文档库 最新最全的文档下载
当前位置:文档库 › 用Multisim设计调频发射机(发射系统)

用Multisim设计调频发射机(发射系统)

用Multisim设计调频发射机(发射系统)
用Multisim设计调频发射机(发射系统)

用Multisim设计调频发射机

目录

摘要

一.设计要求 (2)

二.设计的作用、目的 (3)

三.设计的具体实现 (3)

1.系统概述 (3)

2.单元电路设计、仿真与分析 (4)

2.1振荡级 (4)

2.1.1调频波的产生...... 错误!未定义书签。

2.1.2振荡电路的选择

2.1.3 参数的计算

2.2缓冲级 (6)

2.2.1 元器件的选择及参数的确定错误!未定义书签。

2.3 功率输出级 (10)

2.3.1 元器件的选择和参数的确定错误!未定义书签。

2.4调频发射机总原理电路图 (10)

四.Multisim的相关介绍

五.心得体会及建议 (12)

六.附录 (13)

七.参考文献 (15)

调频发射机的设计报告

摘要

随着科技的发展和人民生活水平的提高,调频发射机也在快速发展,并且在生活中得到广泛应用,它可以用于演讲、教学、玩具、防盗监控等诸多领域。在生活中,人们通过无线电发射机可以把需要传播出的信息发射出去,接收者可以通过特制的接收机接受信息,最普通的模式是:广播电台通过无线电发射机发射出广播,收听者通过收音机即可接收到电台广播。

本设计为一简单功能的调频发射机,通过该发射机可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要在频率适合时即可收到发射器发送出的无线电信号,并通过扬声器转换出声音。通过这次实验我们可以更好地巩固和加深对小功率调频发射机工作原理和非线性电子线路的进一步理解。学会基本的实验技能,提高运用理论知识解决实际问题的能力。

一.设计要求

设计一个调频发射机,通过该发射机可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要在频率适合时即可收到发射机发送出的无线电信号。

(1).确定电路形式,选择各级电路的静态工作点;

(2).输入信号能够通过电路进行稳定,调频等;

(3).输出为足够大的高频功率,使其能够发射;

(4).根据上述要求选定设计方案,画出该系统的系统框图,写出详细的设计过程并利用Multisim软件画出一套完整的设计电路图;

(5).列出所有的元件清单并写出参考书目。

二.设计的作用、目的

高频电子技术基础的电路课程设计是电子技术基础课程的实践性教学环节,要求学生通过课程设计,要求达到以下目的:

(1).通过对调频发射机的设计,巩固和加深学生对高频电子电路基本知识的理解;

(2). 通过电路方案的分析、论证和比较,计算和对元器件的选取,来达到初步掌握简单实用电路的分析方法和工程设计方法的目的。

(3).使学生掌握Multisim软件的使用方法,以便以后设计电路或进行实践时的使用。

(4).了解与课题有关的电子电路及元器件的工程技术规范,能按设计任务书的要求,完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。

(5). 培养学生根据课题需要选学参考书籍,查阅手册,图表和文献资料的自学能力。通过独立思考,深入研究有关问题,学会自己分析并解决问题的方法。

三.设计的具体实现

图1 直接调频发射机的总体框图

直接调频发射机的总体框图如图1所示。它由调频振荡级,缓冲级,和输出功率级组成。

其中调频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加调制信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

2.单元电路设计与分析

2.1调频振荡级

调频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加调制信号电压调变。 2.1.1调频波的产生

由于调频发射机的频率受到外加调制信号电压调变,因此,回路中的电抗要能够跟调制信号的改变而改变,应用一可变电抗器件,它的电容量或电感量受调制信号控制,将它接入振荡回路中,就能实现调频。而最简便、最常用的方法就

是利用变容二极管的特性直接产生调频波,因要求的频偏不大,故采用变容 二极管部分接入振荡回路的直接调频方式。

变容二极管Cj 通过耦合电容C 1并接在LC N 回路的两端,形成振荡回路总容的一部分。

因而,振荡回路的总电容C 为:

j N C C C += (4-1)

振荡频率为:

)

(21

21j N C C L LC

f +=

=

ππ

加在变容二极管上的反向偏压为:

()()()高频振荡,可忽略调制电压直流反偏O Q R V V υυ++=Ω

变容二极管利用PN 结的结电容制成,在反偏电压作用下呈现一定的结电容(势垒电容),而且这个结电容能灵敏地随着反偏电压在一定范围内变化,其关

系曲线称j C

~R υ曲线,如图所示。

由图可见:未加调制电压时,直流反偏

Q

V 所对应的结电容为

Ω

j C 。当调制信

号为正半周时,变容二极管负极电位升高,即反偏增加时,变容二极管的电容j

C

减小;当调制信号为负半周时,变容二极管负极电位降低,即反偏减小时,j C

大,其变化具有一定的非线性,当调制电压较小时,近似为工作在j C

~R υ曲线

的线性段,j C

将随调制电压线性变化,当调制电压较大时,曲线的非线性不可忽略,它将给

调频带来一定的非线性失真。

我们再回到图4.1—2,并设调制电压很小,工作在Cj ~V R 曲线的线性段,暂不考虑高频电压对变容二极管作用。设 图4.1-3 用调制信号控制变容二极管结电容

t

V V Q Q R Ω+=cos υ

(4-3)

由图4.1—3可见:变容二极管的电容随υR 变化。

即: t C C C m jQ j Ω-=cos (4-4)

可得出此时振荡回路的总电容为

t

C C C C C C m jQ N j N Ω-+=+='cos

(4-5)

由此可得出振荡回路总电容的变化量为:

()t C C C C C C m j jQ N Ω-=?=+-'=?cos

(4-6)

由式可见:它随调制信号的变化规律而变化,式中m C

的是变容二极管结电容变化的最大幅值。我们知道:当回路电容有微量变化C ?时,振荡频率也会产生f ?的变化,其关系如下:

C

C f f ??≈?210

(4-7)

式中,是0f 未调制时的载波频率;0C 是调制信号为零时的回路总电容,显然

jQ

N o C C C +=

(4-8)

由公式(4-2)可计算出中心频率0f :

)

(21

0jQ N C C L f +=

π

(4-9)

将(4-8)式代入(4-9)式,可得:

t f t C C f t f m Ω?=Ω=

?cos cos )/(21

)(00 (4-10)

频偏:

m C C f f )/(21

00=

? (4-11)

振荡频率:

()()t

f f t f f t f o o Ω?+=?+=cos (4-12)

由此可见:振荡频率随调制电压线性变化,从而实现了调频。其频偏f ?与回路

的中心频率f 0成正比,与结电容变化的最大值Cm 成正比,与回路的总电容C 0成反比。

2.1.2振荡电路的选择

振荡电路主要是产生频率稳定且中心频率符合指标要求的正弦波信号。由于是所产生的是固定的中心频率,因而采用频率稳定度较高的克拉拨振荡电路来作振荡级。其电路原理图如图所示。

