文档库 最新最全的文档下载
当前位置:文档库 › 光电化学电池的发展和未来发展趋势

光电化学电池的发展和未来发展趋势

光电化学电池的发展和未来发展趋势
光电化学电池的发展和未来发展趋势

光电化学电池的发展和未来发展趋势

1508471008赵世南随着人类的工业文明得以迅猛发展,由此引发的能源危机和环境污染成为急待解决的严重问题,利用和转换太阳能是解决世界范围内的能源危机和环境问题的一条重要途径。世界上第一个认识到光电化学转换太阳能为电能可能实现的是Becquere,他在1839年发现涂布了卤化银颗粒的金属电极在电解液中产生了光电流,以后Brattain、Garrett及Gerisher等人先后提出和建立了一系列有关光电化学能量转换的基本概念和理论,开辟了光电化学研究的新领域。

光电化学池即通过光阳板吸收太阳能并将光能转化为电能。光阳板通常为光半导体材料,受光激发可以产生电子——空穴对,光阳极和对极(阴极)组成光电化学池,在电解质存在下光阳极吸光后在半导体带上产生的电子通过外电路流向对极,水中的质子从对极上接受电子产生氢气。

光电化学池中染料敏化纳米晶光电化学电池以其低成本和高效率而成为硅太阳能电池的有力竞争者。染料敏化太阳电池主要由透明导电玻璃、TiO2多孔纳米膜、电解质溶液以及镀铂镜对电极构成的“三明治”式结构。与p-n结固态太阳能电池不同的是,在染料敏化太阳电池中光的吸收和光生电荷的分离是分开的。染料敏化太阳能电池(DSSC)是由二氧化钛多孔膜、光敏化剂(染料)、电解质(含氧化还原电对)、镀铂对电极及导电基板组成的夹层结构。

光电化学池中染料敏化纳米晶光电化学电池其基本工作原理是:在染料分子的激发态、TiO2导带、SnO2(导电玻璃)导带、Pt(对电极)功函之间存在着一个能级梯度差,当染料分子吸收太阳光其中基态的电子受光激发跃迁到染料激发态能级后,在能级差的驱动下,电子将会迅速转移到TiO2导带中,经纳米晶TiO2膜空间网格的输运进入到SnO2导带,后经外路到达对电极,并与氧化还原电对进行电子交换后,依靠氧化还原电对在氧化态染料和对电极间完成电子转移,从而实现整个光电循环。

染料敏化太阳能电池的核心部分是纳米多孔半导体氧化物薄膜电极。敏化染料中染料分子是染料敏化太阳能电池的光捕获天线,是染料敏化太阳能电池的一个重要组成部分,它的作用就是吸收太阳光,将基态电子激发到高能态,然后再转移到外电路,它的性能是决定电池转换效率的重要因素之一。整个光电转换的性能决定于染料能级与TiO2能级的匹配情况以及它对太阳光谱的响应性能。到目前,最有效的敏化染料是含有4,4-二羧基-2,2-联吡啶配体的钌有机配

合物。电解质也是DSSC一个重要组成部分,它使氧化态的染料分子及时还原再生,以及在对电极获得电子而使自身得以还原,此外也提供电池内部导通,组成完整回路。对电极,氧化还原电对通过获得电子而得以再生。但通常这一反应的电势较高,但当采用铂作为对电极时,可以大大降低其反应的活化能。

实验制备过程(1)导电玻璃做前期处理,切割导电玻璃:按丝网印刷机的网格大小制图,按图在玻璃无导电膜的一面上切割,玻璃刀的斜度为45°为宜,在剖开玻璃时两手平行用力。(2)打孔:在制作光阴极时需要打孔,打孔位置应预先标记,根据工作面积大小选择打孔数目,在对电极的工作面外侧进行打孔。常用的打孔设备有超声波打孔机,激光打孔机等。(3)清洗玻璃:用棉球蘸洗衣液清洗导电玻璃,在带有导电材料一面,棉球应沿一个方向擦动;然后,依次使用无水乙醇、丙酮、无水乙醇浸泡,并进行超声处理,每一过程持续30min左右。(4)烧玻璃:去除玻璃上的有机物质制造电池的玻璃以450°的温度烧结,烧结时间为3小时,取出玻璃时温度降到120°。

制作光阳极(1)制备TiO2薄膜。目前制备TiO2薄膜的方法很多:浸渍法、旋转法、高温溶胶喷射沉积法、丝网印刷法、溅射法等多种技术,本文着重运用丝网印刷技术制备TiO2多孔薄膜电极,使TiO2胶体能够更好的吸附在导电玻璃上,以达到电子外电路输送效率更高的目的,过程如下:①根据丝网版的印刷位置调整丝网印刷机的印刷范围,利用网格图,将定位玻璃板与TiO2薄膜电极一块放到印刷台上,手调定位板的位置,观察玻璃基底处于丝印图案正下方的位置。②确定位置后,抬起丝网版,用胶带固定住定位玻璃板,并用铅笔轻轻勾勒出玻璃基底的具体位置。③放下丝网版后,在丝印图案边沿一端滴加少量的TiO2胶体,将软质刮刀调整到一定的高度,使刮刀的压力倾斜度约为45°,启动机器,让软质刮刀在丝网版上刮动一次,使胶体在刮刀的作用下通过网孔,均匀的沉积到导电玻璃上,尽量一次完成,多余的胶体回收利用。

④抬起丝网版,轻轻移出夹在中间的薄膜电极,置于干净处备用,及时用酒精溶液清洗丝网版及软质刮刀。若要制备多层不同粒径的TiO2薄膜,可采用逐层印刷法,每印刷一层薄膜都必须烧结一次。

将印刷有多孔薄膜的基底放入马弗炉内,膜面朝上,以每分钟15℃的速度升温,于450℃时温恒煅烧15min,当炉温自然冷却至350℃时恒温10min,接而继续以每分钟15℃的速度升温至450℃时恒温15min,最后将电极在马弗炉里面自然冷却,120℃时用镊子取出制备的多孔膜电极。烧结温度不宜过高,主要

