文档库 最新最全的文档下载
当前位置:文档库 › Plants as ecosystem engineers in subsurface-flow

Plants as ecosystem engineers in subsurface-flow

Plants as ecosystem engineers in subsurface-flow
Plants as ecosystem engineers in subsurface-flow

Plants as ecosystem engineers in subsurface-?ow treatment wetlands

C.C. Tanner

National Institute of Water and Atmospheric Research (NIWA), PO Box 11-115, Hamilton, New Zealand (E-mail: c.tanner@https://www.wendangku.net/doc/1f15851072.html,)

Abstract Mass balance performance data from side by side studies of planted and unplanted gravel-bed treatment wetlands with horizontal subsurface-?ow are compared. Planted systems showed enhanced nitrogen and initial phosphorus removal, but only small improvements in disinfection, BOD, COD and suspended solids removal. Direct nutrient uptake by plants was insuf?cient to account for more than a fraction of the improved removal shown by planted systems. Roles of plants as ecosystem engineers are summarised, with organic matter production and root-zone oxygen release identi?ed as key factors

in?uencing nutrient transformation and sequestration.

Keywords Aeration; constructed wetlands; natural systems; nutrient removal; phytoremediation; wetland plants

Introduction

The success of human civilisation is largely due to our skills as physical ecosystem engi-neers. Although these engineering activities are primarily directed towards achieving some specific purpose (e.g. agricultural production), many have major indirect and unintended effects on ecosystems (e.g. water pollution, global warming). We are not, however, the only organisms that directly or indirectly control or modulate the availability of resources to other organisms by modifying the physical state of biotic or abiotic materials (Jones et al., 1997). Beaver dams, termite mounds, coral reefs and forests are obvious examples of non-human engineering that come to mind, but all manner of organisms including microbes, play a role in the creation, modification and maintenance of habitats at a range of spatial scales.

The ecosystem engineering role of plants in treatment wetlands is probably most obvious in surface-flow (SF) systems. Here emergent plant shoots and litter form the main physical structure in the water column, moderating water flow, stabilising sediments, shading and sheltering the water column, providing surfaces for biofilm growth, and providing refuge and habitat for other biota. Here, however, I wish to focus primarily on the role of plants in horizontal subsurface-flow (SSF) wetlands, where wastewaters pass laterally through gravel media in which emergent plants are rooted. In this case, the media provides the main physical structure and the plants’ role, apart from nutrient uptake, is more indirect.

Do plants in?uence treatment performance?

Dense beds of emergent wetland plants are the most obvious visual feature of SSF wet-lands. They undoubtedly play a major role in enhancing their wildlife habitat values, aesthetics and perceived naturalness, but do they actually make much difference to treat-ment performance?

Because evapotranspiration by plants can significantly affect the hydrological balance of SSF treatment wetlands, comparative assessments ideally need to be made on the basis of mass balances (Howard-Williams, 1985). Many early studies (e.g Wolverton et al.,Water Science and Technology Vol 44 No 11–12 pp 9–17 ? IWA Publishing 2001

9

10

Disinfection

Although comparative data for faecal bacterial indicator removal in planted and unplanted beds is more limited, mean areal removal rates show a very consistent linear relationship to areal loading over a broad range of application rates (107–1013m–2d–1; data from compara-tive studies listed for Figures 1 and Gersberg et al., 1987; n= 6, includes Santee CA data for total, not faecal, coliforms). When comparative data for planted and unplanted systems are

plotted together the data points and linear regression lines (R2>0.999) almost completely obscure each other. However, in side by side comparisons the planted beds commonly show small but consistent improvements in inactivation rates of faecal coliform and a range of other bacterial indicators (e.g. Soto et al., 1999). Planted SSF systems have also shown lower effluent concentrations of viruses than unplanted systems (e.g. Gersberg et al., 1987).

The water column in SSF systems is not exposed to sunlight and does not undergo sig-nificant diurnal variations in pH and dissolved oxygen, which together are predominant means of disinfection in natural treatment systems such as waste stabilisation ponds. Other mechanisms including settling, adsorption, protozoan grazing, and possibly release of anti-microbial compounds, are believed to account for the pathogen attenuation observed in SSF treatment wetlands. Decamp et al. (1999) found different ciliate community composition in planted and unplanted SSF wetlands, with greater abundance and grazing rates of fluorescently labelled E. coli in planted systems. They considered that the more oxidised conditions in the plant rhizosphere provided a more favourable habitat for ciliate protozoa.

Nutrient reduction

Comparison of total nitrogen (TN) removal performance for planted and unplanted systems is shown in Figure 2. Here, despite considerably more data scatter, the planted wetlands show a clear trend of improved TN removal. Some of the systems showed markedly poorer overall performance than others. These included systems receiving highly nitrified, low BOD wastewaters (presumably organic C limited, Gersberg et al., 1983) and others receiving ammonia-rich meat-processing wastewaters containing high levels of COD and sulphur (presumably oxygen limited, Van Oostrom and Cooper, 1990).

