上横梁支撑:材料均采用直径 500mm ,壁厚9mm 的钢管,内部浇灌混

ansys的优化设计

第一章优化设计 什么是优化设计? 优化设计是一种寻找确定最优设计方案的技术。所谓“最优设计”,指的是一种方案可以满足所有的设计要求,而且所需的支出(如重量,面积,体积,应力,费用等)最小。也就是说,最优设计方案就是一个最有效率的方案。 设计方案的任何方面都是可以优化的,比如说:尺寸(如厚度),形状(如过渡圆角的大小),支撑位置,制造费用,自然频率,材料特性等。实际上,所有可以参数化的ANSYS选项都可以作优化设计。(关于ANSYS参数,请参看ANSYS Modeling and Meshing Guide 第十四章。) ANSYS程序提供了两种优化的方法,这两种方法可以处理绝大多数的优化问题。零阶方法是一个很完善的处理方法,可以很有效地处理大多数的工程问题。一阶方法基于目标函数对设计变量的敏感程度,因此更加适合于精确的优化分析。 对于这两种方法,ANSYS程序提供了一系列的分析——评估——修正的循环过程。就是对于初始设计进行分析,对分析结果就设计要求进行评估,然后修正设计。这一循环过程重复进行直到所有的设计要求都满足为止。 除了这两种优化方法,ANSYS程序还提供了一系列的优化工具以提高优化过程的效率。例如,随机优化分析的迭代次数是可以指定的。随机计算结果的初始值可以作为优化过程的起点数值。 基本概念 在介绍优化设计过程之前,我们先给出一些基本的定义:设计变量,状态变量,目标函数,合理和不合理的设计,分析文件,迭代,循环,设计序列等。我们看以下一个典型的优化设计问题: 在以下的约束条件下找出如下矩形截面梁的最小重量: ●总应力σ不超过σmax [σ≤σmax] ●梁的变形δ不超过δ max[δ≤δmax] ●梁的高度h不超过h max[h≤h max] 图1-1 梁的优化设计示例 设计变量(DVs)为自变量,优化结果的取得就是通过改变设计变量的数值来实现的。每个设计变量都有上下限,它定义了设计变量的变化范围。在以上的问题里,设计变量很显然为梁的宽度b和高度h。b和h都不可能为负值,因此其下限应为b,h>0,而且,h有上限h max。ANSYS优化程序允许定义不超过60个设计变量。 状态变量(SVs)是约束设计的数值。它们是“因变量”,是设计变量的函数。状态变量可能会有上下限,也可能只有单方面的限制,即只有上限或只有下限。在上述梁问题中,有两个状态变量:σ(总应力)和δ(梁的位移)。在ANSYS 优化程序中用户可以定义不超过100个状态变量。 目标函数是要尽量减小的数值。它必须是设计变量的函数,也就是说,改变设计变量的数值将改变目标函数的数值。在以上的问题中,梁的总重量应该是目标函数。在ANSYS优化程序中,只能设定一个目标函数。 设计变量,状态变量和目标函数总称为优化变量。在ANSYS优化中,这些变量是由用户定义的参数来指定的。用户必须指出在参数集中哪些是设计变量,哪些是状态变量,哪是目标函数。

盾构反力架验算

郑州市轨道交通5号线工程土建施工08标段经开第三大街站~商英街站盾构区间 反力架检算计算书 计算: 复核: 审批: 郑州轨道5号线土建08标项目三分部 2016年3月20日

一、验算依据 1、反力架、托架设计图 2、《材料力学》 3、《建筑施工计算手册》 4、《钢结构设计规范》GB50017-2003 二、结构形式 反力架由两片横向钢梁、两片竖向钢梁、四片斜钢梁组成,钢梁采用Q235钢板焊接而成,钢梁之间采用高强度螺栓连接,钢梁大样见下图。 反力架结构图 设10个支点,其中底部钢梁支撑于车站底板,一侧竖向钢梁支撑于车站侧墙,另一侧竖向钢梁支撑顶部支撑于车站中板,底部支撑于车站底板,中间两个支点采用型钢斜撑于车站底板上的底纵梁,斜撑采用双拼300H型钢。 三、荷载工况 盾构始发总推力取1000t,按照均布荷载进行检算。 四、结构计算 (1)斜钢梁 总荷载为1000t/8=125t

计算长度l=2.237m 惯性矩Ix=0.012m4 截面模数Wx=0.022m3 ix=0.41m 最大面积距S=0.04*0.46*0.23+0.4*0.04*0.48=0.0119m3 按照两端简支进行计算。 最大弯矩Mmax=1/8ql2=1/8lF=1250*2.237/8=349.5kN·m 最大剪力Vmax=1/2ql=625kN 支反力F=625kN 斜钢梁截面 强度检算: M/1.05W=15886kN/m2=15.9MPa

相关文档
相关文档 最新文档