除去胶体中的水分及有机物,使TiO2形成多孔的高比表面积形状,以吸收更多的染料分子,增大光的捕捉效率,过高的烧结温度反而会导致胶体薄膜的碳化,因此控制温度是极其重要的。(2)染料色素液的配制。敏化染料作为燃料敏化电池的光捕获天线,它的性能是决定电池光电转换效率的重要因素,它不仅需要很宽的可见光谱吸收,以尽可能多的利用太阳光,而且要紧密地吸附在薄膜电极表面和较好的稳定性,以便于长期循环使用。称取36mg染料样品放入50mL小烧杯中,用无水乙醇做溶剂,少量多次转移到100ml容量瓶内,快到刻线时用滴管定容,摇匀。最后放入小磁子,用黑色保鲜膜包裹容量瓶外侧,放在磁力搅拌器上搅拌24h充分溶解。(3)电极的染料敏化。将烧结好的TiO2薄膜电极浸泡到已配好的染料溶液中,密封保存12小时,使染料分子充分吸附在TiO2薄膜上,用镊子取出电极,无水乙醇冲洗电极染料层表面,洗去吸附在表面的染料分子,防止吸附松脱的染料对电子输送的干扰,用吹风机吹干,剩余的染料溶液及无水乙醇回收保存以备下次使用。

制作对电极(1)取少量氯铂酸用移液管均匀地涂在处理好的导电玻璃的导电面上,待其晾干后,放入炉子中,使其在温度300°的放置10分钟,420°的放置20分钟,然后降温降到120°时可出炉。

总体看来,染料敏化太阳能电池具备的低成本、高效率优点非常吸引人, 但目前若想实现大批量生产, 还有几个核心技术问题。随着各学科的快速发展,新材料、新技术的涌现,打开思路,综合技术,有理由相信,染料敏化电池是会有光明的前景的。

文献引用:

[1] 高建华,钱伟君,吴伟,曾毅.染料敏化太阳能电池TiO2薄膜的制备方法[J].理化检验-物理分册,2008,44(8):431-436.

[2] 李景哲,孔凡太,武国华,黄阳,陈汪超,戴松元.染料敏化太阳电池中TiO2/染料/电解质界面的修饰.物理化学学报,2013,29(9),1851-1864.

[3] 张盼盼,朱摇枫,艾希成.锌掺杂对TiO2染料敏化电池光阳极中电荷俘获态分布及电子复合过程的影响.高等学校化学学报,2013,34(2):418-422.

[4] 施永明 ,赵高凌 ,沈鸽 ,张溪文 ,翁文剑 ,杜丕一 ,韩高荣《染料敏化纳米薄膜太阳能电池的研究进展》J《材料科学与工程》,2002,20(1):125~127;