克拉泼电路的频率稳定度比电容三点式要好,使得不稳定电容的变化对回路总电容的影响减小。 2.1.3参数的计算

根据前面的介绍,可以设计出如图的振荡电路,其中R4用来提供直流交流负反馈。设计中D 1为变容二极管,我们选用910AT 型变容二极管,其容量变化可以从几十PF 到100 ~ 200PF .因此C 7数值接近于C j 的高端值,若假设C 7足够大,接近短路,而C 8也逐渐增大,从几个PF 增加到十几个PF ,此时C Σ增大,则振荡频率减小,同时静态调制特性会发生变化,所以综合以上因素,C 7,C 8的选择对静态

调制特性影响比较显著,所以我们选择C 7为220PF 的电容,C 8选择47PF 的电容.又因为三极管T1应为甲类工作状态,其静态工作点不应设的太高,工作点太高振荡管工作范围易进入饱和区,输出阻抗的降低将使振荡波形严重失真,但工作点太低将不易起振。

由()

7j 807j 8

C C C C C C +C +C +=+

,以及C j 的性质,我们选择C 2为100PF,

C 3为220PF,C 6为220PF.利用R 7,R 8对

D 1变容管加反偏电压, R 7,R 8可选用为27K Ω。R 1,R 2为三极管基极偏置电阻,均选用10K Ω.R 4 ,R 5为负反馈电阻,选择较小的电阻即可,我们选用R 4为12Ω,R 5为1K Ω.

设载波中心频率f=12MHz,由

LC

fosc π21

=

设C 0为C 2,C 3与C 6串联值, 023652pf C C C C =≈,由于910变容二极管在偏置电压6的情况下Cj 较小,大概为十几pf ,先不考虑Cj 的值,所以并接在L 1上的回路总电容为 (

)7j 807j 8

C C C C C 91pf C +C +C ∑+=+≈

所以电感L 1为

()

12

osc 1L 1.93uH C 2f π∑

=

2.2缓冲级

为了使第三级能够达到额定功率必须加大激励即V bm ,因此要求缓冲级有一定的增益,而中心频率是固定的,因此用LC 并联回路作负载的小信号放大器电路。缓冲放大级采用谐振放大,L 2和C 10谐振在振荡载波频率上。若通频带太窄或出现自激则可在L 2两端并联上适当电阻以降低回路Q 值。该极工作于甲类以保证足够的电压放大。

2.2.1 元器件的选择及参数的确定 因为对缓冲级管子的要求是

()r osc f 35f ≥ ()CC BR CEO V 2V ≥

所以可选用普通的小功率高频晶体管,如2N3904等.另外,

bQ eQ BE V V +V =,

I cQ I β

=

若取流过偏置电阻R 9,R 10的电流为 I1=10I bQ

R 10=V bQ /I1, R 8=(Vcc-V bQ )/I1

所以选R 10,R 8均为10K Ω.为了减小缓冲级对振荡级的影响,射随器与振荡级之间采用松耦合,耦合电容C 9可选为180pf. 对于谐振回路C 10,L 2,由MHz LC

fosc 1221==

π

故本次实验取C 10为100PF ,()

1022

osc 1

L 1.76H C 2f u π=

=

所以,缓冲级设计电路为图所示

2.3 功率输出级

为了获得较大的功率增益和较高的集电极功率,设计中采用共发射极电路,同时使其工作在丙类状态,组成丙类谐振功率放大器.由设计电路图知L 3、C 12 和C 13为匹配网络,与外接负载共同组成并谐回路.为了实现功率输出级在丙类工作,基极偏置电压V B3应设置在功率管的截止区.同时为了加强交流反馈,在T 3的发射极串接有小电阻R 14.在输出回路中,从结构简单和调节方便考虑,设计采用л型滤波网络,如图

L 3,C 12,C 13构成π型输出,Q3管工作在丙类状态,调节偏置3管的导通角。导通角越小,效率越高,同时防止T3管产生高频自激而引成回路用来实现阻抗匹配并进行滤波,即将天线阻抗变换为功放管所要求的负载值,并滤除不必要的高次谐波分量。 2.3.1 元器件的选择和参数的确定

在选择功率管时要求

0cm P P ≥

max cm c I i ≥

()CC BR CEO V 2V ≥

()

r osc f 35f ≥

综上可知,我们选择9018功率管.

由于要使功放级工作在丙类,就要使1212130.7cc B BE V R V V v R R =

<=+,

解得1312

8.3R

R >,为了使功放的效率较大,可以减小Q3管的导通角,这里取R 13=11R 12,第二级集

电极的输出电流已经扩大了几十倍,为防止第三级的输入电流过大而烧坏三极管,需要相应的增大第三级的输入电阻。取R 13=220K ,R 12=20K ,改变R 14可调整放大倍数,取较小的反馈电阻有利于提高增益,因为选定

1212139*20

0.7520220

cc B V R V v R R =

==++,所以发射极电压V E 为0.05V ,因此R 14可选为100Ω。

由于L

R L Qe 3

?=ω ,

osc f f ==

且1213

1213

t C C C C C ?=

+ ,一般取 Qe = 8~

10

所以 ()321213

1213

1

L C C

2f C +C π=

??? ???

解得:L3=1.06μH 计算得,C 13=680PF ,C 12=220PF.功放级的电路设计如图所示。

2.4调频发射机总原理电路图

其中,C

14,C

16

为滤波电容,选C

14

为0.1μF,C

16

为100μF。C

1

为基极高频旁路

电容,R

1,R

2

为Q1管的偏置电阻。采用分压式偏置电路既有利于工作点稳定,且

振荡建立后有利于振荡幅度的稳定。调节C

7/C

8

可使调频线性良好。R

7

,R

8

为变容

二极管提供直流偏置。调制音频信号经C

17

,LC加到变容二极管改变振荡频率实现

调频。振荡电压经电容C

9

耦合加至Q2缓冲放大级。

Q2缓冲放大级采用谐振放大,L3和C13谐振在振荡载波频率上。若通频带太窄或出现自激则可在L3两端并联上适当电阻以降低回路Q值。该级工作于甲类以保证足够的电压放大。

Q3管工作在丙类状态,有较高的效率同时防止Q3管产生高频自激而引起的

二次击穿损坏。调节偏置电阻可改变Q3管的导通角。L

4, C

15

和C

16

构成π型输出

回路用来实现阻抗匹配并进行滤波,即将天线阻抗变换为功放管所要求的负载值,并滤除不必要的高次谐波分量。

鉴别一台调频广播发射机是否是数字化的最有效办法是看其电路原理,目前市场上调频发射机存在如下三种电路原理的调频发射机:

1、模拟调频发射机:只能接收模拟音频信号,音频信号放大、限幅及立体声编码都是模拟的;特别是采用VCO(压控震荡器)+PLL(锁相环)产生调频载频信号,调制的过程当然也是采用模拟复合音频信号对VCO的变容二极管进行直接调制。这种电路就是典型的模拟调频发射机,但可能有LED或LCD数字显示发射机的工作频率,但其全过程都是模拟的。

这种模式简称“VCO+PLL”。

2、半数字化调频发射机:可以接收数字音频信号(AES/EBU)或模拟音频信号、音频信号处理、立体声编码由DSP(数字信号处理器)来完成,立体声复合信号经D/A转换器转换为模拟立体声复合信号、该信号对VCO进行调频调制。由此可见,在产生立体声复合信号之前是数字化的,之后与模拟调频发射机无异。简称“DSP+PLL”。

3、数字调频发射机:从音频到射频全过程的数字化的调频广播发射机,它运用了软件无线电技术来实现调频广播发射机。它接收数字音频信号(AES/EBU)或模拟音频信号(送入A/D)、音频信号处理、立体声编码均由DSP(数字信号处理器)来完成,而调频调制过程 DSP控制DDS(直接数字频率合成器)来完成,实现了调制过程的数字化。离散的数字调频波经D/A转换后生产常规调频波供射频放大器放大到指定功率。简称“DSP+DDS”。

数字调频广播发射机有哪些技术优势?

