文档库 最新最全的文档下载
当前位置:文档库 › 第二章 贝叶斯状态估计与粒子滤波

第二章 贝叶斯状态估计与粒子滤波

第二章 贝叶斯状态估计与粒子滤波
第二章 贝叶斯状态估计与粒子滤波

第二章 贝叶斯状态估计与粒子滤波

视觉跟踪可视为状态估计问题[16,54],即根据视觉目标在先前帧的状态信息估计其在当前帧的状态,从而实现视觉跟踪。状态估计一直都是自动控制、通讯、航空与航天等领域的经典研究主题之一[69,70]。贝叶斯状态估计是处理不确定性条件下状态估计问题的有力理论工具[21,22,71]。为了有效处理非高斯、非线性状态估计问题,二十世纪九十年代人们提出了粒子滤波[19-22,71],粒子滤波是基于Monte Carlo 随机模拟的贝叶斯滤波方法。本章将简单介绍贝叶斯状态估计和粒子滤波相关理论问题。首先,通过介绍贝叶斯状态估计相关理论,引出贝叶斯状态滤波问题及实现贝叶斯状态滤波的两大理论工具:卡尔曼系滤波器和粒子滤波。然后,简单介绍了卡尔曼系滤波器的相关理论和算法。最后,详细介绍了粒子滤波理论框架、收敛性问题及经典采样策略。

2.1 贝叶斯状态估计

估计理论是概率论和数理统计的一个分支,所研究的对象是随机现象。它是根据受干扰的观测数据来估计关于随机变量、随机过程或系统的某些特性的一种数学方法[70]。所谓估计,就是从带随机噪声干扰的观测信号中提取有用信息,可定义如下:

定义 2.1 如果假设被估计量为n 维向量()t X ,而其观测量为m 维向量()t Z ,且观测量与被估计量之间具有如下关系

()()(),t h t t =????Z X V (2.1)

其中,[]h ?是已知的m 维向量函数,由观测方法决定;()t V 是观测误差向量,通常为一个随机过程。那么,所谓估计问题,就是在时间区间[]0,t t 内对()t X 进行观测,从而在得到观测数据(){}0,t t ττ=≤≤Z Z 的情况下,要求构造一个观测数据的函数()?X Z 去估计()t X 的问题,并称()?X

Z 是()t X 的一个估计量,或称()t X 的估计为()?X Z [69,70]。 一般地,估计问题可以分为两类:状态估计和参数估计。状态和参数的基本差别在于,前者是随时间变化的随机过程,后者是不随时间变化或随时间缓慢变化的随机变量。因此,

可以说状态估计是动态估计,而参数估计是静态估计。在此,主要讨论系统状态估计问题。下面首先介绍最优估计和估计准则,然后在贝叶斯意义下描述状态估计问题。

2.1.1 最优估计与估计准则

一般地,在实际工程应用中总希望估计出来的参数或状态愈接近真实值愈好,即如何最优地利用系统观测数据得到一个最优估计量,这就是最优估计问题。所谓最优状态估计,是指在某一确定的估计准则条件下,按照某种统计意义,使系统状态估计达到最优[70]。因此,最优状态估计是针对某一估计准则而言的。估计准则是衡量估计的好坏的,选择合理的估计准则是极其重要的。可以说,估计准则在很大程度上决定了估计的性能、求解估计问题所使用的估计方法及估计量的性质等。估计准则是多种多样的,但在贝叶斯意义下,统计估计准则可分为:贝叶斯估计准则与非贝叶斯估计准则[69,70]。非贝叶斯估计准则常见的有最小二乘准则和极大似然准则;而贝叶斯估计准则常见的有极大后验准则和最小方差准则。估计准则和估计方法是紧密相关的,选择不同的估计准则就对应不同的估计方法。下面将简要介绍基于这几种估计准则的统计估计方法: 1. 最小二乘估计

最小二乘估计是法国数学家高斯(Gauss )于1809年提出的,是一种使用最广泛的估计方法之一。最小二乘估计可定义如下:

定义 2.2 设被估计量X 是非时变的n 维随机向量,如果对其进行k 次线性观测,则有

() 1,2,,i i i i k =+=Z H X V (2.2)

其中i Z 是m 维观测向量,i Η是m n ?观测矩阵,i V 是m 维的零均值观测误差向量。如果将k 次线性观测简写成,

=+Z H X V (2.3)

其中12k ??????=??????Z Z Z Z ,12k ??????=??????H H H H ,12k ??

????=??????

V V V V 则Z 是一个km 维向量,H 是km n ?矩阵,V 是km 维的零均值观测误差向量。当km n ≥时,

可根据Z 来估计X 。如果要求选择X 的一个估计?X

,使得性能指标 ()()()

???J T

=--X

Z HX Z HX (2.4)

或更一般形式的二次型性能指标

()()

()

???J T

W =--X

Z HX W Z HX

(2.5) 达到极小,那么称这个估计?X

为X 的最小二乘估计或加权最小二乘估计,并记为或(

)?L S W X Z 。其中W 为km km ?对称正定加权矩阵[69,70]。 对于最小二乘估计,作如下几点说明:

(1)Z 是所有观测数据的全体,因此最小二乘估计要求把所有观测数据都储存起来作统一处理,很难实现实时处理。

(2)最小二乘估计或加权最小二乘估计都是无偏估计。

(3)设观测误差的方差阵为{}Var =R V ,则可以证明,当选择加权矩阵1-=W R 时,能使加权最小二乘估计的方差阵达到最小[70]。 2. 极大似然估计

极大似然估计是以观测值出现的概率最大作为准则的,是应用非常广泛的参数估计方法。1906年费希尔(Fisher )首先使用这种估计方法,它是以似然函数概念为基础的。极大似然估计可定义如下[69,70,72,73]:

定义 2.3 设X 为n 维被估计量,{};1,2,,i i k ==Z Z 为X 的k 次观测数据集,它是从同一个分布()p Z X 独立采样得到的(即独立同分布的)。记

()()1

k

i

i L p ==

∏X Z

X (2.6)

称为样本{};1,2,,i i k ==Z Z

的似然函数。如果样本集Z 的一个函数()1??,,ML ML k =X X Z Z 满足:()

()?sup M L X L L =X X ,则成?ML

X 为X 的极大似然估计[70]。 对于极大似然估计,可以证明,当观测次数k 趋于无限大时,极大似然估计量?ML

X 是一种无偏估计量。因此,极大似然估计是渐近无偏的。此外,极大似然估计量可以是随机量,

也可以是非随机参数,适用范围较广。 3. 贝叶斯估计

贝叶斯估计是以贝叶斯统计为基础的,是当前最优估计的研究热点之一。贝叶斯统计的主要优势在于能处理数据分析中的不确定性,包括被估计的参数以及模型中的任何不确定性。在贝叶斯统计中,被估计量X 都被当作随机变量,它服从一定的分布,并认为已观测到的数据可以揭示这个分布的信息。根据先验知识确定的被估计量X 的分布,称为先验分布()p X ;该分布将根据纳入的观测数据中的信息进行改进而得到后验分布()p X Z 。从先验分布进化为后验分布是通过贝叶斯定理来实现的。根据贝叶斯统计原理,贝叶斯估计可定义如下: 定义 2.4 设X 为被估计量,其先验分布为()p X ,1:k Z 为X 的k 个观测值,其条件概率密度函数为()1:k p Z X ,则可利用贝叶斯公式得到后验概率密度函数

()()()

()

1:1:1:k k k

p p p p =

Z X X X Z Z (2.7)

如果令()

?,L X X 为损失函数,度量X 的一个估计?X 带来的损失,则后验分布()1:k p X Z 下的损失函数()

?,L X X

的期望 ()

()()1:??,,B k

E L L p d ??=??

?X X

X X

X Z X (2.8)

称为贝叶斯后验风险。如果估计?B X 能使后验风险达到最小,则称?B

X 为X 的Bayes 估计[70]。 由式(2.8)可知,损失函数的选择非常重要,选择不同形式的损失函数,就可得到不同的贝叶斯估计结果。下面将讨论两种情况:最大后验估计和最小方差估计。

(1)最大后验估计:如果令损失函数为01-风险,即

()

?0 ?,?1 L ?=?=?≠??X X X X X X

(2.9)

于是,将式(2.9)代入式(2.8)则有

()

()()1:1:1:1:?,arg m in arg m ax B k

k k

k E L p d p d ??=≠=??===??X

X

X X

X x Z

z x X x Z

z x

(2.10)

显然,由式(2.10)可知,使贝叶斯后验风险达到最小,就相当于要求后验概率密度()1:k p X Z 达到最大[70]。也就是说,“()

?,B E L ????

X X 达到最小”与“()1:k

p X Z 达到最大”是等价的。因此,可以把“使后验概率密度函数()1:k p X Z 达到最大”作为估计准则来得到贝叶斯估计

?B

X ,并把这种估计称为最大后验估计,记为?M AP X 。 对于最大后验估计,将式(2.7)代入式(2.10),即有

()

()()

1:1:?,arg m ax ()

k B k

p E L p d p ??=???X

z x X X x x z (2.11)

由式(2.11)可知,在对X 没有任何先验统计知识的情况下,最大后验估计就退化为极大似然估计,因此可以说,极大似然估计是一种特殊的最大后验估计,或者说是一种特殊的贝叶斯估计。但是,在一般情况下,由于考虑了X 的先验知识(即先验分布()p X ),因此最大后验估计将优于极大似然估计。

(2)最小方差估计:如果令估计误差的二次型函数为损失函数,即

()

2????,T

L ????=-=--????

W

X X

X X X X

W X X (2.12) 于是,将式(2.12)代入式(2.8)则可得到贝叶斯性能指标为

()

()1:???,T

B k E L p d ??????=--????