[5] 尹艳红, 许泽辉, 冯磊硕,杨书廷, 李承斌,《染料敏化太阳能电池对电极的研究进展》 J《材料报导》2009,23(5):109~112

[6] 刘业翔,能源转换与储能装置的若干关键电极材料 J《电池》,2005 ,35 (4):270

新能源汽车动力电池应用现状及发展趋势

新能源汽车动力电池应用现状及发展趋势 发表时间:2019-03-12T16:17:31.607Z 来源:《电力设备》2018年第27期作者:张玉良 [导读] 摘要:新能源汽车的三大核心技术包括电池、电控、电机,其中电池相关技术是人们最为关注、研究投入最大的问题.从上世纪研发出铅酸电池开始,到如今锂离子电池广泛应用于各方各面,在超过一个多世纪的时间里,科研工作者一直在不断地探索试图改进电池的性能.在对传统电池进行改良的同时,科研人员不断尝试新的技术和材料,创造出新型的电池.种种迹象表明,电池技术大改革的时代即将到来,各种新型的、性能优良的电池会渐渐出现在 (北京昌平 102206) 摘要:新能源汽车的三大核心技术包括电池、电控、电机,其中电池相关技术是人们最为关注、研究投入最大的问题.从上世纪研发出铅酸电池开始,到如今锂离子电池广泛应用于各方各面,在超过一个多世纪的时间里,科研工作者一直在不断地探索试图改进电池的性能.在对传统电池进行改良的同时,科研人员不断尝试新的技术和材料,创造出新型的电池.种种迹象表明,电池技术大改革的时代即将到来,各种新型的、性能优良的电池会渐渐出现在人们的生产生活之中。 关键词:新能源汽车;电池应用;发展趋势 一、国内动力电池产业发展现状 我国的锂离子电池研究项目一直是“863”的重点项目,经过二十多年的持续支持,大部分材料实现了国产化,由追赶期开始向同步发展期过渡,本土总产能居世界第一,支撑了我国新能源汽车的示范推广。 1、正极采用磷酸铁锂材料,负极采用石墨材料,研发的50Ah能量型电池,能量密度达到136.6Wh/kg,功率密度达到1101W/kg;研发的20Ah能量功率兼顾型电池,能量密度达到106.5h/kg,功率密度达到1119W/kg。 2、正极采用尖晶石锰酸锂、镍钴锰三元混合材料,负极采用人造石墨材料,研发的25Ah软包装能量型电池,能量密度达到 162Wh/kg;研发的35Ah能量功率兼顾型电池,能量密度达到135Wh/kg。 3、正极采用镍钴锰三元材料,负极采用天然石墨/人造石墨/中间相碳微球等材料,开发的10、15、20、28、30、45Ah的动力电池,能量密度达到180Wh/kg;开发的2.6Ah18650圆柱形电池,能量密度达到200Wh/kg。 在系统集成技术及能力方面取得较大进展和突破。采用磷酸铁锂材料的动力电池系统的能量密度达到90Wh/kg,采用三元材料(18650圆柱形动力电池)的动力电池系统的能量密度达到110Wh/kg。 在前瞻性技术研究方面,中科院先导计划支持相关研究所研制出能量密度超过300Wh/kg的锂离子电池样品和能量密度超过500Wh/kg的锂硫电池样品,但循环寿命及安全性等性能指标还需进一步提升。 目前,我国已形成了包括关键原材料(正极、负极、隔膜、电解液等)、动力电池、系统集成、示范应用、回收利用、生产装备、基础研发等在内的完善的锂离子动力电池产业链体系,掌握了动力电池的配方设计、结构设计和制造工艺技术,生产线逐步从半自动中试向全自动大规模制造技术过渡。 在产业布局方面,中国形成了珠江三角洲、长江三角洲、中原地区和京津冀区域为主的四大动力电池产业化聚集区域。据统计,目前有近100家动力电池企业开展动力电池的研发及产业化工作,有近1000亿元产业资金投入,形成近40GWh年产能,技术研发、产业化进展显著,有力地支撑了新能源汽车产业的快速发展。 二、发展新能源汽车的意义 1、新能源汽车可使中国实现从汽车大国到汽车强国的转变。 虽然当前世界各主要发达国家和有关汽车公司均在加紧研发此种新型汽车技术并取得长足进展,但总体而言,中国仍基本上与之处在同一个起跑线上,差距不过只有3—5 年,并不像传统内燃机技术一样存在20年的巨大差距。在商用化和产业化方面更是如此,某些方面我们还有一定优势。 2、新能源汽车可继续开辟中国的汽车市场。 中国的汽车产业刚刚发展起来,汽车普及率低,因而在汽车动力系统发展战略选择上有更大的自由度,在新能源汽车研发和产业化方面具有比较优势,推广应用新能源汽车的阻力也会小得多。 三、动力电池的应用现状 1、铅酸电池 铅酸电池是一个多世纪前诞生的电池技术,人们普遍认为其技术落后、性能低下,污染环境,在电池技术快速发展的当下,是应当全面淘汰的电池技术。而实际情况却是,在电动车及小型电动汽车领域,铅酸电池的市场占有率达到了惊人的90%,虽然不被看好却被普遍使用。其实,近年来铅酸电池的性能已经得到了提升,能量由20Wh/kg以下提升到了目前的40Wh/kg左右,循环次数由原来的350次左右,提高到了最高4000多次。另外,铅酸电池还有一大优势,就是可以回收循环利用,在美国,目前的铅酸电池回收率高达98.5%,我国的铅酸电池回收率也达到了90%。总的来说,铅酸电池虽然是上个世纪产生的技术,但随着科技的发展,铅酸电池不断得到改良,所以才能够在市场上如此活跃。 2、镍氢、镍镉电池 镍镉电池作为动力电池的一种,具有良好的大功率放电性能,大多应用于电动工具领域。镍氢电池与镍镉电池相比较,体积比、能量比更高,记忆效应较小。在新能源汽车的研发应用中,锂离子电池的性能明显优于镍镉电池,发展前景也更为广阔,所以大部分厂家都不再使用镍氢、镍镉电池作为汽车能源。就目前的发展趋势来看,镍氢、镍镉电池在新能源汽车领域已经失去了市场。 3、锂离子电池 目前市面上使用最多的新能源汽车电池就是锂离子电池。现在,其比能量达到了150Wh/kg,比功率达到了1 600W/kg,并且,随着科研的进行,其各项性能指标参数还会不断地提高。锂离子电池的电解液可以分为两种,聚合物电解质及液体电解质。目前,聚合物电解质的锂离子电池是研发和市场应用的主流。聚合物成分可以是三元锂、锰酸锂、磷酸铁锂、钴酸锂等,不同聚合物成分的各类电池在性能、安全性、寿命、生产成本方面各有优势,总体性能不相上下。市面上的电动汽车,厂家根据需求不同选择不同的聚合物电池,例如,比亚迪E6主打安全稳定、寿命长,所以选用了磷酸铁锂电池;日产聆风为了在各项性能均衡的前提下降低生产成本,所以选用了锰酸锂电池。

锂离子电池研究现状

锂硫电池的研究现状 近年来,随着不可再生资源的逐渐减少,清洁能源的利用逐渐得到重视,而电池作为储能装置也受到越来越多的考验。锂硫电池与传统的锂离子电池相比,优势主要在于硫的高比容量,单质硫的理论比容量为1600mAh/g ,理论比能量2600Wh/kg。并且硫是一种廉价且无毒的原材料。而与此同时,硫作为锂电池的正极材料也存在着诸多问题[1]: 1、单质硫以及最终放电产物都是绝缘的,如果与正极中掺入的导电物质结合不好,就会导致活性物质不能参与反应而失效; 2、单质硫在反应过程中会生成长链的聚硫化物离子S n2-,这种离子容易溶解在电解液中,并与锂负极反应,产生“穿梭效应”,引起自放电并使库伦效率降低; 3、在每次放电过程结束之后,都会有一些Li2S2/Li2S沉淀在正极上,并且这些不溶物随着循环次数的增加,在正极表面发生团聚,并且正极结构也会发生变化,导致这部分活性物质不能参与电化学反应而失效,并且使电池的内阻增加; 4、硫正极随充放电的进行会产生约22%的体积变化,从而导致电池物理结构破坏而失效。 针对硫作为正极材料的种种弊端,研究者们分别采用了多种方法予以解决,其中将硫与碳材料复合的研究较多。针对几种典型方法,分别举例介绍如下:一、石墨烯-硫复合材料 Wang等人采用石墨烯包覆硫颗粒的方法制作复合材料电极[2]。如图1所示,他们首先采用化学方法制备了硫单质,并利用一种特殊的表面活性剂Triton X-100在硫颗粒的表面修饰了一些PEG高分子,然后再用导电炭黑和石墨烯的分散液对硫颗粒进行包覆。这种方法的优点在于:首先,石墨烯和导电炭黑具有优异的导电性能,可以克服硫以及硫反应产物绝缘的问题;第二,导电炭黑、石墨烯和PEG高分子对硫颗粒进行了包覆,可以解决硫在电解液中溶出的问题;第三,PEG高分子具有一定的弹性,可以在一定程度上缓解体积变化带来的影响。 二、碳纳米管-硫复合材料 Zheng等人用AAO做模板制备了碳纳米管阵列[3],随后将硫加热使其浸入到碳纳米管中间,然后将AAO模板去掉,得到碳纳米管-硫复合材料,如图2所示。这种方法的优点在于碳纳米管的比表面积大,有利于硫化锂的沉积。并且长径比较大,可以较好地将硫限制在管内,防止其溶解在电解液中。碳纳米管的导电性好管壁又很薄,有利于离子导通和电子传输。同时,因为制备过程中先沉积硫,后去除模板,这样有利于使硫沉积到碳管内,减少硫在管外的残留,从而防止这部分硫的溶解。