数字调频发射机与模拟调频广播发射机相比具有如下突出的优势:

1、改善了音质:由于采用全过程的数字化处理,调频广播的音质可达到接近CD的水平;

2、提高了发射机可靠性:由于采用大规模集成电路作为主要元件(原件数量少,集成电路自身的可靠性极高),取代了模拟调频发射机的大量分立元件和小规模集成电路,是整机可靠性极大地提高;

3、发射机的功能柔性大:由于采用了软件无线电技术,所以在保持发射机硬件不变得情况下、只要装入不同的软件就可以生产出不同功能的调频发射机,这特别有利于厂家生产组织、也有利于发射机的升级改造;

4、可实现准确的远程监控和故障诊断:由于所有原来由硬件实现的功能都已软件化,所以不仅在发射机的LCD显示屏上可以观察到许多模拟发射机不可能观察的内部状态,而且可将这些状态通过通讯接口(RS232/RS485/CAN/TCPIP)在远程进行监控和故障诊断。

5、可实现双路音频输入自动切换功能:在某些对系统可靠性要求较高的场合,可将数字音频和模拟音频同时输入到数字调频发射机,在其内部可实现以数字音频输入为主的自动音频切换功能,可省去外部的音频应急切换器。

数字调频发射机在国内是一项具有自主知识产权的专利技术。

四.心得体会及建议

经过三周的高频电子课程设计,我不仅学到了很多在课本上学不到的知识,也体会到了实践的重要性。此次课设中,再次用到了Multisim这个软件,由于较少使用,使用起来还不熟练,于是我特地在图书馆借阅了有关于介绍Multisim 的软件的书,加深自己对其的了解和掌握。

通过此次的课程设计,也让我进一步巩固和掌握所学的基础知识,加深了对高频电路的理解和对元器件的使用。本次实践我从理解它的相关原理,到动手实践画其电路图并在Multisim上仿真出来,再到最后的数据处理及实践报告的撰写,都是我学到了很多。它让我能够在实践中运用自己学过的知识,并努力探索,解决在实践中遇到的问题。

在此次的课题研究中提高我的动手能力、创新意识及锻炼思维活动。课程设计使我们可以将抽象的理论知识与实际电路设计联系在一起,掌握初步的电路设计方法。在掌握了模拟电路设计方法的同时也加深了对课程知识的理解和综合的运用,培养了综合运用理论知识以及专业技能上的提升。

但是,理论知识的不足在这次学习中很明显的体现出来。这样也好,可以有助于我今后的学习,端正自己的态度,知道了要以书本上的知识为主,实践动手能力为辅,并且把实践与理论结合起来。

总之,此次的社会实践让我知道做事要有耐心,要持之以恒,只有这样,才

能把一件事做好,当然,最重要的,是要有一颗热爱学习的心五.附录

六.参考文献

1.叶瑜周剑玲主编·《高频电路》·中国矿业大学出版社·2008年11月

2.王连英主编·《基于Multisim 10 的电子仿真实验与设计》·北京邮电大学出版社·2009年8月

3.薛鹏骞梁秀荣等主编·《电子设计自动化技术设计实用教程》·2007年2月

4.崔建明陈惠英温卫中主编·《电路与电子技术的Multisim 10.0 仿真》·中国水利水电出版社·2009年11月

5.杨欣王玉凤编著·《电路设计与仿真》·清华大学出版社·2006年4月

6.黄智伟编著·《全国大学生电子设计竞赛系统设计》·北京航空航天大学出版社·2006年12月

7.石伟平徐国庆编著·《模拟电子器件与应用》·华东师范大学出版社·2008年

8.高吉祥主编·《电子技术基础实验与课程设计》·电子工业出版社·2005年2月

9.刘修文等编·《新编电子控制电路300例》·机械工业出版社·2006年4月

调频发射机设计

惠州学院 HUIZHOU UNIVERSITY 高频电子线路课程设计 设计题目调频发射机 系别 专业 班级 姓名 学号

一、设计题目:调频发射机的设计 二、设计的技术指标与要求: 1工作电压:Vcc =+12V ; (天线)负载电阻:R L =51欧; 3发射功率:Po ≥500mW ; 4工作中心频率:f 0=5MHz ; 5最大频偏:kHz f m 10=?; 6总效率:%50≥A η; 7频率稳定度:小时/10/4 00 -≤?f f ; 8调制灵敏度S F ≥30KH Z /V ; 三、设计目的: 设计一个采用直接调频方式实现的工作电压为12V 、输出功率在500mW 以上、工作频率为5MHz 的无线调频发射机,可用于语音信号的无线传输、对讲机中的发射电路等。 四、设计框图与分析: (一)总设计方框图 与调幅电路相比,调幅系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用。 (二)实用发射电路方框图 ( 实际功率激励输入功率为 1.56mW) 变容二极管直接调频电路 调制信号 调频信号 载波信号 图3-1 变容二极管直接调频电路组成方框图

拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。 由于本题要求的发射功率P o 不大,工作中心频率f 0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,设组成框图如图3-2所示,各组成部分的作用是: (1)LC 调频振荡器:产生频率f 0=5MHz 的高频振荡信号,变容二极管线性调频,最大频偏kHz f m 10=?,整个发射机的频率稳定度由该级决定。 (2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。整机设计时,为减小级间相互影响,通常在中间插入缓冲隔离级。缓冲隔离级电路常采用射极跟随器电路。 (3)功率激励级:为末级功放提供激励功率。如果发射功率不大,且振荡级的输出能够满足末级功放的输入要求,功率激励级可以省去。 (4)末级功放 将前级送来的信号进行功率放大,使负载(天线)上获得满足要求的发射功率。若整机效率要求不高如%50≥A η而对波形失真要求较小时,可以采用甲类功率放大器。但是本题要求 %50≥A η,故选用丙类功率放大器较好。 五、设计原理图: 1 考虑到频率稳定度的因素,调频电路采用克拉泼振荡器和变容二极管直接调频电路。电路的工作原理是:利用调制信号控制变容二极

发射机课程设计--调频发射机设计

发射机课程设计--调频发射机设计

高频课程设计 课程:高频课程设计 课题:调频发射机设计专业:电子信息类 班级: 座号: 姓名: 指导老师:

目录 摘要 (1) 一、设计题目 (2) 1.1 进程安排 (3) 1.2 设计内容 (3) 二、调频发射机原理及方案选择 (3) 2.1 FM调频原理 (3) 2.2.系统框图 (5) 2.3调频方案选择 (5) 三、设计步骤和调试过程 (6) 3.1总体设计电路 (6) 3.2电路工作状态说明 (7) 3.3发射机的主要技术指标 (7) 四、模块说明 (9) 4.1 音频输入模块 (9) 4.2 振荡模块 (9) 4.3音频放大模块 (10) 4.4 放大和发射模块 (11) 五、设计电路的性能评测 (12) 六、结论及心得体会 (13) 七、参考资料 (14) 附件1:调频发射机电路原理图 (14) 附件2:调频发射机发射机PCB图 (14) 附件3:元器件清单 (15)