??

?X X

X X W X X X Z X (2.13) 一般地,把“使式(2.13)所示的贝叶斯性能指标达到最小”作为估计准则所得到的贝叶斯估计

称为最小方差估计,记为?M V X 。

对于最小方差估计,作如下几点说明: ⅰ、最小方差估计为无偏估计。

ⅱ、可以证明,任何其他估计的均方误差阵或任何其他无偏估计的方差阵都将大于最小

方差估计的误差方差阵,即最优估计?M V X 具有最小的估计误差方差阵[70]。

2.1.2 贝叶斯意义下的状态估计

卡尔曼(Kalman )开创性地将状态变量和状态空间概念引入到最优估计,提出了状态估计理论[74]。从状态空间观点,状态是比信号更为广泛、更灵活的概念,非常适合处理多变

量系统,信号可以视为状态或状态的分量。一般地,动态系统的状态可定义如下: 定义 2.5 把能完全确定动态系统运动特性的最小一组变量X ,称为该动态系统的状态;状态变量所构成的向量称为状态向量;状态向量所张成的空间称为状态空间。

对于实际系统而言,其状态很难直接获得或不允许直接测量,得到的只是与状态有关的一些观测数据,而且观测数据往往会受到随机噪声的干扰,是有观测误差的。为了得到系统的状态,就只有根据这些观测数据构造或估计系统的状态,当然,系统状态的估计值应尽量接近实际状态,这就是所谓的系统状态估计问题[69,70]。在统计理论里,贝叶斯统计是处理不确定性问题的有力工具[75]。一直以来,贝叶斯状态估计是系统状态估计(特别是非线性、非高斯状态估计)的一大研究热点[21,48,71,76]。下面将简要介绍离散系统的状态估计和贝叶斯意义下的状态估计: 1. 离散系统的状态估计

离散系统的状态估计可定义如下:

定义 2.6 设随机、离散系统S 的状态空间模型为

()()1k k k

k

k k F H -=+???

=+??X X U Z X V (2.14) 其中,k X 为k 时刻(1k ≥)的系统状态向量,k U 为系统随机噪声,()F ?为系统状态转移模型;k Z 为k 时刻的系统观测向量,k V 为随机观测噪声,()H ?为系统观测模型。如果对系统的状态向量进行k 次观测,从而得到观测序列{}1:12,,,k k =Z Z Z Z ,那么所谓离散系统得状态估计问题,就是要求根据整个观测数据1:k Z ,求得在j 时刻系统状态向量j X 的一个最

优估计量的问题,通常把所得到的估计量记为()?j k X

,并且按照j 和k 的不同关系,状态估计可分为三类:

1)j k > 称为预测(或外推); 2)j k = 称为滤波;

3)j k < 称为平滑(或内插)。[69, 70] 2. 贝叶斯意义下的状态估计与递推贝叶斯滤波

考虑式(2.14)所示状态空间模型建模的动态系统S 的状态估计问题。如果将系统状态转移模型和观测模型概率化,则系统S 包含两个随机过程:状态过程和观测过程。其中,状态过程{}

0,1,

k k =X 可视为具有初始分布()0p X 的离散马尔科夫链,且其马尔科夫转移核为

()1,1k k p k -≥X X ,称为状态转移概率;观测过程{}0,1,k k =Z 条件依赖于状态过程,其条件

分布为(),1k k p k ≥Z X ,称为似然函数(又称为似然比)。于是,系统S 的状态过程和观测过程的统计特性可完全由初始分布()0p X 、状态转移概率()1k k p -X X 和似然函数

()k k p Z X 决定:

()()()

()

1010,, 1k k k k p p p k p --?=?≥?

??X X X X X Z X (2.15) 对于式(2.14),如果k U 与k V 为独立同分布的噪声,且相互独立,统计特性已知(即()k p U ,()k p V 已知),则状态转移概率和似然函数可由噪声的分布给出:

()()()()

()()11k k k k k k k k k k p p F p p H --?=-??

=-??U V X X X X Z X Z X (2.16) 特别地,当噪声信号具有高斯分布,且均值和协方差阵为:()k k E =U q ,()k k E =V r ,()k k Var =U Q ,()k k Var =V R ,则式(2.16)可改写为:

()()()()

()()11;,;,k k k k k k k k k k k k p N F p N H --?=+??

=+??X X X X q Q Z X Z X r R (2.17) 其中,()N ?为高斯分布函数。

于是,根据贝叶斯估计准则(定义 2.4)和系统状态估计(定义 2.6),贝叶斯意义下的状态估计问题即为:给定一系列观测数据{}1:12,,,k k =Z Z Z Z ,求得一列“最优状态估计

序列”{}

0:01????,,,k k k k k

=X X X X ,以使得式(2.8)定义的贝叶斯后验风险指标达到最小: (

)(

)

()()0:0:0:0:0:0:1:??arg m in ,? arg m in

,k B k k

k

k

k

k E L L p d ??=??=?X X

X X X X

X X

Z X

(2.18)

对于许多实际问题,最感兴趣的是状态的当前值。只考虑当前状态取值估计,这样的最优状态估计问题就变成一个最优滤波问题:在给定的观测数据{}1:12,,,k k =Z Z Z Z ,求得一个

最优的当前状态估计值??k k k

=X X ,使得满足贝叶斯后验风险指标: (

)(

)

()()1:??arg m in ,? arg m in

,B k k k k

k

k

k

k E L L p d ??=??=?X X

X X X X

X X

Z X

(2.19)

由贝叶斯估计(见2.1.1节)可知,对于其两种估计方法(最大后验估计和最小方差估计),若分别知道()0:1:k k p X Z 和()1:k k p X Z 的显式解,则贝叶斯意义下的最优估计和最优滤波问题的递推显式解即可求得。一般地,求解贝叶斯估计和滤波的后验分布的递推方程称为递推贝叶斯估计和滤波方程。对于离散时间随机系统S ,在给定初始先验状态分布()0p X 条件下,()0:1:k k p X Z 的递推解可按如下序贯贝叶斯估计公式给出:

()()()

()

()10:1:0:11:11:1k k

k

k k k k k k k p p p p p ----=

Z X X

X X Z X Z Z Z (2.20)

其中,()1:1k k p -Z Z 为归一化常数。在实际应用中,感兴趣的是当前状态的滤波估计,如何求得状态后验分布()1:k k p X Z 是贝叶斯滤波的核心问题。对于贝叶斯滤波,可由如下两式递推求解:

(1)预测方程(Chapman-Kolmogorov 方程):

()()()1:1111:11k k k

k k k k p p p d -----=

?X Z X

X X Z X (2.21)

(2)更新方程(贝叶斯推理):

()()()

()

1:11:1:1k k

k

k k k k k p p p p --=

Z X X

Z X Z Z Z (2.22)

一般地,式(2.21)和式(2.22)被合称为贝叶斯滤波方程。

在理论意义上,式(2.20)与式(2.21)、式(2.22)分别构成了贝叶斯最优估计和贝叶斯最优滤波的递推最优求解方法。但是,在一般情况下,它们的显式解是不能得到的。因此,人们采用各种途径寻找贝叶斯滤波的近似数值求解方法。如果系统具有线性和高斯性,则卡

尔曼滤波是求解最优贝叶斯滤波有效方法[69,70,74,77,78]。为了处理非线性滤波问题,人们提出了扩展卡尔曼滤波[69,70,77-80];同时,为了更好地处理非线性滤波问题,Julier等在卡尔曼滤波的理论框架下提出了Unscented卡尔曼滤波[52,53]。但是,卡尔曼滤波、扩展卡尔曼滤波和Unscented卡尔曼滤波都不能有效解决非线性、非高斯情况下的贝叶斯滤波问题。为了处理非线性和非高斯滤波问题,20世纪90年代人们提出了粒子滤波[19-22,71]。粒子滤波给出了非线性和非高斯情况下最优贝叶斯滤波的近似数值解,当前已成为最优贝叶斯滤波理论领域的研究热点。

2.2 卡尔曼系滤波器

为了实现系统状态估计,在20世纪40年代,Wiener和Kolmogorov彼此独立地提出了一种最优线性滤波方法,称为维纳滤波[78]。但维纳滤波的不足之处是:(1)求解比较复杂,很难得到解析解,而且求得的最优滤波器在工程上很难实现;(2)计算是非递推的,需存储全部观测数据,存储量大且实时性差;(3)不适用于非平稳随机过程的滤波。在20世纪60年代,Kalman突破了维纳滤波的局限性,提出了在时域上的状态空间方法。引入状态变量和状态空间概念,从而改变了对滤波问题的一般描述,即它不是要求直接给出信号过程的二阶特性或谱密度函数,而是把信号过程视为在白噪声作用下一个线性系统的输出。在此基础上,利用Hilbert空间投影理论,Kalman提出了状态估计理论,称为卡尔曼滤波理论[74]。

卡尔曼滤波器给出了一套易于在计算机上实时实现的最优线性递推滤波算法,适合处理多变量系统和时变系统,适合处理非平稳随机过程,克服了维纳滤波理论的缺点和局限性[70,78]。但是,卡尔曼滤波器只能有效处理线性高斯情况下的滤波问题。在滤波器理论中,扩展卡尔曼滤波是应用最为广泛的一种非线性状态估计方法,其实质是将非线性的状态转移模型或观测模型线性化,然后利用卡尔曼预测方程和更新方程递推求解[79,80]。然而,非线性系统状态空间模型的线性化经常会在状态估计中引入较大误差。为了更好地处理非线性状态估计问题,Julier等在扩展卡尔曼滤波的理论框架下提出了Unscented卡尔曼滤波[52,53]。在此,我们将卡尔曼滤波、扩展卡尔曼滤波和Unscented卡尔曼滤波统称为卡尔曼系滤波器。本节将在最优贝叶斯滤波理论框架下简要介绍卡尔曼系滤波器理论。

2.2.1 经典卡尔曼滤波器

设动态系统S 具有线性、高斯性,则式(2.14)定义的状态空间模型可改写为:

1k k k k

k

k k k -=+??