光电化学电池的发展和未来发展趋势

光电化学电池的发展和未来发展趋势 1508471008赵世南随着人类的工业文明得以迅猛发展,由此引发的能源危机和环境污染成为急待解决的严重问题,利用和转换太阳能是解决世界范围内的能源危机和环境问题的一条重要途径。世界上第一个认识到光电化学转换太阳能为电能可能实现的是Becquere,他在1839年发现涂布了卤化银颗粒的金属电极在电解液中产生了光电流,以后Brattain、Garrett及Gerisher等人先后提出和建立了一系列有关光电化学能量转换的基本概念和理论,开辟了光电化学研究的新领域。 光电化学池即通过光阳板吸收太阳能并将光能转化为电能。光阳板通常为光半导体材料,受光激发可以产生电子——空穴对,光阳极和对极(阴极)组成光电化学池,在电解质存在下光阳极吸光后在半导体带上产生的电子通过外电路流向对极,水中的质子从对极上接受电子产生氢气。 光电化学池中染料敏化纳米晶光电化学电池以其低成本和高效率而成为硅太阳能电池的有力竞争者。染料敏化太阳电池主要由透明导电玻璃、TiO2多孔纳米膜、电解质溶液以及镀铂镜对电极构成的“三明治”式结构。与p-n结固态太阳能电池不同的是,在染料敏化太阳电池中光的吸收和光生电荷的分离是分开的。染料敏化太阳能电池(DSSC)是由二氧化钛多孔膜、光敏化剂(染料)、电解质(含氧化还原电对)、镀铂对电极及导电基板组成的夹层结构。 光电化学池中染料敏化纳米晶光电化学电池其基本工作原理是:在染料分子的激发态、TiO2导带、SnO2(导电玻璃)导带、Pt(对电极)功函之间存在着一个能级梯度差,当染料分子吸收太阳光其中基态的电子受光激发跃迁到染料激发态能级后,在能级差的驱动下,电子将会迅速转移到TiO2导带中,经纳米晶TiO2膜空间网格的输运进入到SnO2导带,后经外路到达对电极,并与氧化还原电对进行电子交换后,依靠氧化还原电对在氧化态染料和对电极间完成电子转移,从而实现整个光电循环。 染料敏化太阳能电池的核心部分是纳米多孔半导体氧化物薄膜电极。敏化染料中染料分子是染料敏化太阳能电池的光捕获天线,是染料敏化太阳能电池的一个重要组成部分,它的作用就是吸收太阳光,将基态电子激发到高能态,然后再转移到外电路,它的性能是决定电池转换效率的重要因素之一。整个光电转换的性能决定于染料能级与TiO2能级的匹配情况以及它对太阳光谱的响应性能。到目前,最有效的敏化染料是含有4,4-二羧基-2,2-联吡啶配体的钌有机配

一文看懂锂电池产业的现状与未来

一文看懂锂电池产业的现状与未来 2017-08-15 2016年,在电动汽车产量高速增长的带动下,全球及我国锂离子电池产业继续保持快速增长态势,行业创新加速,新产品、新技术不断涌现,各种新电池技术相继问世。作为最大的生产国以及最重要的应用市场,我国在全球锂离子电池产业的地位进一步提升。受益于我国新能源汽车推广应用步伐加快,一批骨干企业快速成长,比亚迪公司锂离子电池产量目前已位居至全球第四。 在此形势下,赛迪智库电子信息产业研究所编写了《锂离子电池产业发展白皮书(2017版)》,全面梳理了2016年国外锂离子电池产业创新进展,介绍了国际巨头和我国骨干企业的发展情况,分析了2016年我国锂离子电池行业发生的重大事件,并对2017年锂离子电池产业发展趋势进行了研判。 | 全球锂离子电池产业发展状况 市场规模

2016年,全球锂离子电池产业规模预计达到378亿美元,同比增长16%,增速较2015年下滑了15个百分点,原因主要在于全球电动汽车市场增速明显下滑。 来源:IIT和赛迪智库 按容量计算,全球锂离子电池市场规模将首次超过90GWh,同比增长18%。容量增速高于产值增速,原因在于锂离子电池产品价格不断下滑。 产业结构 近两年,电动汽车市场开始爆发性增长,电动自行车占比稳步提升,而全球手机出货量平稳增长,便携式电脑、数码相机等消费电子产品逐步退出市场,全球锂离子电池市场结构发生显著变化。

来源赛迪智库 按容量计算,2016年,消费型锂离子电池占比44.7%,比2015年的50%下降了5个百分点,占比首次跌破50%。动力型锂离子电池占比达到44.8%,首次超过消费型,而2015年动力型锂离子电池占比还只有40%。其他(储能&工业型)锂离子电池占比为10.5%,基本与2015年持平。 区域分布 全球锂离子电池产业主要集中在中、日、三国,三者占据了全球97%左右的市场份额。从2015年开始,在中国大力发展新能源汽车的带动下,中国锂离子电池产业规模开始迅猛增长,2015年已经超过国、日本跃居至全球首位,2016年领先优势继续扩大。

锂电池行业发展现状及未来发展前景预测审批稿

锂电池行业发展现状及未来发展前景预测 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 %。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 %。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020 年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。 2010 年至 2016 年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。 2016 年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。 2016 年,我国电动汽车产量达到万辆,带动我国动力电池产量达到,同比增长 %。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广, 2016 年储能型锂离子电池的应用占比达到 %。

2010-2016 年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015 年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为 68%。江西紫宸2016 年全球份额提升至 %,国内份额提升至 %,预计 2017 年份额维持提升趋势。江西紫宸国内排名前三,行业集中度有望进一步提高。目前国内锂电池负极材料生产企业中:贝特瑞、杉杉科技、江西紫宸为行业前三名,处于行业领先地位。未来几年,国内负极生产企业的竞争主要体现在国内领先企业与日立化成等国际企业的竞争、行业前三企业之间的竞争,行业集中度将进一步提高。 负极材料主要竞争对手