摘要 调频发射机作为一种简单的通信工具,由于它不需要中转站和地面交换机站支持,就可以进行有效的移动通信,因此深受人们的欢迎。目前它广泛的用于生产、保安、野外工极管完成语音信号对载波信号的频率调制,并通过LC并联谐振网络选出三倍频信号;最终利用两级功率放大,使已调制信号功率大大提高,经过串联滤波网络滤除高次谐波,最程等领域的小范围移动通信工程中。本课题重点在于设计能给发射机电路提供稳定频率的振荡调制电路。课题首先用两级电压并联负反馈放大电路,适当放大语音信号,以配合调制级工作;然后用石英晶体构成振荡电路为发射机提供稳定的基准频率载波,接着通过变容二后通过拉杆天线发射出去。通过后续的电路仿真和部分电路的调试,可以证明本课题的电路基本成熟,基本能完成语音信号的电压放大、频率调制和功率放大,达到发射距离的要求。发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。通常,发射机包括三个部分:高频部分,低频部分,和电源部分。高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。主振器的作用是产生频率稳定的载波。为了提高频率稳定性,主振级往往采用石英晶体振荡器,并在它后面加上缓冲级,以削弱后级对主振器的影响。低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。因此,末级低频功率放大级也叫调制器。调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。所以末级高频功率放大级则成为受调放大器摘要。无线电技术诞生以来,信息传输和信息处理始终是其主要任务。要将无线电信号有效地发射出去,天线的尺寸必须和电信号的波长为同一数量级,为了有效地进行传输。必须将携带信息的低频电信号调制到几十MHz至几百MHz以上的高频振荡信号上,再经天线发送出去,调频是信号发射必不可少的一个环节。 低频小功率调频发射机是将待传送的音频信号通过一定的方式调制到高频载波信号上,放大到额定的功率,然后利用天线以电磁波的方式发射出去,覆盖一定的范围。随着器件技术的发展,调频发射机的体积越来越趋于微型化,工作

1W调频立体声发射机电路

1W调频立体声发射机电路 相关元件PDF下载: NE5532NJM20350C2787C2026C2538 本文介绍的1W调频立体声发射电路由音频调制单元电路和已调波射频放大单元电路两大部 分组成。音频调制单元电路用了两片IC,调试工作变得极其简单。已调波射频放大电路的主振级采用晶休稳频,相位调制电路又处在本振电路之后,因此本机的频率稳定度极高。倍频级的LC选频谐振回路采用通频带宽、矩形系数小、相频特殊性好的双调谐选频回路,对谐振频率以外杂散无用的谐波有巨大的抑制作用。末级功放输出端所接的多节带通、低通滤波器使无线发射出去的电波更加纯净单一,即使近在咫尺工作的电视也不会受到干扰。是一款适合无线电通信爱好者仿制的高性能发射电路。 电路如图所示。音频调制电路的双前置放大器IC1使用质优价谦的靓声运放NE5532。立休声信号合成电路IC2使用NJM2035D。来扑克动圈话筒或CD机的高保真音频信号分别从L、R端输入,经W1、W2同轴电位器控制输入信号的电压幅度后送入IC1进行高保真放大。IC2有○1脚、○14脚为立休声音频信号输入端,经此IC内部功能电路的一系列处理后从○9脚输出合成的立休声信号。此信号与○8脚输出的19KHZ导频信号叠加经W3选择适量的信号分量后送至射频电路的相位调级。 发射电路的主振级由晶体V1、晶体JX2等元件组成。振荡频率FO=15.3MHAZ。V2是缓冲放大级,其输出的信号经T1耦合至相位调制级,待音频信号对其进行调制。变容二极管D2、电感T2、电阻R24、R25、R26组成桥式相位调制器。R24、R25、R26分别为桥式相位调制器的三个桥臂,第四桥臂由T2、D2组成。音频调制信号经C20、R18加至第四桥臂。调相产生的调频信号经C30送至V3、V4缓冲放大后经T3、C34、C35、T4、C36、C37组成的

高频课程设计---调频(FM)发射机的设计

高频课程设计论文题目:高频(FM)发射机的设计 系别:电子信息与电气工程系 专业:通信工程

摘要:作为通信系统的重要组成部分,无线电技术越来越重要。本文研制一种调频发射机,介绍了调频发射机的制作方法及其工作原理,同时给出了系统的组成框图及系统各部分功能,设计了PCB电路板,并且对所设计的发射机的功能进行了安装与调试。本文中的发射机发射的频率可在66-109MHz频段内进行调制,并可用普通的调频收音机接收。 关键词:小功率调频发射机音频信号调制波载波

目录 1设计课题 2实践目的 3设计要求 4基本原理 4.1 系统方案选择 4.2 整体系统描述 4.3 单元电路设计 4.3.1 音频放大电路 4.3.2 高频振荡电路 4.3.3 高频功率放大电路 5系统调试 5.1 PCB板的设计 5.2 系统调式 6结论 7参考文献 8附录

1设计课题 调频发射机设计 2实践目的 无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等必不可少的设备。本次设计要求达到以下目的: 1.进一步认识射频发射与接收系统; 2.掌握调频无线电发射机的设计; 3.学习无线电通信系统的设计与调试。 3设计要求 1.发射机采用FM的调制方式; 2.发射频率覆盖范围为88-108MHz,传输距离大于10m; 3.为了加深对调制系统的认识,发射机采用分立元件设计; 4.已调信号采用通用的AM/FM多波段收音机进行接收测试。 4 基本原理 4.1 系统方案选择 方案一:以晶体振荡器做成高精度高稳定度的调频发射机 以晶体振荡器做成高精度高稳定度的调频电路,这完全可以达到我们的要求,但是这种方案比较复杂,能过搜索我们有另外一种方案,见方案二。 方案二:以调频方式做成三级发射机 这种方案的性能是比较好的,这种发射机主要由三个模块组成,第一级是音频放大电路;第二级是高频振荡电路;第三级是高频功率放大电路。 4.2 整体系统描述 本调频发射机的总体电路如下:声--电转换、音频放大、高频振荡调制和高频功率放大等。声--电转换由驻极体话筒担任,它拾取周围环境声波信号后即输出相就应电信号,经电容C2输入到晶体管Q1,Q1担任音频放大功能,对音频信号进行

调频发射机课程设计

摘要 频率调制又称调频,它是使高频载波信号的频率按调制信号振幅的规律变化,即使瞬时频率变化的大小与调制信号成线性关系,而振幅保持基本恒定的一种调制方式。调频发射机作为一种简单的通信工具,由于它不需要中转站和地面交换机站支持,就可以进行有效的移动通信,因此深受人们的欢迎。目前它广泛的用于生产、保安、野外工程等领域的小范围移动通信工程中。本文主要讨论了调频发射机的原理实现方式并设计了电路图,将调频发射机的电路分为了振荡器、调制器、混频电路、倍频电路和功率放大器几部分,分别讨论它们的原理及其特性。 关键字:调频振荡器混频倍频功放