=+?X A X U Z C X V (2.23) 其中,k A 为系统状态转移矩阵,由线性状态转移模型()F ?确定;k C 为系统观测矩阵,由线性观测模型()H ?确定;系统噪声k U 和观测噪声k V 为零均值高斯白噪声(即k U 和k V 服从高斯分布),且其协方差阵为:()k k Var =U Q ,()k k Var =V R 。令系统状态初始分布为高斯分布()0000;,N X X X P ,可以证明[],若()11:1k k p --X Z 服从高斯分布

()()

11:111111;,k k k k k k k p N -------=X Z X X P (2.24)

则()1:1k k p -X Z 和()1:k k p X Z 也是高斯的,

()()

1:111;,k k k k k k k p N ---=X Z X X P (2.25) ()()

1:1;,k k k k k k k p N -=X Z X X P (2.26)

其中,();,N X X P 为高斯分布函数,X 为均值,P 为协方差。

于是,通过式(2.24)-(2.26)的卡尔曼滤波递推求解,即可实现式(2.21)和式(2.22)所定义的贝叶斯滤波递推求解[70]。卡尔曼滤波可分为两部分:一步预测和观测更新。其算法如下:

算法 2.1(卡尔曼滤波算法):

(1)初始化:对于0k =,给定初始状态0X 的均值00X 和方差00P ; (2)递推求解:对于1,2,k = ,则有

(a )一步预测:

111k k k k k ---=X A X (2.27) 1111T

k k k k k k k ----=+P A P A Q (2.28)

(b )观测更新

()

1

11T T k k

k

k

k

k k k k ---=+K P C

C

P C R (2.29)

()

11k k k k k k k k k --=+-X X K Z C X (2.30)

11k k k k k k k k --=-P P K C P (2.31)

由于式(2.24)-(2.26)可由其均值和协方差阵完全表征,因此卡尔曼滤波是递推贝叶斯最优滤波的显式解。也就是说,在给定线性高斯假设条件下,卡尔曼滤波与贝叶斯最优滤波是完全等价的。

2.2.2 扩展卡尔曼滤波器

对于式(2.14)定义的系统状态空间模型,若状态转移模型()F ?和状态观测模型()H ?是非线性的(但仍假设具有零均值高斯白噪声),则经典卡尔曼滤波不能实现最优滤波问题。一般地,人们通过各种非线性近似求得近似解。最基本的近似方法是泰勒近似法,其思路是:当状态的先验分布可用高斯分布近似时,状态的条件分布完全由其均值和协方差阵表征,若在状态的滤波值和预测值周围分别将状态转移方程和观测方程进行泰勒展开:

()()()

11111111k k k k F k k k k k k k k F --------=+-+?-+X X A X X X X U (2.32) ()()()

111k k k k H k k k k k k k k H ---=+-+?-+Z X C X X X X V (2.33)

其中,()111F k k k ---?-X X 和()

111H k k k ---?-X X 为被截掉的二阶以上的高阶项。此种近似称为局部线性近似(也称为一阶泰勒近似),k A 和k C 是线性化的雅可比阵。

()()11

1

k k k k k k k k F H ---==??

=????

??

=???

X X X A X X C X (2.34)

于是,非线性高斯系统S 的局部线性化系统为

1k k k k k

k k k k k

-?=++??

=++??X A X a U Z C X c V (2.35) 其中,在给定11k k --X 和1k k -X 时,()1111k k k k k k F ----=-a X A X 和()

11k k k k k k H --=-c X C X 分

别为确定性分量;()111k F k k k k ---=?-+U X X U 和()

1k H k k k k -=?-+V X X V 为随机噪声,且包含了线性化误差,因而已是非高斯的。如果忽略线性化误差,即k k ≈U U 和k k

≈V V ,那么式(2.35)所示的局部线性化系统具有线性、高斯模型,从而可利用2.2.1节的线性高斯系统的卡尔曼滤波公式递推求解()1:k k p X Z ,即可近似假定状态的条件分布是高斯的:

()()

11:111111;,k k k k k k k p N -------X Z X X P (2.36) ()()

1:111;,k k k k k k k p N ---X Z X X P (2.37) ()()

1:1;,k k k k k k k p N -X Z X X P (2.38)

显然,式(2.36)-(2.38)中的参数可通过卡尔曼滤波公式递推近似求解。此种非线性滤波方法称为扩展卡尔曼滤波(EKF ),其算法如下: 算法 2.2(EKF 算法):

(1)初始化:对于0k =,给定状态先验高斯分布的均值00X 和方差00P ; (2)递推求解:对于1,2,k = ,则有

(a )一步预测:

()11

k k k k F --=?=

?X X X A X

111k k k k k ---=X A X 1111T

k k k k k k k ----=+P A P A Q

(b )观测更新

()1

k k k k H -=?=

?X X X C X

()

1

11T

T k k

k

k

k

k k k k ---=+K P C

C

P C R

()

11k k k k k k k k k --=+-X X K Z C X

11k k k k k k k k --=-P P K C P

从EKF 的机理分析可知,EKF 是一种局部次优的贝叶斯滤波估计,且当系统的非线性较强、状态的条件分布用高斯分布近似的误差较大时,采用EKF 近似非线性滤波可能导致较大的累积估计误差。一般地,EKF 在应用中要注意两点[69,70,77,78]:

(1)基于泰勒展开的线性化方法易受参考点的影响。EKF 是在当前估计值处进行泰勒展开的,并取其线性近似。在EKF 递推计算过程中,卡尔曼滤波增益k K 依赖于当前的状态估计值。如果当前估计值与真实值相差很大,则参考点的偏离将引起进一步的线性化误差以及不精确的卡尔曼滤波更新。

(2)由于EKF 使用了两个雅可比矩阵的计算,所以在EKF 应用时应注意状态转移模型和观测模型的连续性。

以上两点构成了EKF 的基本应用前提:小偏差初始条件和系统较弱的非线性;且()F ?和()H ?足够光滑,以确保雅可比阵k A 、k C 的存在性。

2.2.3 Unscented 卡尔曼滤波器

EKF 是在滤波器理论中应用较为广泛的一种非线性状态估计方法,但当非线性程度比较高时,非线性模型的线性化将导致较大的误差。为了有效地处理非线性状态估计问题,Julier 等提出了Unscented 卡尔曼滤波(UKF )[52,53,81]。UKF 的核心是Unscented 变换,其使用一组适当选择的加权的离散采样(又称为Sigma 点)表征系统状态概率分布的均值和协方差,这组采样点根据非线性系统状态空间模型进行预测和观测,从而不需线性化[81,82]。 1. Unscented 变换与尺度Unscented 变换

Unscented 变换是一种近似计算经历了非线性变换的随机变量的统计特性的新方法,它建立的动机是:近似一个概率分布比近似一个任意的非线性变换(或函数)要容易[81-83]。假设X 是均值为X 、协方差阵为XX P 的n 维随机向量,且X 经历非线性变换:

()g =Z X (2.39)

其中,()g ?为非线性函数。为了估计随机向量Z 的均值Z 和协方差阵ZZ P ,Julier 和Uhlmann 提出了Unscented 变换(UT )[52,82]。其基本思想是:根据一种特定的、确定性的方法采样

21n +个加权随机样本{},i i i S W =X ,这组随机样本i S 的均值为X 、协方差阵为XX P ;然后

将非线性函数()g ?作用于每个样本得到变换后的一组随机样本i Z ,且i Z 能很好地表征随机变量Z 的统计特性。UT 的具体步骤如下: (1)根据下列方程采样21n +个加权随机样本点,

0, 1,,, 1,,2i i

i i

i n

i n n

?

=??

=+=??

?=-

=+?

X X X X X X (2.40)

()()()0 12 1,,2

i

W n W n i n κκκ=+???

=+=?? (2.41)

其中,i W 是样本点i X 权,且201n

i i W ==∑;κ是尺度因子,控制采样点i X 与样本均值X 之间

的距离;

i

是()n κ+XX P 的第i 列(或行)的矩阵平方根。这些加权样本点称

为Sigma 点,并记为{},i i i S W =X 。

(2)将非线性函数()g ?作用于每个Sigma 点,则得到一组随机样本点i Z :

()i i g =Z X

(3)估计随机向量Ζ的均值Z 和协方差阵ZZ P ,

()()20

20n i i i n

T

i i i i W W ==?

=????=--??

∑∑zz Z Z P Z Z Z Z (2.42) 显然地,UT 不需要将非线性函数线性化,也不需要计算雅可比矩阵。而且可以证明[52]:UT 能精确估计任意非线性函数()g ?的二阶泰勒近似解;估计误差为三阶及三阶以上高阶矩项截断误差,且该估计误差被κ尺度化。

在UT 中,Sigma 点数随着状态空间的维数的增大而增大;且Sigma 点在状态空间的分布情况决定了UT 的性能。特别地,在严重的非线性情况下Sigma 点的在状态空间的分布是

影响UT 性能的关键。针对这个问题,Sigma 点被尺度化分布在状态空间里,第i 个

Sigma 点到均值X 的距离为i -X X ,且距离尺度化比为

<时,权00W <使

得估计的协方差阵可能是非半正定的。鉴于此,Julier 提出了尺度化Unscented 变换(SUT ),

其不仅能保持估计的二阶精度,而且能使协方差估计是半正定的[82]。在相同计算代价条件下,SUT 能部分地引入高阶矩信息,从而提高估计的精度。

对于SUT ,

Sigma 点按如下策略进行采样:

0, 1,,, 1,,2i i

i i

i n

i n n

?