化工行业的发展现状与前景

化工行业的发展现状与前景 罗梦玲化环1104 2011113020407 “入世”以来,我国化工产业发生了巨大变化,化学品市场在世界上的地位进一步得到提升,化学品产量持续增长,化学品进口的年均增长率近十年来一直居世界首位,我国化工园区的基地化、规模化正在加速,外商外资全方位进入我国市场的步伐明显加快,烯烃及其下游衍生物装置正在向规模化发展,我国化工产业已经进入了一个全方位、多层次、宽领域的开放、竞争和发展的新阶段。2005年我国取代德国,登上全球化工产业第三大国的位置。到2005年。我国已经有十余种主要石油化工产品的产量居世界前列,其中化肥、合成氨、纯碱、硫酸、染料、磷矿、磷肥、合成纤维、胶鞋等产量居第一位;农药、烧碱、轮胎产量居设计界第三位;原油生产、合纤单体、合成胶、合成树脂、合成纤维能力和产量、部分合成单体能力和产量都居世界前列。由于国内产能产量大幅提高,我国主要的石油石化产品的自给能力有了不同程度的提高。就总量而言,我国已成为世界上主要的精细化工产品生产国之一。根据中国化工报的统计数据,2008年我国规模以上企业农药总产量达190.2万吨,已居世界第一位。未来,我国将在农药、涂料、染料、食品添加剂、胶黏剂、电子化学品及水处理剂7个领域重点开发新型高附

加值产品,满足各产业需要。 “十五”、“十一五”期间,我国石油和化工产业基地快速发展,除原有的化工基地将继续改造和扩建外,在临海、临江或资源丰富地区建设的国家及化学工业园区都将进入快速发展阶段,如:上海化学工业区、南京等化工区、江苏张家港扬子江国际化工园区等。现全国已有60多个建设或拟建的化工园区,这些化工园区交通运输便利、产品靠近市场、园区内原料和产品相互配套、劳动力便宜、公用工程设施完善等,给投资者创造了比较好的条件,美、日、德等外资公司大量进入这些园区。精细化工和专用化工产品将成为新的增长点,“绿色化工”也将是我国化工产业未来发张的必然趋势。根据我国石油和化学工业协会预测,近年来我国石油和化工产业将以年均7%—10%的速度增长,将远远高于世界目前3%—4%的增长速度,我国石油产业的世界市场份额将逐年增大。 近年来,以欧美大石油石化公司为主,日、韩、中东等国家地区紧跟其后的外资企业加大了对我国市场的投入,规模日趋加大,业务领域日趋广泛,产业链结构日趋完善,是我国石化产业市场化进程进一步加快,多元化竞争格局已经形成。目前外资已经形成了以油品营销、石油化工、精细化工、专用化学品、功能化学品、合成材料加工、石油石化仓储物流、高附加值终端产品为重点的投资发展产业集群,有

锂电池行业发展现状及未来发展前景预测

锂电池行业发展现状及未来发展前景预测 Revised by Chen Zhen in 2021

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量

(整理)化学未来的发展趋势.

白春礼:对化学未来的发展趋势的阐述以及对于广大化学工作 者的期望 发布时间:2011-06-07 【字 号:小中大】谈一下化学未来的发展,有四点趋势。化学将向更广度、更深层次的方向延伸;新工具的不断创造和应用促进化学创新发展;绿色化学将引起化学化工生产方式的变革;化学在解决战略性,全局性,前瞻性重大问题当中将继续发挥更大的作用。 化学向更广更深的层次延伸体现在几个方面,对原子,分子的认识将更为深入,多层次分子研究更为系统,创造新分子,新材料的基础上更加注重功能性。超分子是一个分子结构与宏观性能的关键纽带,是产生更高级结构的基础。如何设计超分子结构和材料,对复杂生命体系的理解和模拟及调控都是前沿的课题。这是化学向更深层次,更复杂拓展的延伸。 新工具的创造和应用会促进化学的发展,随着技术能力和仪器设备的不断进步,空前准确和灵敏的仪器不断被创造和应用,科学家不仅能在原子,分子甚至电子层次观察并研究微观世界的性质,而且能够对其物质结构和能量过程进行操控。1981年,人类实现了观察单个原子的愿望,实现了移动单个原子和单个分子,促进了化学的创新和发展。同步辐射及各种实验方法和技术的改进,使同步辐射光源在化学研究领域中发挥重要的作用,比如真空紫外辐射光可以在量的水平上观察化学共振态。原位气固反应X射线吸收精细结构谱实验新方法,各种应用促进了化学向更深层次的发展。 绿色化学将促进化学化工生产方式的变革,绿色化学不仅是对现有过程的改进和新过程的研究,未来化学的研究将更加注重绿色产品设计的理念。绿色化学将注重经济,高效,制备与人类生活相关的物质,绿色化学不仅是创造可持续的化学产品,也需要变废为宝,将今天的废弃物变为明天有用的资源,将引起化学化工的变革。美国在1995年设立了总统绿色化学挑战奖,07年通过了绿色化学研究和发展法案。日本在上世纪90年代旨在防止全球气候变暖,在21世纪重建绿色地球的新阳光计划开始实施,主要内容为能源和环境技术研究开发。97年德国提出为环境而研究的计划。化学家开发了大量的化学合成反应,制备人类息息相关的物质,超过80%的化学生产需要催化剂,70%以上的化学化工过程使用溶剂。我们现在考虑如果从合成方法学来讲,原子经济学,计算化学,绿色化学结合,合成方法学的角度上进行绿色化学的研究。80%化学品的生产需要催化剂,如何通过发展新型的高效催化剂高稳定性,并且在制造的过程中对环境是无害,使用的过程可以回收再利用,使催化剂不污染环境这也是一个非常重要的方面。70%以上的化学化工过程要使用溶剂,我们要采用绿色的溶剂,二氧化碳做溶剂,离子液体,聚乙二醇等等使之更加清洁和可持续。绿色化学还需要变废为宝,把引起气候变暖的二氧化碳转化利用,通过开发新的技术进行转化应用。前不久我们曾经在宝钢与新西兰研究一个新的技术,利用钢厂的尾气对二氧化碳进行转化研究。秸秆,树木,藻类转化为燃料,重要化学品核材料,木质素,纤维素为原料的新化学反应,粘土等天然无毒原料在材料科学中的应用,不仅是创造新一代的可持续的化学产品,还要考虑如何变废为宝,这是下一步发展的重要方面。 第四方面,化学在解决全局性,前瞻性,战略性的重大问题中会发挥重要的作用,社会的发展不断对化学发展提出新的需求,比如能源危机要求我们如何像光合作用那样高效的利用太阳能。前不久有仿造树叶的光合作用来高效利用太阳能。环境保护方面如何控制降解驱除污染,资源利用方面必须做到合理高效的利用资源,最大显著的利用资源,材料方面绿色化及智能化,可再生循环利用,社会安全方面防患于未然,比如易燃品,爆炸品的检查和防护,有很多的工作需要化学家发挥更大的作用。 刚才讲了环境,能源,资源利用等方面,在材料化学方面,要设计铸造分子,生命科学方面不仅是研究生命起源,调控机制,疾病发生机制和药物的作用机制,在脑科学和认知科学方面,如何在生物分子的水平上认识结构,化学都有十分重要的作用。