一、前言 调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。主要应用于调频广播、广播电视、通信及遥控。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。 调频发射机作为一种简单的通信工具,它首先将音频信号和高频载波调制为调频波,使高频载波的频率随音频信号发生变化,再对所产生的高频信号进行混频,倍频,功放和一系列的阻抗匹配,使信号输出到天线,发送出去的装置。本文主要讨论了调频发射机的原理实现方式并设计了电路图,将调频发射机的电路分为了载波振荡器、调制器、混频电路、倍频电路和功率放大器等部分组成,分别讨论它们的原理及其特性。 通过调频发射机电路的设计,使得建立无线电发射收机的整机概念,了解发射机整机各单元电路之间的关系及相互影响,从而能正确设计、计算发射的各个单元电路:包括晶体振荡电路、变容二极管调频电路、二极管单平衡混频电路、三极管倍频电路、丙类谐振功率放大电路设计、元器件选择。发射机是日常生活中常见的也是应用非常广泛的电子器件,研究本课题既可以了解调频发射机电路,又可以提高对于Multisim的应用能力和运用书本知识的能力。

调频发射机

编号: (高频电路设计与制作) 实训论文说明书 题目:调频发射机 院(系):信息与通信学院 专业:电子信息工程 学生姓名: 学号: 指导教师: 2013年1月9日

摘要 本设计主要是设计一个调频发射机。发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽适合通过天线发射的电磁波。课题重点在于设计能给发射就电路提供稳定频率的振荡调制电路。首先通过放大器适当放大语音信号,以配合调制级工作;然后用电容三点式构成振荡电路为发射机提供基准频率载波,接着通过改变语音信号完成语音信号对载波信号的频率调制,最终利用丙类功率放大器,使已调制信号功率大大提高,经过串联滤波网络滤除高次谐波,最后通过拉杆天线发射出去。通过后续电路的调试,可以证明本课题的电路基本成熟,基本能完成语音信号的电压放大、频率调制和功率放大,达到发射距离的要求。 关键字:调频发射机;调频;功率放大;LC振荡电路

Abstract This course is designed to design a FM transmitter. The transmitter is the main task of the complete useful low frequency signal of the high frequency modulation of the carrier, and turn it into a center frequency in the bandwidth for through the antenna has certain the launch of the electromagnetic waves. Subject to design can focus is to launch on the electric circuit provides stable frequency oscillation modulation circuit. First through the amplifier amplification appropriate speech signal to match a level; Then use capacitance SanDianShi constitute oscillating circuit for transmitter provide benchmark frequency carrier, and then through the change of speech signal to finish speech signal carrier signal frequency modulation, finally using c class power amplifier, make already modulation signal power greatly improved, after series filtering network higher harmonic filter, the last through the bars antenna launch out. Through subsequent circuit debugging, can prove this topic circuit basic mature, basic can finish speech signal voltage amplifier, frequency modulation and power amplifier, to launch the distance of the requirements. Key word: FM transmitter; FM; Power amplifier; LC oscillating circuit

《调频发射机》高频课程设计报告

高频课程设计 报告 专业: 班级: 姓名: 学号: 指导老师: 设计时间: 福建工程学院电子信息与电气工程系 通信教研室 2010.1

目录 1. 设计题目 (3) 2. 实践目的 (3) 3. 设计要求 (3) 4. 基本原理 (3) 5. 系统调试 (9) 6. 心得体会 (9) 7. 参考文献 (10) 附录 (10)

高频课程设计 一、设计题目 调频发射机 二、实践目的 无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视 系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。本次设计要达到以下目的: 1. 进一步认识射频发射与接收系统; 2. 掌握调频(或调幅)无线电发射机的设计; 3. 学习无线电通信系统的设计与调试。 三、设计要求 1. 发射机采用FM 、AM 或者其它的调制方式; 2. 若采用FM 调制方式,要求发射频率覆盖范围在88-108MHz,传输距离>20m; 3. 若采用AM 调制方式,发射频率为中波波段或30MHz 左右,传输距离>20m ; 4. 为了加深对调制系统的认识,发射机建议采用分立元件设计; 四、基本原理 本设计图采用FM 调制。 载波()t w U t u c cm c cos )(=,调制信号()t u Ω;通过FM 调制,使得)(t u c 频率变化量与调制信号()t u Ω的大小成正比。即已调信号的瞬时角频率 ()()t u k w t w f c Ω?+= 已调信号的瞬时相位为 ()()t d t u k t w t d t w t t f c t ''+=''=??Ω )(0 ? 实现调频的方法分为直接调频和间接调频两大类,本设计图采用直接调频: 直接调频的基本原理是利用调制信号直接控制振荡器的振荡频率,使其反映调制信号变化规律。要用调制信号去控制载波振荡器的振荡频率,就是用调制信号去控制决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信号变化规律

高频课设小功率调频发射机设计

等级: 课程设计 课程名称高频电子线路 课题名称小功率调频发射机 专业电子信息工程 班级 学号 姓名 指导老师浣喜民 2016年6月24日

课程设计任务书 课程名称高频电子线路题目小功率调频发射机设计 学生姓名专业班级学号 指导老师浣喜明课题审批下达日期 2016年06月07日 一、设计内容 设计一小功率调频发射机。主要技术指标: 发射功率Pa=3W;负载电阻(天线)RL=75Ω; 中心工作频率fo=88MHZ;调制信号幅度VΩm=10mV; 最大频偏Δfm=75KHZ;总效率η>70%。 二、设计要求 1、给出具体设计思路和整体设计框图; 2、绘制各单元电路电路图,并计算和选择各器件参数; 3、绘制总电路原理图; 4、编写课程设计说明书; 5、课程设计说明书和所有图纸要求用计算机打印(A4纸)。 三、进度安排 第1天:下达设计任务书,介绍课题内容与要求; 第2、3天:查找资料,确定系统组成; 第4~7天:单元电路分析、设计; 第8~9天:课程设计说明书撰写; 第10天:整理资料,答辩。(共两周)。 四、参考文献 1、《高频电子线路》,张肃文主编.,高等教育出版社.。 2、《电子技术基础实验》陈大钦主编,高等教育出版社出版 3、《高频电子线路实验与课程设计》,杨翠娥主编,哈尔滨工程大学出版社出版 4、《通信电路》沈伟慈主编,西安电子科技大学出版社出版 6、《电子线路设计·实验·测试》谢自美主编, 华中理工大学出版社 五、说明书基本格式 1)课程设计封面; 2)设计任务书; 3)目录; 4)设计思路,系统基本原理和框图; 5)单元电路设计分析; 6)设计总结; 7)附录; 8)参考文献; 9)电路原理图; 10)评分表

调频发射机设计.