=??

=+=??

?=-

=+?

X X X X X X (2.43)

()()()()()()

()

()()02

01 1,,212m c m c i i W n W n i n W W n λλλλαβλ?=+?

?=++-+=??==+??

(2.44) ()2

n n λα

κ=+- (2.45)

其中,()

m i

W 是均值估计权,()

c i

W 是协方差阵估计权;01α≤≤是尺度化因子,将控制Sigma

点的分布;0β≥是加权项,将引入高阶矩信息,提高估计精度(高斯先验下最优值为2β=)。于是,随机向量Z 的均值Z 和协方差阵ZZ P 可按下式计算:

()()()()20

20n m i i i n

T c i i i

i W W ==?=????=--??

∑∑zz Z Z P Z Z Z Z (2.46) 2. Unscented 卡尔曼滤波器

Julier 等提出将SUT 和卡尔曼滤波结合实现高斯、非线性情况下的贝叶斯递推滤波问题,这种滤波称为Unscented 卡尔曼滤波器(UKF )[53,81,83]。如果假设式(2.14)定义的系统状态空间模型是高斯、非线性的,并将噪声变量引入到状态变量中产生扩展的状态变量

T

a T T T

k k k k ??=??

X X U V ,则UKF 算法具体如下:

算法 2.3(UKF 算法): (1)初始化:对于0k =,令

0000a T

????X =X ,0

000000

a ??

??

=?

?????

P P Q R (2.47) 其中,0X 和0P 是初始状态的均值和协方差阵;系统噪声k U 和观测噪声k V 为零均值高斯白噪声,且其协方差阵为Q 和R 。 (2)递推估计:对于1,2,k = ,则有

(a )计算Sigma 点

111111 a a a

k k k k k k ------?=±

?

X X X (2.48) (b )UKF 预测

(

)

11111X

X

U

k k k k k k F -----=+X X X (2.49)

()

21,10a

n m X

i

k k i k k i W

--==

∑X X (2.50)

()

21,11,110

a

n T

c X X

i

k k i k k k k i k k k k i W

-----=????=

--????

∑P X X X X (2.51) (

)

1111X

V

k k k k k k H ----=+Z X X (2.52)

()

21,10

a

n m i

k k i k k i W

--==

∑Z Z (2.53)

(c )UKF 更新

()

2,11,110a

k k n T

c i

i k k k k i k k k k i W

----=????=

--????

∑Z Z P Z Z Z Z (2.54) ()

2,11,110

a

k k n T

c X i

i k k k k i k k k k i W

----=????=

--????

∑X Z P X X Z Z (2.55) 1

k k k k k -=X Z Z Z K P P (2.56)

()

11k k k k k k k k --=+-X X K Z Z (2.57)

1k k T

k k k k k k -=-Z Z P P K P K (2.58)

其中,a n n n n =++X U V 是扩展状态空间a X 的维数,K 是卡尔曼增益矩阵。

与EKF 相比,UKF 实现高斯、非线性滤波不需计算雅可比阵,能实现任意高斯、非线性情况下的状态估计问题。无论是在理论上还是在实际应用中,UKF 被证明都要优于EKF[52,53,81,83]。

2.3 粒子滤波

对于式(2.21)和式(2.22)定义的递推贝叶斯滤波问题,卡尔曼系滤波器在对状态后验分布()1:k k p X Z 递推求解中,仅对后验分布的一阶和二阶矩进行近似递推计算。因此,卡尔曼系滤波器仅适用于高斯、线性系统或高斯、非线性系统的滤波问题。对于非高斯、非线性系统,其状态分布实际上都有无穷个参数,于是仅在递推参数中传递两个低阶矩参数(或高斯分布假设)是不够的。显然地,非参数估计方法是一种有效的途径,将可完全放弃对状态分布所作的高斯假设。粒子滤波就是这样一种方法,采用序贯蒙特卡罗(Sequential Monte Carlo )模拟来近似状态分布,并实现贝叶斯递推滤波。

粒子滤波器(又称为CONDENSATION 、Bootstrap Filter 或Sequential Monte Carlo Filter )分别由信号处理[21,84]、计算机视觉[20,85]、统计[22,71]等领域独立地提出用以解决非高斯、非线性贝叶斯递推滤波问题。粒子滤波是以Monte Carlo 随机模拟理论为基础,将系统状态后验分布用一组加权随机样本(称为粒子)近似表示,新的状态分布通过这些随机样本的贝叶斯递推估计。粒子滤波主要包括三个步骤:(1)粒子采样,从建议分布(Proposal Distribution )中抽取一组新的粒子;(2)粒子加权,根据观测概率分布和贝叶斯公式计算各个粒子的权值;(3)估计输出,输出系统状态的均值、协方差或高阶矩等。此外,为了避免粒子滤波中出现的退化现象,重采样步骤经常被采用。本节首先简单介绍蒙特卡罗随机模拟原理,在此基础上阐述标准粒子滤波的理论框架;并讨论标准粒子滤波的粒子退化和“样贫”问题;同时,简单讨论了粒子滤波的收敛性问题。

2.3.1 蒙特卡罗(Monte Carlo )随机模拟

在很多复杂的统计问题(比如在信号处理、计算机视觉领域的高维贝叶斯推理和组合计算等)中,很难直接进行理论分析并进而求解,而随机模拟是非常实用的方法。随机模拟就是设法按问题的要求与条件去构造一系列的随机样本,并用这些样本的频率代替对应的概率作统计分析和推断[86,87]。在概率论发展初期,随机模拟原型常常来自博彩,于是人们就以博彩之都蒙特卡罗(Monte Carlo )作为随机模拟别称。蒙特卡罗方法经常应用于求解高维积分和优化问题,广泛应用于物理学[88]、统计学[22,71,89-91]、信号处理[21,25,84]、机器学习[87,92]以及计算机视觉[20,93-96]等领域。下面简要介绍蒙特卡罗方法的基本原理[86,87]:

对于高维空间X 上高维积分,

()()()I

f f p d X =?X X X (2.59)

其中,()p X 为定义在高维空间X 上的概率分布;()f ?是关于()p X 任意可积函数(多数为非线性函数),且满足:f

n f X →

。如果从概率分布()p X 独立地抽取N 个随机样本

()

{}

1

N i i =X ,则样本集()

{

}

1

N i i =X

是独立同分布的,于是概率分布()p X 即可由这些样本近似:

()()

()1

1N

i N i p N

δ==

-∑X X X (2.60)

其中,()

(

)i δ-X X

为在样本()i

X 处的delta-Dirac 函数。于是,式(2.59)定义的高维积分问

题可近似为如下求和问题:

)()

()()()()..1

1N

i a s N

N i I f

f I f f p d N

→∞

X

==

???

→=∑?X X X X (2.61)

这种基于随机模拟的积分方法称为蒙特卡罗积分。由式(2.61)可知,蒙特卡罗积分是几乎处处收敛于()I f ;而且,由大数定律可知,()N I f 是无偏的。如果()f ?的方差是有界的,

且定义()()()()2

2

2f

p E f I f σ

-X X ,则()N I f 的方差为2

f

N σ,并且由中心极限定理则有:

()())()2

0,N f N I f I f N σ→∞

-???→ (2.62) 如果概率分布()p X 具有标准形式(比如高斯分布),那么可直接从()p X 采样获得随机样本集()

{

}

1

N i i =X

[87]。但是,在实际应用中()p X 很难找到标准形式,于是很多复杂的采样策

略被提出,比如拒绝采样法[97,98]、重要性采样法[49,60,86,97,99]和马尔科夫链-蒙特卡罗采样法[86,87,94,95,97]等。在2.4节中将详细讨论随机模拟的各种采样策略问题。

2.3.2 标准粒子滤波器

对于式(2.20)定义的递推贝叶斯状态估计问题,系统的后验分布()0:1:k k p X Z 可以由蒙特卡罗方法近似。在非高斯、非线性情况下,后验分布很难具有标准形式,因此不能直接从后验分布采样。如果令()0:1:k k q X Z 为定义在非高斯、非线性系统状态空间上易于抽样的条件概率分布,且与后验分布具有相同或更大的支撑集1,则称()0:1:k k q X Z 为建议分布(也称

为重要性函数)[49,86,87]。设从建议分布抽取N 个随机样本形成样本集()

{}

0:1

N i

k

i =X ,则有:

()()

()

0:1:0:0:0

1N

i k k k

k i q N

δ==

-∑X Z X

X (2.63)

于是,对于后验分布则有:

()()()

()()

()

()

0:1:0:1:0:1:0:0:1

0:1:N

k k i i

k k k

k k k k i k k

p p q w

q δ==

=

-∑X Z X Z X Z X X X Z (2.64)

其中,()

i k w 为归一化的样本权,且()

()

()

1

i i k k N

i k

j w

w w

==

∑ ,其中

()

()

(

)

()()

0:1:0:1:i k k

i

k i

k

k

p w q ∝

X Z X

Z (2.65) 由此可见,后验概率()0:1:k k p X Z 可由一组加权的随机样本(称为粒子)()()

{

}

0:1

,N i i k k i w =X 近似,

而这样的采样方法,称为重要性采样方法[49,86,87]。

为了实现递推贝叶斯状态估计,可将建议分布改写成递推形式。如果假设当前系统状态独立于未来观测值,则有:

1

函数()f

x 在其定义域全体函数值不为零的点的集合称为()f x 的支撑集,记为supp f

()()()0:1:0:11:0:11:1,k k k k k k k q q q ---=X Z X X Z X Z (2.66)

并且,由递推贝叶斯状态估计公式(式(2.20))可知:

()()()()0:1:10:11:1k k k k k k k k p p p p ---∝X Z Z X X X X Z (2.67)

如果将式(2.66)和式(2.67)代入式(2.65),对于粒子()

0:i

k X ,其权值()i

k w

即为: ()

()()

(

)()

()

()()

(

)

()

()(

)()

(

)

()

()

()

()()

()

()

()

()

()

10:11:1

0:11:0:11:1

1

10:11:, =,i i i i i k k

k

k k k i

k i i i k k k k k i i i i k

k

k

k i k i i k k k

p p p w q q p p w

q ---------∝

Z X X

X X Z X X Z X Z Z

X X

X X X Z (2.68)

为了方便推导,式(2.67)未引入归一化因子()1:1k k p -Z Z 。显然地,在式(2.67)引入归一化因子等价于将权值()

i k w 归一化。如果假设状态X 是一马尔科夫过程且和观测是条件独立的,那么对于递推贝叶斯滤波问题,粒子()

i k X 的权()

i k w

可根据式(2.68)改写为: ()()()()

(

)()

()

()

()

()

(

)

1

1

1,i i i i k k

k

k i

i

k k i i k k k

p p w w q ---∝Z X X

X X X Z (2.69)

于是,后验概率()1:k k p X Z 可近似为:

()()

()

(

)1:1

N

i i k k k

k k

i p w

δ==

-∑X Z X X (2.70)

特别地,如果建议分布为状态先验分布,并递推化可得:

()()

(

)()()

(

)

11,i i i i k k k k k q p --=X X Z X X (2.71)

将式(2.71)代入式(2.69),则有:

()()()()()

1

i

i

i

i

k k k k w w p -∝Z X (2.72) 一般地,把这样的递推贝叶斯滤波称为标准粒子滤波[41,49,61]。标准粒子滤波算法如下: 算法 2.4(标准粒子滤波算法): (1)初始化:对于0k =,

粒子滤波原理和仿真

粒子滤波算法原理和仿真 1 引言 粒子滤波(Particle Filter, PF)是一种基于蒙特卡洛(Monte Carlo, MC)方法的递推贝叶斯滤波算法。其核心思想是通过从状态空间寻找的一系列随机样本来近似系统变量的概率密度函数,以样本均值代替积分运算,从而获得状态的最小方差估计。其中从状态空间中抽取的样本称为“粒子”。一般地,随着粒子数目的增加,粒子的概率密度函数就逐渐逼近状态的概率密度函数,从而达到最优贝叶斯估计的效果。 2 粒子滤波原理 2.1 系统的动态空间 对于被观测对象的状态,可以通过以下非线性离散系统来描述: 11(,)t t t x f x w --= (1) (,)t t t z h x v = (2) 以上为系统的状态方程和观测方程。其中,f ( )为状态函数,h ( )为观测函数,x t 是系统在时间t 的状态变量,w t 为对应的过程噪声,z t 是系统在时间t 的观测值,v t 为对应的观测噪声。 从贝叶斯估计角度来看,状态估计问题就是根据观测信息z 0:t 构造状态的概率密度函数p (x 0:t |z 0:t ),从而估计在系统在任何状态下的滤波值。设系统状态序列函数为g t ,则有: []0:0:0:0:0:()()()t t t t t t x E g x g x p x z dx =? (3) 根据蒙特卡洛方法,后验概率分布可以用有限的离散样本来近似,由大数定律,当系统粒子数N →∞时,期望E [g t (x 0:t )]可近似为: []() 0:0:1 1()()N i t t t t i E g x g x N ==∑ (4) 式中{() 0:i t x : i =1,2,...N }为状态空间中按p (x 0:t |z 0:t )得到的采样点。 2.2 重要性采样 在粒子采集过程中,p (x 0:t |z 0:t )往往是未知且多变的,因此可先从一个已知且容易采样的参考分布q (x 0:t |z 0:t )中抽样,再通过对抽样粒子集进行加权求和来估计系统的状态值,即:

第二章 贝叶斯状态估计与粒子滤波

第二章 贝叶斯状态估计与粒子滤波 视觉跟踪可视为状态估计问题[16,54],即根据视觉目标在先前帧的状态信息估计其在当前帧的状态,从而实现视觉跟踪。状态估计一直都是自动控制、通讯、航空与航天等领域的经典研究主题之一[69,70]。贝叶斯状态估计是处理不确定性条件下状态估计问题的有力理论工具[21,22,71]。为了有效处理非高斯、非线性状态估计问题,二十世纪九十年代人们提出了粒子滤波[19-22,71],粒子滤波是基于Monte Carlo 随机模拟的贝叶斯滤波方法。本章将简单介绍贝叶斯状态估计和粒子滤波相关理论问题。首先,通过介绍贝叶斯状态估计相关理论,引出贝叶斯状态滤波问题及实现贝叶斯状态滤波的两大理论工具:卡尔曼系滤波器和粒子滤波。然后,简单介绍了卡尔曼系滤波器的相关理论和算法。最后,详细介绍了粒子滤波理论框架、收敛性问题及经典采样策略。 2.1 贝叶斯状态估计 估计理论是概率论和数理统计的一个分支,所研究的对象是随机现象。它是根据受干扰的观测数据来估计关于随机变量、随机过程或系统的某些特性的一种数学方法[70]。所谓估计,就是从带随机噪声干扰的观测信号中提取有用信息,可定义如下: 定义 2.1 如果假设被估计量为n 维向量()t X ,而其观测量为m 维向量()t Z ,且观测量与被估计量之间具有如下关系 ()()(),t h t t =????Z X V (2.1) 其中,[]h ?是已知的m 维向量函数,由观测方法决定;()t V 是观测误差向量,通常为一个随机过程。那么,所谓估计问题,就是在时间区间[]0,t t 内对()t X 进行观测,从而在得到观测数据(){}0,t t ττ=≤≤Z Z 的情况下,要求构造一个观测数据的函数()?X Z 去估计()t X 的问题,并称()?X Z 是()t X 的一个估计量,或称()t X 的估计为()?X Z [69,70]。 一般地,估计问题可以分为两类:状态估计和参数估计。状态和参数的基本差别在于,前者是随时间变化的随机过程,后者是不随时间变化或随时间缓慢变化的随机变量。因此,

第二讲近似高斯滤波

张永安 非线性/非高斯滤波讲义 第二讲 近似高斯滤波 2.1 泰勒线性化和推广卡尔曼滤波 给定随机系统的动态滤波问题,系统包括两个过程: (1) 状态过程(信号过程):具有初始分布0~()0x p x ,转移核为()1|k k p x x ?的马尔科夫过程; (2) 观测过程:观测量与状态量k z k x 有概率关联()|k k p z x 。 若系统具有 设系统具有线性、高斯性,亦即具有以下性质: SSM Σ∈S S (A1) 可以写成线性状态空间模型形式: S ???+=+=Σ?k k k k k k k k v x C z w x A x 1LSSM :(A2) 和服从高斯分布,即k w k v GSSM Σ∈S ; (A3) 状态初始分布为高斯分布: 000?~(;,0)x x x P N 以上(A2)与(A3)合称高斯假设,三个假设合起来线性高斯假设,具有线性高斯假设的模型称为线性高斯模型,其全体记为。则可以证明,若服从高斯分布: LGSSM Σ)|(1:11??k k z x p 11:111|11|1?(|)~(;,k k k k k k k p x z x x P ???????)N )|(1:1?k k z x p 和也是高斯的, )|(:1k k z x p 1:1|1|1?(|)~(;,)k k k k k k k p x z x x P ???N 1:||?(|)~(;,)k k k k k k k p x z x x P N 且这三个高斯分布的参数(状态的均值和协方差阵)满足卡尔曼滤波递推公式,类似于贝叶 斯递推滤波公式,卡尔曼滤波分两部分: 一步预测和测量修正。其算法如下: 算法2.1 (卡尔曼滤波): (1) 给定 0|00|0,P x (2) 递推计算:其中 ",1,0=k (a) 一步预测: k k k k k k q x A x +=???1|11|?? k T k k k k k k Q A P A P +=???1|11|(b) 测量修正:

选修2-2 第二章 推理与证明(B)

实用文档 选修2-2 第二章 推理与证明(B) 一、选择题 1、某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1) 种走法,从平地上到第二级台阶时有f (2)种走法,……则他从平地上到第n (n ≥3)级台阶 时的走法f (n )等于( ) A .f (n -1)+1 B .f (n -2)+2 C .f (n -2)+1 D .f (n -1)+f (n -2) 2、已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2 ,可推知扇形面 积公式S 扇等于( ) A.r 22 B.l 22 C.lr 2 D .不可类比 3、设凸n 边形的内角和为f (n ),则f (n +1)-f (n )等于( ) A .n π B.(n -2)π

C.π D.2π 4、“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等.”以上推理的大前提是 ( ) A.正方形都是对角线相等的四边形 B.矩形都是对角线相等的四边形 C.等腰梯形都是对角线相等的四边形 D.矩形都是对边平行且相等的四边形 5、设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出 f(k+1)≥(k+1)2成立”,那么,下列命题总成立的是( ) A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立 B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立 C.若f(7)<49成立,则当k≥8时,均有f(k)

实用文档 6、已知p =a +1 a -2 (a >2),q =2-a 2+4a -2 (a >2),则( ) A .p >q B .p 0,则1a +1b +1c 的值( ) A .一定是正数 B .一定是负数 C .可能是零 D .正、负不能确定 8、如果x >0,y >0,x +y +xy =2,则x +y 的最小值是( ) A.32 B .23-2 C .1+ 3 D .2-3 9、设f (n )=1n +1+1n +2+…+1 2n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.1 2n +2