2017年中国锂电池行业发展现状及未来发展前景预测

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为68%。江西紫宸2016年全球份额提升至10.5%,国内份额提升至14.8%,预计2017年

锂电行业发展现状

2016年中国锂电池行业发展现状及发展趋势预测 一、中国锂电池市场总体规模 自1991年全球第一只商业化锂离子电池由日本索尼推向市场以来,锂离子电池产业发展已走到其第25个年头。经过20多年的发展,锂离子电池市场规模从无到有,先后超越镍镉电池、镍氢电池等其他二次电池而发展成为仅次于铅酸电池的第二大二次电池产品。欧洲知名产研机构Avicenne Energy发布的统计数据显示,从1990年至2012年间,锂离子电池市场规模从0.5万kWh(1990年还处在试应用阶段)快速发展到3233.47万kWh(注:与国内统计的数据有所不同,主要原因是该机构对中国情况不是很了解),年均复合增长率高达49%,仅次于铅酸电池的3.26亿kWh。该机构的数据显示,2000年之前10年的锂离子电池市场规模的年均复合增长率高达70.8%,之后10年为年均27.1%。 从2010年至2014年,比传统功能手机更耗电的智能手机以及平板电脑、电动汽车等新兴市场的崛起,推动了锂离子电池市场的快速发展和市场普及。到2014年全球锂离子电池市场规模快速发展到6646.5万kWh,是2010年的3倍多。在全球经济总体处于低谷徘徊的情况下,如此高速增长尤为难得。 2015年,全球新能源汽车销量为73万辆,同比增长108%;锂电池产量也从2014 年72GW,升至100GW,同比增长40%;动力电池在锂电池产量中的占比也由2014 年的14%快速提升到2015 年的28%。 全球锂电池产量及增速

对于未来市场规模的预期,在综合考虑各种因素的情况下,真锂研究和中国电池网在去年预期的基础上有所调低,预计2020年全球锂离子电池市场规模将会超过2亿kWh,21世纪第二个10年的年均复合增长率接近25%。与此同时,铅酸电池市场规模到2020年前后预计将下降到2010年时2.7亿kWh左右的水平。此消彼长,大约在2022年或2023年前后,锂离子电池就将超越铅酸电池而成为市场用量最大的二次电池产品。 2010-2020年中国锂电池市场规模(单位:万kWh) 锂离子电池自诞生之日起,就在抢占其他二次电池的市场份额,同时还在创造新的市场需求。锂离子电池首先切入手机、数码相机、笔记本等消费类电子产品市场,用了几年时间迅速一统天下,而镍镉电池、镍氢电池则快速退出这个市场。在目前镍镉电池用量最大的电动工具市场,2014年锂离子电池以60%的市场份额远超镍镉电池,而且市场份额还在进一步扩大。在目前镍氢电池用量最大的混合动力汽车(HEV)市场,占据85%市场份额的丰田和本田(丰田70%+本田15%)已开始采用锂离子电池,且用量逐步扩大。 我国锂电池动力领域占比

锂电池行业发展现状及未来发展前景预测精编版

锂电池行业发展现状及未来发展前景预测 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 98.11%。三国的竞争策略各不相同。日本竞争全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020 年中国及全球锂电产值 数据来源:公开资料整理国内锂离子电池市场的发展处于行业的高速增长期。 2010 年至2016 年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。 2016 年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。 2016 年,我国电动汽车产量达到 51.7 万辆,带动我国动力电池产量达到 33.0GWh,同比增长 65.83%。随着储能电站建设步伐加快,锂

离子电池在移动通信基站储能电池领域逐步推广, 2016 年储能型锂离子电池的应用占比达到 4.94%。 2010-2016 年我国锂离子电池下游应用占比 数据来源:公开资料整理业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量 90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015 年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为 68%。江西紫宸 2016 年全球份额提升至 10.5%,国内份额提升至 14.8%,预计 2017 年份额维持提升趋势。江西紫宸国内排名前三,行业集中度有望进一步提高。目前国内锂电池负极材料生产企业中:贝特瑞、杉杉科技、江西紫宸为行业前三名,处于行业领先地位。