高频电子线路课程设计 设计题目 调频发射机 系 别 专 业 班 级 姓 名 学 号 惠州学院 HUIZHOU UNIVERSITY

一、设计题目:调频发射机的设计 二、设计的技术指标与要求: 1工作电压:Vcc =+12V ; (天线)负载电阻:R L =51欧; 3发射功率:Po ≥500mW ; 4工作中心频率:f 0=5MHz ; 5最大频偏:kHz f m 10=?; 6总效率:%50≥A η; 7频率稳定度:小时/10/400-≤?f f ; 8调制灵敏度S F ≥30KH Z /V ; 三、设计目的: 设计一个采用直接调频方式实现的工作电压为12V 、输出功率在 500mW 以上、工作频率为5MHz 的无线调频发射机,可用于语音信 号的无线传输、对讲机中的发射电路等。 四、设计框图与分析: (一)总设计方框图 与调幅电路相比,调幅系统由于高频振荡输出振幅不变, 因而具 有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量 等方面有广泛的应用。 (二)实用发射电路方框图 ( 实际功率激励输入功率为 1.56mW) 变容二极管直接调频电路 调制信号 调频信号 载波信号 图3-1 变容二极管直接调频电路组成方框图

拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。 由于本题要求的发射功率P o 不大,工作中心频率f 0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,设组成框图如图3-2所示,各组成部分的作用是: (1)LC 调频振荡器:产生频率f 0=5MHz 的高频振荡信号,变容二极管线性调频,最大频偏kHz f m 10=?,整个发射机的频率稳定度由该级决定。 (2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。整机设计时,为减小级间相互影响,通常在中间插入缓冲隔离级。缓冲隔离级电路常采用射极跟随器电路。 (3)功率激励级:为末级功放提供激励功率。如果发射功率不大,且振荡级的输出能够满足末级功放的输入要求,功率激励级可以省去。 (4)末级功放 将前级送来的信号进行功率放大,使负载(天线)上获得满足要求的发射功率。若整机效率要求不高如%50≥A η而对波形失真要求较小时,可以采用甲类功率放大器。但是本题要求%50≥A η,故选用丙类功率放大器较好。 五、设计原理图: 实际的无线调频发射机电路如图3-3所示。 V43DG130R14C12 Z L 2C11CT T 2RL 51+12v N 1N 2V33DA1R13R12R11C10T 1N 3N 4N 5C9 R 交负V23DG100 R10R9R8Rw2V1R1 R2 R3 R4L 1 Cj R6 R7R5Z L 1C8 C4C5C1C2 C3 C7C6 in 图3-3 无线调频发射电路 考虑到频率稳定度的因素,调频电路采用克拉泼振荡器和变容二极管直接调频电路。电路的工作原理是:利用调制信号控制变容二极

调频发射机电路设计

淮海工学院 课程设计报告书 课程名称:通信电子线路课程设计 题目:调频发射机设计 系(院):通信工程系 学期:2013-2014-1 专业班级: 姓名: 学号: 评语: 成绩: 签名: 日期:

调频发射机电路设计 一 绪论 1.1 摘要 调频信号的基本特点是它的瞬时频率按调制信号规律变化,因而,一种最容易的实现方法是用调制信号直接控制振荡器的振荡频率,使其不失真地反映调制信号的变化规律。通常将这种直接调变振荡器频率的方法称为直接调频法。采用这种方法时,被控的振荡器可以是产生正弦波的LC 振荡器和晶体振荡器,也可以是产生非正弦的张弛振荡器。前者产生调频正弦波,后者产生调频非正弦波(例如调频方波,调频三角波),如果需要,通过滤波等方法将调频非正弦波变换为调频正弦波。本电路采用LC 振荡器。 1.2 主要性能要求 1 (天线)负载电阻:R L =75欧; 2发射功率:Po ≥80mW ; 3工作中心频率:f 0=6.5MHz ; 4最大频偏:kHz f m 75=?; 5总效率:%50>A η。 1.3 概述 设计一个完整的小功率直接调频发射机系统,直接调频发射系统框图主要由调频振 荡器、缓冲隔离器、倍频器、高频功率放大器、调制信号发生器等电路组成。原理 图如图1。 图1 直接调频发射机组成框图 二 电路原理 2.1 LC 振荡电路工作原理 电容三点式振荡电路又称考毕兹(Colpitts )电路,基本结构入图2左图所示。图中Cc 为耦合电容,Cb 为旁路电容,电阻Rb1,Rb2和Re 构成分压式偏置,为电路提供直流偏置,Rl 为输出负载电阻。电路的交流通路如图3右图所示,如果移去管子,电容C1,C2和电感L 为并联谐振回路,构成电路的选频网络。对于一个振荡器,当其负载阻

高频课程设计报告_调频发射机

调频发射机课程实验报告 姓名: 班别: 学号: 指导老师: 组员:

小功率调频发射机课程设计 一、 主要技术指标: 1. 中心频率:012f MHz = 2. 频率稳定度 40/10f f -?≤ 3. 最大频偏 10m f kHz ?> 4. 输出功率 30o P mW ≥ 5. 天线形式 拉杆天线(75欧姆) 6. 电源电压 9cc V V = 二、 设计和制作任务: 1. 确定电路形式,选择各级电路的静态工作点,并画出电路图。 2. 计算各级电路元件参数并选取元件。 3. 画出电路装配图 4. 组装焊接电路 5. 调试并测量电路性能 6. 写出课程设计报告书 三、 设计提示: 通常小功率发射机采用直接调频方式,并组成框图如下所示: 其中,其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦 波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进

行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。 上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。 1.频振荡级: 由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。关于该电路的设计参阅《高频电子线路实验讲义》中实验六内容。 克拉泼(clapp )电路是电容三点式振荡器的改进型电路,下图为它的实际电路和相应的交流通路: 实用电路 交流通路 如图可知,克拉泼电路比电容三点式在回路中多一个与C1 C2相串接的电容C3,通常C3取值较小,满足C3《C1 ,C3《C2,回路总电容取决于C3,而三极管的极间电容直接并接在C1 C2上,不影响C3的值,结果减小了这些不稳定电容对振荡频率的影响,且C3较小,这种影响越小,回路的标准性越高,实际情况下,克拉泼电路比电容三点式的频稳度高一个量级,达4 51010--。 可是,接入C3后,虽然反馈系数不变,但接在AB 两端的电阻RL ’=RL//Reo 折算到振荡管集基间的数值(设为RL ’’)减小,其值变为 ''2' 22 3( )31,2 L L L L C R n R R C C ≈=+ 式中,C1,2是C1 C2 和 各极间电容的总电容。因而,放大器的增益亦即环路增益将相应减小,C3越小,环路增益越小。减小C3来提高回路标准是以牺牲环路增益为代价的,如果C3取值过小,振荡器就会因不满足振幅起振条件而停振。 2.缓冲级: 由于对该级有一定增益要求,考虑到中心频率固定,因此可采用以LC 并联回路作负载的小信号谐振放大器电路。

《调频发射机设计》word文档

实习报告 课程: 课题:调频发射机设计 专业: 班级: 座号: 姓名: 指导老师: 2011年1月18日

目录 前言 一、设计内容 (3) 1.1进程安排 (3) 1.2设计目的 (3) 1.3设计要求 (4) 二、发射机原理 (4) 2.1 设计整体思路 (4) 2.2 基本原理 (4) 2.3 调频发射机的原理图 (8) 2.4、各个元器件说明 (8) 三、模块说明 (9) 3.1 输入信号模块 (9) 3.2 振荡模块 (9) 3.3 放大和发射模块 (9) 3.4 调频发射机的主要技术指标 (10) 四、PCB板的制作 (10) 五、电路的调试及调试结果结果 (11) 5.1 电路的调试 (11) 5.2 调试结果 (11) 六、实验总结及心得体会 (12) 元器件清单 附页