余翊森_贝叶斯框架下B-Splines滤波算法的实现及其并行化

学士学位论文 BACHELOR DISSERTATION 论文题目贝叶斯框架下B-Splines滤波算法的实现及其并行化 学生姓名余翊森 学号2010021070030 专业电子信息工程 学院电子工程学院 指导教师唐续 指导单位电子科技大学 2014年6月4日

摘要 摘要 在理论上贝叶斯滤波可以解决非线性状态估计问题,但在大多数实际应用场景下,状态变量的概率密度函数无解析表达式。这使得贝叶斯滤波中的相关积分运算难以开展。为解决非线性状态估计的问题,学界已提出了诸如扩展卡尔曼滤波,无迹卡尔曼滤波,基于序贯蒙特卡洛(sequential Monte Carlo,SMC)的算法等多种方法,但它们仍存在种种不足。 本文研究的贝叶斯框架下的B-Splines滤波算法,该算法利用B-Splines对状态变量的概率密度函数,转移概率函数进行拟合重构,从而使相关函数以B-Splines的形式参与到贝叶斯滤波的相关运算中。由于其函数形式是多项式,其积分操作十分方便。同时,在对概率密度函数进行拟合时对系统不需要任何线性假设。这使贝叶斯滤波在非线性状态估计问题中得以用非SMC的算法实现。并且,该算法不存在基于SMC的算法中存在的粒子贫化退化的问题。从仿真结果来看,其估计精度高于粒子滤波等SMC算法。 该算法中存在大量向量和矩阵操作,对算法进行并行化可使其运行速度大大提高。本文中采用开源开发工具GPUmat实现了算法的并行化。仿真结果显示,相对于非并行的实现方式,在现有的并行化方法下,单次循环的加速比可达27.8. 关键词:贝叶斯滤波,非线性估计,B-Splines,GPUmat,并行化 I

高二数学选择进修2-2第二章推理与证明

高二数学选修2-2第二章推理与证明 1、 下列表述正确的是( ). ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .①②③; B .②③④; C .②④⑤; D .①③⑤. 2、下面使用类比推理正确的是 ( ). A.“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?” C.“若()a b c ac bc +=+” 类推出“ a b a b c c c +=+ (c ≠0) ” D.“n n a a b =n (b )” 类推出“n n a a b +=+n (b )” 3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b ?/平面α,直线a ≠ ?平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的, 这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。 (A)假设三内角都不大于60度; (B) 假设三内角都大于60度; (C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。 5、在十进制中01232004410010010210=?+?+?+?,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 6、利用数学归纳法证明“1+a +a 2+…+a n +1=a a n --+112 , (a ≠1,n ∈N)”时,在验证n=1 成立时,左边应该是 ( ) (A)1 (B)1+a (C)1+a +a 2 (D)1+a +a 2+a 3 7、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时

贝叶斯滤波与卡尔曼滤波的区别

课程:现代信号处理专业:信号与信息处理

贝叶斯与卡尔曼滤波的区别 贝叶斯原理的实质是希望用所有已知信息来构造系统状态变量的后验概率密度,即用系统模型预测状态的先验概率密度,再用最新的观测数据进行修正,得到后验概率密度。通过观测数据来计算状态变量取不同值的置信度,由此获得状态的最优估计。

卡尔曼滤波是贝叶斯滤波的一种特例,是在线性滤波的前提下,以最小均方误差为最佳准则的。采用最小均方误差准则作为最佳滤波准则的原因在于这种准则下的理论分析比较简单,因而可以得到解析结果。贝叶斯估计和最大似然估计都要求对观测值作概率描述,线性最小均方误差估计却放松了要求,不再涉及所用的概率假设,而只保留对前两阶矩的要求。 扩展卡尔曼滤波和无迹卡尔曼滤波都是递推滤波算法,它们的基本思想都是通过采用参数化的解析形式对系统的非线性进行近似,而且都是基于高斯假设。 EKF其基本思想是围绕状态估值对非线性模型进行一阶Taylor展开,

然后应用线性系统Kalman滤波公式。主要缺陷有两点:(1)必须满足小扰动假设,即假设非线性方程的理论解与实际解之差为小量。也就是说EKF只适合非线性系统,对于强非线性系统,该假设不成立,此时EKF性能极不稳定,甚至发散;(2)必须计算Jacobian矩阵及其幂。 UKF是基于UT变换,采用一种确定性抽样方法来计算均值和协方差。相对于EKF的一阶精确,UKF的估计精确度提高到了对高斯数据的三阶精确和对任何非线性的非高斯数据的二阶精确,可出来非加性噪声情况以及离散系统,扩展了应用范围,而且UKF对滤波参数不敏感,鲁棒性强,对复杂的非线性系统,UKF比EKF具有更大的优越性。 如何使卡尔曼滤波后的状态估计误差的相关矩阵的迹最小? Kalman 滤波器是一个最小均方误差估计器,先验状态误差估计可表示为我们最小化这个矢量幅度平方的期望值,这等价于最小化后验估计协方差矩阵的迹,通过展开合并?公式,可得

第二章 推理与证明(A)

实用文档 第二章 推理与证明(A) 一、选择题 1、已知△ABC 中,cos A +cos B >0,则必有( ) A .0

实用文档 4、观察下列数表规律 则从数2 010到2 011的箭头方向是( ) A .2 010↑→ B .→ C .→ D .→2 010↓ 5、对于定义在数集R 上的函数f (x ),如果存在实数x 0,使f (x 0)=x 0,则x 0叫函数f (x )的一个不动点.已知f (x )=x 2+2ax +1不存在不动点,那么a 的取值范围是( ) A .? ?? ??-12,32 B .? ????-32,-12 C .? ?? ??12,32 D .? ????-32,12 6、已知p =a +1 a -2 (a >2),q =2-a 2+4a -2 (a >2),则( ) A .p >q B .p

实用文档 7、有一个奇数列1,3,5,7,9,…,现进行如下分组: 第1组含有一个数{1};第2组含两个数{3,5};第3组含三个数{7,9,11};…试观察每组内各数之和与其组的编号数n 的关系为( ) A .等于n 2 B .等于n 3 C .等于n 4 D .等于n (n +1) 8、已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a

基于粒子滤波和贝叶斯估计的目标跟踪

大庆石油学院学报 第32卷第3期2008年6月J OU RNAL OF DAQ IN G PETROL EUM INSTITU TE Vol.32No.3J un.2008 收稿日期:2007212224;审稿人:付光杰;编辑:郑丽芹 作者简介:任伟建(1963-),女,博士生导师,教授,主要从事复杂系统的控制及故障诊断方面的研究. 基于粒子滤波和贝叶斯估计的目标跟踪 任伟建1,山茂泉1,谢 锋2,王文东3 (1.大庆石油学院电气信息工程学院,黑龙江大庆 163318; 2.大庆油田有限责任公司第二采油厂,黑龙江大庆  163414; 3.大庆钻井技术服务公司钻井工具分公司,黑龙江大庆 163461) 摘 要:针对颜色直方图的彩色物体的运动目标,在各种噪声的干扰下多呈现非线性和非高斯的特点,利用粒子滤 波的方法进行运动估计和跟踪.利用粒子滤波对非线性和非高斯的有效逼近的性质,获得粒子的后验概率分布,估计目 标状态,实现目标的有效跟踪.采用累加权值概率并且引入随机正态分布进行采样,保证粒子的多样性,有效避免粒子退 化问题.仿真结果表明该方法的有效性. 关 键 词:粒子滤波;贝叶斯估计;目标跟踪;彩色直方图 中图分类号:TP182 文献标识码:A 文章编号:100021891(2008)0320067204 0 引言 目标存在变化多样和跟踪设备对环境适应性不完善等问题,复杂环境下的运动目标跟踪是个难题[1,2].为了有效跟踪运动目标,必须对运动对象进行有效的估计,利用已有的信息,获得当前运动物体估计状态,然后利用现有观察数据对运动状态进行修正.该类问题经常采用广义卡尔曼滤波方法.广义卡尔曼滤波依赖于模型的线性化和高斯假设.在估计系统状态和方差时,由于线性逼近,可能导致滤波发散.且如果密度函数不是高斯分布,该方法估计精度不高.近年来出现一种新的最优非线性方法———粒子滤波,它源自序列蒙特卡罗方法[3].该方法不受动态系统各个随机变量的限制,能够有效地应用于非线性、非高斯的运动系统中. 文中首先对选定区域目标建立颜色直方图模型,然后在选定区域附近产生目标粒子区域,利用巴特查理亚系数测量粒子区域和选定区域2种分布之间的相似度,运用粒子滤波估计方法实现运动目标的跟踪.在跟踪过程中,粒子存在退化现象.文献[4]采取重采样方法在一定程度上解决了退化问题,但由于重采样是根据权值大小进行的,导致采样后的粒子由大量重复的粒子构成,失去了多样性.文中采取概率累加的方法保持粒子的多样性,防止粒子退化,取得较好的效果. 1 运动目标模型 在确定运动目标后,建立基于指数分布的统计模型.在区域中心,属于运动目标的概率为1,在偏离中心的距离大于阈值时,概率属于指数衰减[5]: p pos (z i )=1,‖z i ‖≤T ; exp -‖z i ‖-T max (‖z i ‖-T )N i =1 ,‖z i ‖>T ,(1)可得到目标的统计直方图分布模型: p pos (u )=C 6N i =1p pos (z i )δ(b (z i )-u ),(2) C =1 6N i =1p pos (z i ). (3)