人力资源世界未来职业发展趋势

世界未来职业发展趋势 《美国新闻和世界报道》的专家对未来社会的职业发展趋势进行了预测,并提出了未来世界的 20个主导行业,这二十个主导的行业是:执法、法律、信息服务、社会工作、医疗服务、公共 事务、金融、技工、电信业、工程技术、科学研究、销售、医学、传媒、教育、咨询业、广告业、艺术/娱乐、工程学等。这项调查是几年前进行的,是对未来美国和发达国家的职业发展趋势进行的预测。 未来发展的主导职业及其发展前景 上述报道对世界未来职业发展趋势进行了预测。那么这些职业的基本情况如何?在未来的发展前景如何?对社会经济、文化和科学技术的发展和进步将产生什么样的影响?这些都是广大考生和家长所关注的问题,下面详细介绍这些职业在未来社会发展的基本内情况。 1、法庭会计师。 随着社会经济的迅猛发展,经济犯罪的情况也越来越多。在美国,随着白领阶层的犯罪率不断上升,因此造成的经济损失达1000亿元。如美国证券交易委员会在过去5年中办理的经济犯罪案件上升了60%,在保险业和银行业也存在着同样的问题。在我国,保险业、证券交易业等等正 处于发展阶段,由于法律与管理监督体制尚在逐步完善中,因此导致大量的经济诈骗案件。在未来社会发展的过程中,法庭会计师对于解决各种经济犯罪与经济纠纷案件将起到非常重要的作用。 从职业特点和应掌握的专业知识的角度分析,法庭会计师应兼具法律和会计学方面的专业学习,并取得相应学科或专业的学位。根据专家的预测,该职业的收入水平如下: 初级水平:35000—60000中等水平:55000—80000高级水平:95000—300000以上与法律和会计学相关专业毕业的本科以上的专业人才,如律师、会计师等均有机会从事该专业领域的工作。 2、广告业(传媒策划者) 随着社会竞争的不断加剧,各种应用产品和技术之间为了争取自己的市场分额,在竞争中占据主导地位,不惜花费重金在主要的媒体对自己的产品和技术进行广告宣传,广告业也为了使消费者了解和商家和技术开发商在推销自己的产品和技术时,因此获得丰厚的利润。. 认同自己的产品和技术,电视、广播、报纸、杂志、互联网等媒体便成为他们主要的宣传工具,也因此给广告业(或称为传媒策划业)带来无限商机。传媒策划者充分利用这样的商机,帮助希望投放广告对自己产品和技术进行宣传的商家进行策划,达到最佳的宣传效果和获得丰厚的广告利润。 从事广告业通常需要具备现代艺术、心理学、广告学、传播学或相关专业的学位,并在这些专业领域具某一方面的特长,根据专家预测,从事该职业的收入水平如下: 初级水平:28000—33000元中等水平:60000—80000元 高级水平:2000000元以上 电视、广播、互联网、报纸等新闻媒体行业的从业者在广告业中具有“近水楼台”的优势,他们是各大商家关注的主要宣传媒体。因此,在未来的社会发展中,这些行业和在它们的基础上衍生出来的广告公司在广告收入上将获得非常大的收益。 3、文化艺术与娱乐

镍氢电池的市场与发展前景

镍氢电池的市场与发展 前景 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

镍氢电池的市场与发展前景 近年来,我国镍氢充电电池发展的速度越来越快,已经步入了镍氢充电电池生产大国的行列。由于相关电子产品的促进,我国同时也变成了镍氢充电电池的消费大国。 随着电器开始向便携式和高效率方向发展,便携式小家电开始进入广大消费家庭。因此,大功率的镍氢充电电池以及充电电器的消费量也逐渐加大。小型电动工具、电动玩具、电动剃须刀、数码相机等用电器具进入普通百姓家庭,充电电池已成为人们的生活中必备电子产品。 一、镍氢电池市场前景分析 (1)镍氢电池逐步取代镍镉电池 2006年,全球小型二次电池总销量约79.79亿只,其中镍氢电池和锂电池合计占57%,占据小型二次电池的大部分市场份额,并保持着较快的增长势头。虽然镍镉电池仍在当时占据较大份额,但由于其环境不友好的缺点,其份额正在逐步被镍氢电池取代。 (2)全球镍电池产业持续稳定增长 镍电池具有大功率技术成熟、安全及可靠性好、循环利用率高、成本低等优点。除镍镉电池因环保因素正逐渐被取代外,镍锌电池和镍氢电池已被广泛应用于电动工具、电动玩具、照明灯具、移动通讯等各类电器电子产品。在全球消费升级、工业产品升级的大背景下,电器和电动工具等产品的无绳化和便携化要求越来越强烈,镍电池的应用领域仍不断拓宽。 尤其是镍氢电池具有大功率电池技术成熟的优点,随着全球工业化升级对工业用二次电池的功率、容量、循环使用寿命提出愈来愈高的要求,镍氢电池在工业用电池领域,特别是在大功率工业用动力电池领域也正逐步占据市场的主导地位。 全球镍电池的生产主要集中在东亚地区,如日本三洋、松下和我国的比亚迪、科力远等厂商。由于市场需求稳定增长,各大企业间的竞争总体上较为平稳。 未来,三大因素将推动镍电池的市场需求快速稳定的增长: ①随着工业制造的技术升级和民用市场的消费升级,镍氢电池将逐步取代镍镉电池,推动镍氢电池行业的持续增长; ②太阳能光伏电池产业的蓬勃发展,将推动作为光伏发电系统的储能部件‐‐镍氢高温电池行业的快速增长; ③镍氢电池是极具发展前景、竞争力强的动力电池之一,未来混合动力汽车(HEV)的快速发展将推动镍氢动力电池实现跨越式增长。 二、镍氢电池发展的方向

车用锂电池市场现状及未来发展趋势(精)

车用锂电池市场现状及未来发展趋势锂电池指的是具有各种特性的可充电(二次充电电池种类,这些特性会影响电池的能量密度,功率密度,预期寿命以及安全性。这些特性会因材料不同而有所不同——比如电解质以及电极(阳极和阴极——通常被用作为电池的各类组件。 从 2009年至 2010年,混合动力汽车,电动汽车以及插电式混合动力汽车的锂电池市场增长了 5倍之多,营收达到 5.018亿美元。 2011年锂离子电池市场销售额为20亿美元, 2012年电动车用锂电池总销售额为 160亿美元。 其中,大部分的增长源于人们对诸如雪弗兰伏特、尼桑 LEAF 等汽车上市的急切盼望,这些都是环保、经济型家用车的代表;这些汽车的产量都高于之前的汽车。混合动力汽车之前使用的是镍金属氢化物技术,而现在很大部分已转为使用锂电池技术。 未来一段时期内, 预计锂电池市场会经历一次显著的增长。美国派克研究公司(Pike Research 日前发布报告称, 到 2017年底锂离子电池成本将削减超过三分之一,下降为每千瓦时能量成本 523美元,同时车用锂离子电池销售额将增至当前的700%以上,有望达到 146亿美元, 到 2020年,锂离子电池造价还将进一步下降至每千瓦时 447美元,而用于电动车的锂离子电池全球年销售额则将达到 220亿美元。另据赛迪信息产业 (集团发布的报告显示, 2013年中国锂电池整体市场规模将达到741.7亿元,同比增长 33.2%,并且未来三年市场规模增速将会保持在 30%以上。到2015年, 整个中国锂电池的市场规模将突破 1000亿 元,达到 1251.5亿元。 尽管如此,目前,锂离子电池的价格和安全性仍然是制约当前电动汽车发展的主要因素。这是由于有限的生产水平以及各大公司开展的研发理想电池(阳极,阴极以及电解质的结合配置工作所共同造成的。在没有标准的情况下, 原本可行性较高的电池交换和二次应用的实践操作就变得十分复杂困难了。除此以外,电池能量密度、充电设施等也成为了限制电动车市场增长的因素。