前言 调频发射机作为一种简单的通信工具,由于它不需要中转站和地面交换机站支持,就可以进行有效的移动通信,因此深受人们的欢迎。目前它广泛的用于生产、保安、野外工程等领域的小范围移动通信工程中。本课题重点在于设计能给发射机电路提供稳定频率的振荡调制电路。课题首先用两级电压并联负反馈放大电路,适当放大语音信号,以配合调制级工作;然后用石英晶体构成振荡电路为发射机提供稳定的基准频率载波,接着通过变容二极管完成语音信号对载波信号的频率调制,并通过LC并联谐振网络选出三倍频信号;最终利用两级功率放大,使已调制信号功率大大提高,经过串联滤波网络滤除高次谐波,最后通过拉杆天线发射出去。通过后续的电路仿真和部分电路的调试,可以证明本课题的电路基本成熟,基本能完成语音信号的电压放大、频率调制和功率放大,达到发射距离的要求。发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。通常,发射机包括三个部分:高频部分,低频部分,和电源部分。高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。主振器的作用是产生频率稳定的载波。为了提高频率稳定性,主振级往往采用石英晶体振荡器,并在它后面加上缓冲级,以削弱后级对主振器的影响。低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。因此,末级低频功率放大级也叫调制器。调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。所以末级高频功率放大级则成为受调 放大器。

用Multisim设计调频发射机

用Multisim设计调频发射机 目录 摘要 一.设计要求 (2) 二.设计的作用、目的 (3) 三.设计的具体实现 (3) 1.系统概述 (3) 2.单元电路设计、仿真与分析 (4) 2.1振荡级 (4) 2.1.1调频波的产生....... 错误!未定义书签。 2.1.2振荡电路的选择 2.1.3 参数的计算 2.2缓冲级 (6) 2.2.1 元器件的选择及参数的确定错误!未定义书签。 2.3 功率输出级 (10) 2.3.1 元器件的选择和参数的确定错误!未定义书签。 2.4调频发射机总原理电路图 (10) 三 四.Multisim的相关介绍 五.心得体会及建议 (12) 六.附录 (12) 七.参考文献 (14)

调频发射机的设计报告 摘要 随着科技的发展和人民生活水平的提高,调频发射机也在快速发展,并且在生活中得到广泛应用,它可以用于演讲、教学、玩具、防盗监控等诸多领域。在生活中,人们通过无线电发射机可以把需要传播出的信息发射出去,接收者可以通过特制的接收机接受信息,最普通的模式是:广播电台通过无线电发射机发射出广播,收听者通过收音机即可接收到电台广播。 本设计为一简单功能的调频发射机,通过该发射机可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要在频率适合时即可收到发射器发送出的无线电信号,并通过扬声器转换出声音。通过这次实验我们可以更好地巩固和加深对小功率调频发射机工作原理和非线性电子线路的进一步理解。学会基本的实验技能,提高运用理论知识解决实际问题的能力。 一.设计要求 设计一个调频发射机,通过该发射机可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要在频率适合时即可收到发射机发送出的无线电信号。 (1).确定电路形式,选择各级电路的静态工作点; (2).输入信号能够通过电路进行稳定,调频等; (3).输出为足够大的高频功率,使其能够发射; (4).根据上述要求选定设计方案,画出该系统的系统框图,写出详细的设计过程并利用Multisim软件画出一套完整的设计电路图; (5).列出所有的元件清单并写出参考书目。

小功率调频发射机电路的设计

信息职业技术学院 毕业设计说明书(论文) 设计(论文)题目: 小功率调频发射机 电路的设计 专业: 通信技术 班级: 学号: 姓名: 指导教师: 二ΟΟ八年十二月三十日

息职业技术学院毕业设计(论文)任务书 备注:任务书由指导教师填写,一式二份。其中学生一份,指导教师一份。

目录 摘要 0 第1章绪论 (1) 第2章方案设计 (2) 方案比较与论证 (2) 方案选择 (2) 第3章单元电路设计 (4) 功率激励与末级功放电路设计 (4) 末级功放电路设计 (4) 激励级宽带功放电路设计 (7) 缓冲隔离级电路设计 (9) LC调频振荡器设计 (11) 间接调频电路设计 (11) LC振荡器的设计 (13) 总结 (15) 致谢 (16) 参考文献 (17) 附录1 总电路原理图 (18) 附录2 元器件明细表 (19)

摘要 在无线电通讯和广播中,需要传送由语言、音乐、文字、图像等转换成的电信号。由于这些信号频率比较低,根据电磁理论,低频信号不能直接以电磁波的形式有效地从天线上发射出去。因此,在发送端须采用调制的方式,将低频信号加到高频信号之上,然后将这种带有低频信号的高频信号发射出去,在接收端则把带有这种低频信号的高频信号接收下来,经过频率变换和相应的解调方式"检出"原来的低频信号,从而达到通讯和广播的目的。 本设计针对小功率调频发射机进行设计,它主要有调频振荡、缓冲隔离、功率激励和末级功放各部分电路组成。最主要将调制信号进行调制后,振荡信号随着调制信号的变化而产生变化,振荡级将产生5MHz的工作频率,功率激励即对电压进行放大,末级功放将工作在丙类状态ηA>50%,最后将对信号由天线发射出去。 关键词发射机;调频;无线话筒

小功率调频发射机的设计课程设计报告正文.

东北石油大学课程设计 课程高频电子线路 题目小功率调频发射机的设计 院系电子科学学院 专业班级电信XXXXXXX班 学生姓名XX 学生学号XXXXXXXXXXXX 指导教师 2013年3月1日

东北石油大学课程设计任务书 课程高频电子线路 题目小功率调频发射机的设计 专业电子信息工程姓名XX 学号XXXXXXXXX 主要内容、基本要求、主要参考资料等 1、主要内容 利用所学的高频电路知识,设计一个小功率调频发射机。通过在电路设计、安装和调试中发现问题、解决问题,加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。 2、基本要求 设计一个小功率调频发射机,主要技术指标为: (1) 载波中心频率 06.5MHz f=; (2) 发射功率100mW A P>; (3) 负载电阻75 L R=Ω; (4) 调制灵敏度25kHz/V f S≥; 3、主要参考资料 [1] 阳昌汉. 高频电子线路. 哈尔滨:高等教育出版社,2006. [2] 张肃文,陆兆雄. 高频电子线路(第三版). 北京:高等教育出版社,1993. [3] 谢自美. 电子线路设计·实验·测试. 武汉:华中科技大学出版社,2000. [4] 高吉祥. 电子技术基础实验与课程设计. 北京:电子工业出版社,2002.完成期限2月25日-3月1 日 指导教师 专业负责人 2013 年 2 月22 日

一、电路基本原理 1. 总设计方框图 与调幅电路相比,调频系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用。如图1所示: 图1 变容二极管直接调频电路组成方框图 2.电路基本框图 图2 电路的基本框图 实际功率激励输入功率为1.56mW 拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。 由于本题要求的发射功率Po 不大,工作中心频率f0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,设组成框图如图2所示,各组成部分的作用是: (1)LC 调频振荡器:产生频率f0=6MHz 的高频振荡信号,变容二极管线性调频,最大频偏,整个发射机的频率稳定度由该级决定。 (2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。整机设计时,为减小级间相互影响,通常在中间插入缓冲隔离级。缓冲隔离级电路常采用射极跟随器电路。 (3)功率激励级:为末级功放提供激励功率。如果发射功率不大,且振荡级的 LC 调频振荡器缓冲隔离器 功率激励 末级功放 调制信号变容二极管直接调频电路调频信号 载波信号