人教A版高中选修2-2数学浙江专版第二章 习题课二 推理与证明

习题课二 推理与证明 1.用反证法证明命题:“三角形三个内角中至少有一个不大于60°”时,应假设( ) A .三个内角都不大于60° B .三个内角都大于60° C .三个内角至多有一个大于60° D .三个内角至多有两个大于60° 解析:选B 假设结论不成立,即“三角形三个内角中至少有一个不大于60°”的否定为“三个内角都大于60°”,故选B. 2.若三角形能分为两个与自己相似的三角形,那么这个三角形一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定 解析:选C 直角三角形斜边上的高将直角三角形剖分为两个直角三角形,这两个直角三角形与原三角形都相似,故选C. 3.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42 ≤0 C.(a +b )22 -1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0 解析:选D 因为a 2+b 2-1-a 2b 2≤0?(a 2-1)(b 2-1)≥0.故选D. 4.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( ) A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根 解析:选A 至少有一个实根的否定是没有实根,故要做的假设是“方程x 3+ax +b =0没有实根”. 5.来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起.他们除懂本国语言外,每人还会说其他三国语言中的一种.有一种语言是三个人会说的,但没有一种语言四人都懂,现知道:①甲是日本人,丁不会说日语,但他俩能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③乙、丙、丁交谈时,不能只用一种语言;④乙不会说英语,当甲与丙交谈时,他能做翻译.针对他们懂的语言,正确的推理是( ) A .甲日德、乙法德、丙英法、丁英德

第二章 贝叶斯决策理论与统计判别方法汇总

第二章贝叶斯决策理论与统计判别方法 课前思考 1、机器自动识别分类,能不能避免错分类,如汉字识别能不能做到百分之百正确?怎样才能减少错误? 2、错分类往往难以避免,因此就要考虑减小因错分类造成的危害损失,譬如对病理切片进行分析,有可能将正确切片误判为癌症切片,反过来也可能将癌症病人误判为正常人,这两种错误造成的损失一样吗?看来后一种错误更可怕,那么有没有可能对后一种错误严格控制? 3、概率论中讲的先验概率,后验概率与概率密度函数等概念还记得吗?什么是贝叶斯公式? 4、什么叫正态分布?什么叫期望值?什么叫方差?为什么说正态分布是最重要的分布之一? 学习目标 这一章是模式识别的重要理论基础,它用概率论的概念分析造成错分类和识别错误的根源,并说明与哪些量有关系。在这个基础上指出了什么条件下能使错误率最小。有时不同的错误分类造成的损失会不相同,因此如果错分类不可避免,那么有没有可能对危害大的错分类实行控制。对于这两方面的概念要求理解透彻。

这一章会将分类与计算某种函数联系起来,并在此基础上定义了一些术语,如判别函数、决策面(分界面),决策域等,要正确掌握其含义。 这一章会涉及设计一个分类器的最基本方法——设计准则函数,并使所设计的分类器达到准则函数的极值,即最优解,要理解这一最基本的做法。这一章会开始涉及一些具体的计算,公式推导、证明等,应通过学习提高这方面的理解能力,并通过习题、思考题提高自己这方面的能力。 本章要点 1、机器自动识别出现错分类的条件,错分类的可能性如何计算,如何实现使错分类出现可能性最小——基于最小错误率的Bayes决策理论 2、如何减小危害大的错分类情况——基于最小错误风险的Bayes决策理论 3、模式识别的基本计算框架——制定准则函数,实现准则函数极值化的分类器设计方法 4、正态分布条件下的分类器设计 5、判别函数、决策面、决策方程等术语的概念 6、Bayes决策理论的理论意义与在实践中所遇到的困难 知识点

粒子滤波详解

2.4粒子滤波 例子滤波是以贝叶斯滤波和重要性采样为基本框架的。因此,想要掌握例子滤波,对于上述两个基本内容必须有一个初步的了解。重要性采样呢,其实就是根据对粒子的信任程度添加不同的权重,添加权重的规则就是:对于我们信任度高的粒子,给它们添加的权重就相对大一些;否则,就加的权重小一些。根据权重的分布形式,实际上就是它与目标的相似程度。 粒子滤波的结构实际上就是加一层重要性采样思想在里面的蒙特卡罗方法(Monte Carlo method,即以某时间出现的频率来指代该事件的概率)。该方法的基本思想是用一组样本(或称粒子)来近似表示系统的后验概率分布,然后使用这一近似的表示来估计非线性系统的状态。采用此思想,在滤波过程中粒子滤波可以处理任意形式的概率,而不像Kalman滤波只能处理线性高斯分布的概率问题。粒子滤波的一大优势也在于此,因此近年来该算法在许多领域得到成功应用。 2.4.1贝叶斯滤波理论 贝叶斯滤波泛指一类以贝叶斯定理为基础的滤波技术,其根据所获得的观测,对状态后验概率分布、状态先验概率分布、状态估计值以及状态预测值等感兴趣量进行递归计算。 假设有一个系统,我们知道它的状态方程,和测量方程如下: =(,(状态方程)(2.4.1) =(,(测量方程)(2.4.2) 其中x为系统状态,y为测量到的数据,f,h是状态转移函数和测量函数,v,n 为过程噪声和测量噪声,噪声都是独立同分布的。 由贝叶斯理论可知,状态估计问题(目标跟踪、信号滤波)就是根据之前一系列的已有数据(测量数据)递推的计算出当前状态的可信度,这个可信度就是概率公式p(),它需要通过预测和更新两个步奏来递推的计算。 预测过程是利用系统模型(状态方程2.4.2)预测状态的先验概率密度,也就是通过已有的先验知识对未来的状态进行猜测,即p( )。更新过程则利用最新的测量值对先验概率密度进行修正,得到后验概率密度,也就是对之前的猜测进行修正。 处理这些问题之前,假设系统的状态转移服从一阶马尔科夫模型,即当前时刻的状态x(k)只与上一个时刻的状态x(k-1)有关, k时刻测量到的数据y(k)只与当前的状态x(k)有关。

第二章 推理与证明(B)

第二章推理与证明(B) 一、选择题 1、下列有关三段论推理“自然数都是整数,4是自然数,所以4是整数”的说法正确的是( ) A.推理正确B.推理形式不正确 C.大前提错误D.小前提错误 2、下列推理过程是类比推理的是( ) A.人们通过大量试验得出掷硬币出现正面的概率为1 2 B.科学家通过研究老鹰的眼睛发明了电子鹰眼 C.通过检测溶液的pH值得出溶液的酸碱性 D.由周期函数的定义判断某函数是否为周期函数 3、已知f(x)=x3+x,a,b,c∈R,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值( ) A.一定大于零B.一定等于零 C.一定小于零D.正负都有可能 实用文档

4、勾股定理:在直角边长为a、b,斜边长为c的直角三角形中,有a2+b2=c2.类比勾股定理可得,在长、宽、高分别为p、q、r,体对角线长为d的长方体中,有( ) A.p+q+r=d B.p2+q2+r2=d2 C.p3+q3+r3=d3 D.p2+q2+r2+pq+pr+qr=d2 5、观察式子:1+1 22 < 3 2 ,1+ 1 22 + 1 32 < 5 3 ,1+ 1 22 + 1 32 + 1 42 < 7 4 ,…,则可归纳出一般式子为( ) A.1+1 22+ 1 32 +…+ 1 n2< 1 2n-1 (n≥2) B.1+1 22+ 1 32 +…+ 1 n2< 2n+1 n( n≥2) C.1+1 22 + 1 32 +…+ 1 n2< 2n-1 n( n≥2) D.1+1 22+ 1 32 +…+ 1 n2< 2n 2n+1 (n≥2) 6、若a,b,c均为实数,则下面四个结论均是正确的: 实用文档

贝叶斯决策理论的Matlab实现

第二章 1、简述基于最小错误率的贝叶斯决策理论;并分析在“大数据时代”,使用贝叶斯决策理论需要解决哪些问 题,贝叶斯决策理论有哪些优缺点,贝叶斯决策理论适用条件和范围是什么?举例说明风险最小贝叶斯决策理论的意义。 答:在大数据时代,我们可以获得很多的样本数据,并且是已经标记好的;要使用贝叶斯决策理论最重要的是确定类条件概率密度函数和相关的参数。 优缺点:贝叶斯决策的优点是思路比较简单,大数据的前提下我们可以得到较准确的先验概率, 因此如果确定了类条件概率密度函数,我们便可以很快的知道如何分类,但是在大数据的前提下,类条件概率密度函数的确定不是这么简单,因为参数可能会增多,有时候计算量也是很大的。 适用条件和范围: (1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。 (2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进 行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。 第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率 密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。 说明风险最小贝叶斯决策理论的意义: 那股票举例,现在有A、B两个股票,根据市场行情结合最小错误率的风险选择A股(假设为0.55),而B股(0.45);但是选着A股必须承担着等级为7的风险,B股风险等级仅为4;这时因遵循最 小风险的贝叶斯决策,毕竟如果A股投资的失败带来的经济损失可能获得收益还大。 2、教材中例2.1-2.2的Matlab实现. 2.1:结果:

(完整版)贝叶斯统计-习题答案)

第一章 先验分布与后验分布 1.1 解:令120.1,0.2θθ== 设A 为从产品中随机取出8个,有2个不合格,则 22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有 5418 .03 .02936.07.01488.07 .01488.0)()|()()|()()|()|(2211111=?+??=+= θπθθπθθπθθπA P A P A P A 4582 .0)|(1)|(4582 .03.02936.07.01488.03 .02936.0)()|()()|()()|()|(122211222=-==?+??=+= A A or A P A P A P A θπθπθπθθπθθπθθπ 1.2 解:令121, 1.5λλ== 设X 为一卷磁带上的缺陷数,则()X P λ ∴3(3)3! e P X λ λλ-== R 语言求:)4(/)exp(*)3(^gamma λλ- 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有 111222(3)() (3)0.2457 (3)(3)() (3)0.7543 (3) P X X P X P X X P X λπλπλλπλπλ======== == 1.3 解:设A 为从产品中随机取出8个,有3个不合格,则 33 58()(1)P A C θθθ=- (1) 由题意知 ()1,01πθθ=<< 从而有 .10,)1(504)|(504)6,4(/1) 6,4(1 )6,4()1() 1()1()1()1()1()1()()|() ()|()|(53531 1 61 45 31 5 3 5 31 53 3 8 5 33810 <<-==-= --= --= --= =????--θθθθπθθθ θθ θθθ θθ θθθ θθ θθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求 (2)