锂离子电池技术发展现状与趋势

锂离子电池技术发展现状与 趋势

一、文献综述 1、前言 现阶段,日本、韩国、美国等国家引领锂离子动力电池技术的发展。日本的行业技术水平具有领先优势,韩国的动力电池制造能力处于领先地位,美国则具有引领前沿的科研能力。 2、国外发展现状 2·1日本 2·11 2009年,日本政府推出了RISING计划(创新型蓄电池尖端科学基础研究事业)和U~EAD项目(汽车用下一代高性能电池系统),并于2013年更新了动力电池技术发展路线图(RM2013),具体指标有2020年电池的续航里程实现250~350km·电池系统总电量达到25~35kW·h,电池能量密度实现250Wh· kg-1,功率密变达到1500W·kg-1,循环寿命达到1000-1500次,价格成本降低到2万日元/W·h。RM2013指明了电极材料的发展方向,正极材料要发展xLiMn03·(1~x)LiMO2(M=Ni,Co,Mn,0≤x≤1)、LizMSi0s、LiNiosMn1s04、LiCnP04、Li2MSO·F、LiMO2(M=Ni,Co,Mn);负极材料要发展Sn~CoC合金,Si基负极包括Si/C和Si0,以及Si基合金。 2·12日本具有代表性的锂离子动力电池企业为松下电池公司。松下是动力电池行业的领导者,作为Tesla最主要的动力电池供应商,凭借Tesla的发展稳居市场领导者地位,全球市场份额在20%左右。目前松下电池主要给ModelS和MndelX提供18650圆柱电池,正极采用镍钴铝三元材料(NCA),负极使用硅碳复合材料,单体能量密度可达252Wh·kg-1,而即将使用在Mode13上的21700圆柱形电池单体能量密度更是提高到300Wh·kg-1·是目前行业内能量密度最高的电池。 2·2韩国 2·21 2011年,韩国启动了包含锂离子电池关键材料、应用技术研究、评价及测试基础设施以及下一代电池研究的二次电池技术研发项目。LG化学和三星SDI是具有代表性的韩国锂离子动力电池企业,也是动力电池领域的后起之秀,两者凭借先

石油化工发展趋势及机遇

未来石油化学工业发展趋势及中国创新发展机遇 未来十年,是中国石油和化学工业转型发展的关键时期。在“十三五”规划编制的前 夕,中国石油和化学工业联合会组织了一批跨国公司大中华区总裁和高层管理人员,对 “未来十年世界石油化学工业的发展趋势和中国的创新发展机遇”进行深入讨论,用了9 个月的时间,五易其稿,形成了“跨国公司看中国石油和化学工业未来”的研究报告。这 个报告在9月11~12日召开的2014中国国际石油化工大会上向业界公开发布。中国石油和化学工业联合会常务副会长李寿生作为报告发布人指出,“第三只眼睛”看中国的全球 视野和独到见解,值得全行业认真学习、仔细倾听和深入思考。整个研究报告共分五个部分,4万多字,现摘要介绍其主要观点。 一、未来十年世界石化产业发展的新趋势 未来十年,全球石油和化学工业既面临着难得的发展机遇,也面临着严峻挑战。在新 一轮科技革命浪潮的推动下,全球石化产业发展呈现一系列新的变化和新的趋势。未来全 球石化产业发展的五大新趋势: (一)新兴市场快速崛起,推动全球石化消费市场持续高速增长 1.新兴经济体快速发展推动全球石化市场重心东移 新兴经济体的快速发展,为全球石化产业发展提供了强大动力和市场空间,并推动市 场增长重点由北美、西欧加快转向高速增长的亚太和南美地区。未来十年,亚洲将持续保 持全球石化产品需求增长中心的地位。 2.全球石化产业发展速度将高于经济增长速度 在未来中长期发展阶段,全球石化产业将继续保持较快增长,无论在发达国家还是发 展中国家,石化产业发展速度都将超过GDP增速。 (二)原料多元化进程加快,推动全球能源原料结构发生重大变化 1.页岩气大规模开发推动全球油气供给重心向西转移 北美“页岩气革命”正在推动世界油气工业从常规油气向非常规油气跨越。非常规天 然气尤其是页岩气的快速增长,使美国成为全球第一大产气国。随着全球非常规油气资源 开发利用深入推进,全球能源供给的重心将加快从中东向西半球转移。 2.中国现代煤化工重大突破开辟了原料供应新途径 中国对进口石油依赖度的快速增长以及油价的持续高位促使中国使用更多的煤炭来替 代进口石油。现代煤化工的技术突破加快了以“煤代油”的进程。中国正在开展煤制油、 煤制天然气、煤制烯烃等工程示范,其中一些项目取得了良好效益。未来十年,中国现代 煤化工产业将会有较大的发展,成为原料多元化进程中的又一重要分支。 3.生物质能源和化工产品发展前景广阔 为减少对化石能源的依赖和二氧化碳等温室气体及污染物的排放,世界各国都十分重 视可再生能源的研究与开发利用,许多跨国石化公司也积极加入相关产品研发的行列。由 于目前生产成本很高,今后几年生物质产品占石化产品的百分比不会大规模提高。未来十年,生物质能源和化工产品在技术上将有新的突破,产业规模和产品产量将进一步提高, 成为石化产业的原料来源之一。. (三)高端化、差异化深入发展,推动产业持续向价值链高端延伸 1.科技创新成为石化产业转型升级的主要驱动力 为应对生态环境恶化、气候变暖、人口增长及老龄化等严峻挑战,满足人们快速增长

相关文档
相关文档 最新文档