小功率调频发射机设计报告

课程名称高频电子线路课程设计 课题名称小功率调频发射机设计 专业电子科学与技术 班级 0802班 学号200801180219 姓名刘石海 指导教师刘正青老师 2011年6月11日

湖南工程学院 课程设计任务书 课程名称通信电子线路课程设计 题目小功率调频发射机设计 专业班级电子科学与技术 学生姓名刘石海 学号200801180219 指导老师刘正青 审批 任务书下达日期:2011 年5月23日星期一设计完成日期:2011 年6月11日星期五

总效率

目录 一、资料整理 (6) 1、发射机的主要技术指标 (6) 2、变容二极管主要特性 (7) 3、宽带功率放大器 (8) 4、丙类功率放大器 (9) 二、总体方案设计 (10) 1. 系统框图: (10) 2、单元电路设计 (10) 1) 功放级电路设计和分析 (10) 2)功放电路参数计算 (12) 3) 甲类功率放大器 (14) 4) 缓冲隔离级 (16) 5) 调频振荡级 (18) 三、整机电路 (21) 四、电路装配测试和总结 (22) 五、总结与体会 (25) 附录 (26) 参考文献 (27) 课程设计评分表 (28)

一、资料整理 1、发射机的主要技术指标 ● 发射功率 一般是指发射机输送到天线上的功率。 ● 工作频率或波段 发射机的工作频率应根据调制方式,在国家或有关 部门所规定的范围内选取。 ● 总效率 发射机发射的总功率 与其消耗的总功率 P’C 之比,称为发射机的总效率 。 ● 非线性失真 要求调频发射机的非线性失真系数γ 应小于1 %。 ● 杂音电平 杂音电平应小于 – 65 dB 。 ● 输出功率 高频功放的输出功率是指放大器的负载RL 上得到的最大不失真功率。也就是集电极的输出功率,即 ● 效率 常将集电极的效率视为高频功放的效率,用η表示,当集电极回 路谐振时,η的值由下式计算: ● 功率增益 功放的输出功率P o 与输入功率P i 之比称为功率增益,用 AP (单位:dB)表示 AP=P o/P i A ηA P 0 2 C1m 02Clm Clm Clm o 212121R V R I I V P ? ===CC C0L 2L D C V I R V P P = =η

5WFM调频发射机的制作

声明:本文电路仅供爱好者参考,如果需要动手制作实验,请先与当地无线电管理部门联系批准。本站要求大家进行无线电实验必须遵守法律,如有任何违法行为本站概不负责! Veronica FM发射机容易制作,性能稳定,信号纯净, 不使用专业零件和IC, 并有辅助测试功能使您在没有专业设备的情况下轻易地进行调试。它有两个版本, 1瓦和5瓦。1瓦版本适用于3公里发射距离,所需的电源是12-16V 200mA;5瓦版本适用于8公里发射距离,所需的电源是12-16V 900mA。本文档主要介绍5瓦版本。 图1: 5W Veronica 线路图 该发射器自带一个混音器,使您同时发射来自CD和话筒的音频信号。晶体管T 1是话筒放大器,可变电阻R1和R2调节音量大小(参见调试部分)。在R8和C 21之间是振荡器,是产生无线电射频信号的部件。二极管D1是一个所谓的“变容管”,相当于一个可调电容,它由音频信号控制,改变振荡器的振荡频率,起到变频的作用。C12,C13,和L1决定振荡器的频率。这个振荡器实际上是由两个反相振荡器组成,每个运行在50MHz附近,当两个信号结合时,便成了一个100MHz的信号。这种电路比单个100MHz振荡器稳定很多。振荡器的信号由T 4、T6放大到5W。在T4右边的电路包括天线阻抗匹配和低通滤波功能。D2、D3、T5组成的电路是辅助调试用的,它将射频输出的信号取样,控制发光二极管D5,输出高时,D5也明亮一些。

此电路本身不带立体声调制器,你若需要播放立体声节目,请参照这里制作立体声调制器。 元件清单 电阻: R1+2 10k 可调R3 820k R4 4.7k R5-7 220 R8 1.5k R9 15k R10+11 1k R12 33k R13+14 56 R15+16 68k R17 47 R18 270 R19 10 R20 22 R21 1.5k R2 2 270 电容: 除特殊指定外,用瓷介或云母电容。 C1,2,7, 16,17,19, 24,29及31 1n C3-5及8 10u 16V 电解C6, 18及30 220u 1 6V 电解C9, 10及20 10n C11 22p* C12 47p* C13 22p 微调C14及15 15p* C21,25及26 65p 微调C22 100p C23 15p C24 33p C27 1.8p C28 5.6p C32及34 47p C33 22p C35及38 1n C36 220n C37 100p *C11, 12, 14 和15 决定振荡频率,最好用高质量云母电容。 线圈: 用无骨架空心型。以直径1mm的导线密绕在笔芯或其它圆棒上,然后小心地拉长到正确的长度,并确定线圈的两末端如图2所示。 图2A: 线圈的正确绕法 图2B: L4,MRF237的管脚和天线假负载

射频发射机电路设计

射频发射机电路设计 文献综述 前言 超外差接收是一种巧妙的接收方法,利用它,能使因无线电信号直接接收和放大而引起的一系列困难得到解决。在费森登思想的基础上,1912年,阿姆斯特朗在接收机中设置了本机振荡(简称“本振”)电路,通过双联可变电容器进行同步调谐,保证本振频率始终跟踪外来信号频率的变化,而且始终比外来信号高一个固定的中频。这样,不管所接收的各个电台的载波频率差别多大,与本振频率混频后,产生的都是统一的中频信号。再对这个统一的中频信号进行放大、检波,就可得到所需要的音频信号。利用超外差原理设计的电路,能使接收机电路大大简化,接收机的性能与灵敏度也得到提高。当时阿姆斯特朗还成功地组装出一台超外差接收机。同年,阿姆斯特朗与德·福雷斯特及兰茂尔各自独立发明了再生电路。 超外差接收原理不仅适用于收音机电路,还具有广泛的应用价值,它适用于电视广播、微波通信、雷达等无线电技术的各个领域。超外差原理已成为现代无线电接收理论的基础,凡是涉及无线电信号接收的电子设备,都离不开超外差接收电路。阿姆斯特朗的这项重要发明,不仅推动了无线电技术早期发展的进程,而且在无线电事业的征途上至今还闪现着它的技术光芒。 超外差原理的典型应用是超外差接收机。从天线接收的信号经高频放大器(见调谐放大器)放大,与本地振荡器产生的信号一起加入混频器变频,得到中频信号,再经中频放大、检波和低频放大,然后送给用户。接收机的工作频率范围往往很宽,在接收不同频率的输入信号时,可以用改变本地振荡频率f1的方法使混频后的中频fi保持为固定的数值。 概述 超外差接收机是超外差电路的典型应用,是全面学习模拟电路基础知识最好的切入点之一。通过简单分析超外差式接收机中输入电路、变频电

相关文档