贝叶斯滤波技术在定位中的应用

贝叶斯滤波技术在定位中的应用 贝叶斯滤波技术能够提供一种强大的统计方法工具,用于协助测量不确定度和执行多传感器融合,并且还能够进行身份目标的识别和确定。本文的作者对贝叶斯滤波器的运作方法进行了探究,并将这种方法用于普适计算中位置估计等相关的任务。 位置的识别或者侦测对许多普适计算的应用领域至关重要。不幸的是,在所有情况下,没有任何位置传感器能够实现较好的位置测量。这样,写这篇文章的目有两个方面。一是我们相信普适计算能够受益于贝叶斯滤波器技术的精确调查研究,因为没有传感器是完美的,贝叶斯滤波器在任何使用多个传感器的系统中是非常有用的,它能够作为一种统计工具用于不确定的情况下。二是在许多普适计算场景中,估算目标的当前位置可以说是最基本的传感任务。因此,我们能够在自然的环境领域中阐述贝叶斯滤波器技术的应用方法。定位估计能够运用统计学的方法,使众多位置信息拥有统一的接口。这样,我们就能够独立的编写传感器的应用程序,甚至这些传感器可以是不同的类型,诸如GPS或者红外线标记等传感器上。 这里,我们主要从超声波和红外线标记(tags)中阐述说明传感器数据的融合。我们也讨论怎样使用激光测距探测器,将高分辨率的位置信息和能够提供目标识别功能的低分辨率位置信息整合在一起。·贝叶斯滤波器 贝叶斯滤波器能够从噪杂的观测值中估算动态系统的状态。在普适计算的位置估计中,系统的状态指的是一个人的或者是一个物的状

态,而且位置传感器能够为观测提供这种状态。这种状态可以是一种简单的2维位置或者是复杂矢量(包括3维位置、间距、转动、偏航、线性和旋转速度)。 这里,我们首先引入置信函数(Belief function) (设Θ是一个有限集合,为其所有子集构成的集合(幂集),若函数 Bel:→[0,1]满足以下条件: 3.对任意正整数n及D的一组子集 ,若满足以下条件 则称Bel是定义在D上的一个置信函数(Belief function)。 通过随机变量,贝叶斯滤波器能够表示在时刻的系统状态。在每个时间点上的概率分布,我们叫做关于的置信函数值,它能够表示不确定的因素。通过传感器中的数据信息,贝叶斯滤波器技术能够在一定条件下连续不断的对系统的状态进行评估。 为了阐述这一点,我们假设传感器数据是由一系列时间变化的传感器观测值组成的。那么置信函数定义为在时刻,所有有效传感器数据上随机变量的后验密度。 (1) 粗略来说,置信函数回答了这样的一个问题“如果传感器测量的历史数据是,那么处于位置x的人有多大的概率?”通常来说,整个过程中计算后验密度的复杂度是以指数级别增长的,因为传

贝叶斯滤波

问题1 考虑离散时间非线性动态系统 (1) 用已知的观测数据和状态向量求后验概率 (2) 其中 (3) 在3式中,、、各为什么概率密度函数? 怎么样求出来? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 答:∑ == k i k k k k k k k k x p x Y p x p x Y p Y x p 1 ) ()|() ()|()|( 从概率论角度看,式(3)物理意义比较明显,实际上是一个条件概率,但是直接使用式(3)进行状态估计,我个人觉得有点不妥。贝叶斯滤波应该是一个“预测-修正”的迭代过程。问题1和问题2实际上是同一个问题,具体见问题2。 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 问题2 递归的贝叶斯滤波原理如图所示

(4) 问4式中怎么得到?先验概率密度函数怎么 样得到? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 答:(1)) |(k k x y p 表示当状态为x k 时,得到y k 的概率值。其计算方程 为 ()()k k k e k k v x h y p x y p ,)|(-= (5) 式(5)中p e (.)为观测噪声的概率密度函数。 因此,) |(k k x y p 实际上是观测噪声的概率密度函数的体现。 (2)) |(1:1-k k y x p 是状态的一步预测概率密度(先验信息),其计算公 式为

其中,()()111,)|(----=k k k w k k w x f x p x x p ,p w (.)为过程噪声的概率密度函数。 (3) ) |(1:1-k k y y p 意义不大,x k 的概率密度函数主要与 ) |(k k x y p 、 ) |(1:1-k k y x p 相关。 )|()|()|(1:1:1-∝k k k k k k y x p x y p y x p (4)先验概率密度函数)|(1:11 --k k y x p 就是经验值,只能依靠先前实验 的总结。 总之,在贝叶斯滤波过程中,必须知道的有: f (.)、h (.)、p e (.)、p w (.)等4个函数 若已知状态的初始概率密度函数为)|(00 y x p ,则可利用观测值y 1:k 求出 状态的后验概率密度函数)|(:1k k y x p 。 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

选修2-2 第二章 推理与证明(B)

选修2-2 第二章 推理与证明(B) 一、选择题 1、某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1) 种走法,从平地上到第二级台阶时有f (2)种走法,……则他从平地上到第n (n ≥3)级台阶 时的走法f (n )等于( ) A .f (n -1)+1 B .f (n -2)+2 C .f (n -2)+1 D .f (n -1)+f (n -2) 2、已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S = 底×高 2 ,可推知扇形面 积公式S 扇等于( ) A.r 22 B.l 22 C.lr 2 D .不可类比 3、设凸n 边形的内角和为f (n ),则f (n +1)-f (n )等于( ) A .n π B .(n -2)π C .π D .2π 4、“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等.”以上推理的大前提是 ( ) A .正方形都是对角线相等的四边形 B .矩形都是对角线相等的四边形 C .等腰梯形都是对角线相等的四边形 D .矩形都是对边平行且相等的四边形 5、设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出 f (k +1)≥(k +1)2成立”,那么,下列命题总成立的是( ) A .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立 B .若f (5)≥25成立,则当k ≤5时,均有f (k )≥k 2成立 C .若f (7)<49成立,则当k ≥8时,均有f (k )2),q =2-a 2+4a -2 (a >2),则( ) A .p >q B .p 0,则1a +1b +1 c 的值( )

贝叶斯统计-习题答案

第一章 先验分布与后验分布 解:令120.1,0.2θθ== 设A 为从产品中随机取出8个,有2个不合格,则 22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有 5418 .03 .02936.07.01488.07 .01488.0)()|()()|()()|()|(2211111=?+??=+= θπθθπθθπθθπA P A P A P A 4582 .0)|(1)|(4582 .03.02936.07.01488.03 .02936.0)()|()()|()()|()|(122211222=-==?+??=+= A A or A P A P A P A θπθπθπθθπθθπθθπ 解:令121, 1.5λλ== 设X 为一卷磁带上的缺陷数,则()X P λ: ∴3(3)3! e P X λ λλ-== R 语言求:)4(/)exp(*)3(^gamma λλ- 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有 111222(3)() (3)0.2457 (3)(3)() (3)0.7543 (3) P X X P X P X X P X λπλπλλπλπλ======== == 解:设A 为从产品中随机取出8个,有3个不合格,则 33 58()(1)P A C θθθ=- (1) 由题意知 ()1,01πθθ=<< 从而有 504)6,4(/1) 6,4(1 )6,4()1() 1()1()1()1()1()1()()|() ()|()|(531 1 61 45 31 5 3 5 31 53 3 8 5 33810 =-= --= --= --= =????--θθθ θθ θθθ θθ θθθ θθ θθθθπθθπθθπbeta B R B d d d C C d A P A P A :语言求

选修2-2第二章推理与证明知识方法总结

第二章推理与证明知识复习 1. 用.为 介?11理吋分为W 纳??和类比推art 类* <1)irifrtjtiTi ?分対整体?特侏列?? (2)类比桂理.特1*到?姝 商积—>线用长: ?二)nw 诚* 加认< ? *;?.: tfjA ??娥沙?:?法??唉Zb 除址*—**1'力2 ▼■几n 宜》几何 ilJUl 平分《k 二面角及兔平分面 AAMitWI tts 的?n7分面 三A*n 三?Ha 四面体的W 个面 ▼行DttWMAIM 交一<.井貝■村 T 拧六交于一戌?并n ■平分 ■ * ■心卑 9:(*■?)中 onsas* 于 9 轨■■■■(不 fii±?Q)■于?*" 与■OJEXM 需的两体隹M9 境?的两个?■■的■和19 ■的?长 €■* (dAlft) Q 关于类比.(?je> 姜面休—?娄垃 du *—?边 S

的矣比) ⑧1[箱三角悬与亶角DBf 体的类比2 (anaBt?. nfi ?用戎反也的脚网见訓 嘩n.棘理n 面休戍为n 角列面体) U $ 乂+$ *+£ g + S 心 内切*住_ E7 ■??刘{4}(公 e 为 d) 9比 tt 刿(M (公比为G 過 rt : On = Ol + 0—Ijrf 通加z 札=“?了) J —几《阿一刑d ftn ■ ■ -=于? to = 6 r f 足吒不?第的Nfftt. W'Jff tJ-l)fl,=(r-l|? pt=H?- £?入 =V ■的DB 积S ?ir2 "为林) 理的啊IV ■評9心为琮皐轻》(tt —点不 ton MCA0 中.zc=?(r - teffl.