Planted wetlands have also shown enhanced P and metal mass removal compared to unplanted controls (e.g. DeBusk et al., 1990; Dunbabin et al., 1988; Soto et al., 1999; Tanner et al., 1995b). Unless specialised P sorbing media are employed, the primary long-term mechanism for wetland P removal is accumulation in accreting sediments (Kadlec and Knight, 1996). The studies noted above involved relatively immature systems where plant uptake and sediment adsorption pools were still actively filling, and it is unlikely that reported P removal rates would be sustainable (Richardson and Craft, 1993; Tanner et al., 1998c).

Can plant uptake explain differences in nutrient removal?

The quantity of nutrients able to be taken up and accumulated in live plant biomass per unit of wetland surface area is finite for a given plant species, nutrient regime and set of environmental conditions. Once live plant storage pools approach this limit, little further net annual uptake is possible (Howard-Williams, 1985). In pilot-scale trials where plant storage pools were still actively filling, Gersberg et al. (1986) estimated potential plant uptake could only account for 12–16% of the N removal recorded in systems planted with bulrushes. This was 5–7 times less than the additional removal recorded for the planted systems (over that of an unplanted system). In higher loaded systems achieving relatively low N removal (see above), Van Oostrom and Cooper (1990) estimated net N uptake by C.C. Tanner 11

12

growth phases are internally recycled during senescence by translocation to below-ground storage tissues (rhizomes, corms and bulbs), the magnitude of this is likely to be reduced in the eutrophic conditions of wastewater treatment wetlands (Shaver and Melillo, 1984).

Senescing aerial shoots of tall emergent species such as Phragmites, Schoenoplectus and Typha are not generally abscised. Dead shoots thus remain standing for a period of months during which considerable leaching of mobile nutrients (e.g. K) and in situ

decomposition occurs. By the time the dead shoots fall much of the readily available carbon compounds will have already been consumed, so that mainly slowly degradable and recal-citrant litter fractions are returned to the wetland surface. Interactions with invertebrate shredders, grazers and burrowing worms are likely to be important in the decomposition of this fallen litter and its incorporation in the substratum.

After 5 years operation, Tanner et al. (1998a) found substantial accumulation of organic matter (6.8–15 kg m–2) in SSF wetlands treating farm dairy wastewaters. Organic matter accumulated particularly on the surface and in the top 100 mm of the gravel media. Comparison with unplanted controls after ~2 y operation showed 1.6 to 6-fold higher organic matter accumulation in the presence of plants (Tanner and Sukias, 1995). Molar C:N ratios in the accumulated organic matter were also higher in the planted (mean 15.6) than unplanted (mean 11.0) wetlands. Organic matter accumulating in the sediments and as fallen litter in these systems represented a significant pool of both N (~ twice that present in live and standing dead plant tissues at maximum seasonal biomass, Tanner, 2001) and P (~ 6-fold higher than present in live and standing dead plant tissues at maximum seasonal bio-mass, Tanner et al., 1998c). Organic matter accumulated from wastewaters and plant turnover provides additional sorption sites, sources of complexing and biochemically active substances (humic and fulvic acids), and substrates for microbial processes (e.g. denitrification). This intensifies nutrient spiralling (repeated cycling) along treatment wet-lands, markedly elevating the residence time of nutrients relative to that of the wastewaters passing through them (Howard-Williams, 1985; Tanner et al., 1998b).

Root-zone aeration

Diffusion, and in some cases convective flows, of oxygen down through the internal spaces (aerenchyma) of wetland plants enables root growth and survival in flooded sediments (Armstrong et al., 1990). However, there has been controversy about how much of this oxy-gen is actually released into the root-zone (Sorrell and Armstrong, 1994). Increased rates of BOD removal and ammonia oxidation from wastewaters and elevated dissolved oxygen concentrations have been recorded in the root-zone of wetland plants (Dunbabin et al., 1988; Reddy et al., 1989a). Higher interstitial redox potentials (indicating more oxidised conditions) have also been reported for planted than unplanted SSF systems in comparative studies (Figure 3, Burgoon et al., 1995; Dunbabin et al., 1988; Tanner et al., 1999). Root oxygen release has been postulated to account for improved rates of ammoniacal N removal in SSF wetland by stimulating nitrification, the rate limiting step (Gersberg et al., 1986; Reddy et al., 1989b), and higher densities and activity of nitrifiers have been recorded in biofilms associated with wetland plant roots and rhizomes than in the gravel media (Williams et al., 1994).

The predicted depth of plant root penetration, and thus potential for oxygen release, has been proposed as a rational basis for determining the appropriate depth of SSF treatment wetlands (e.g. Reed et al., 1995). In common with many other studies, Tanner (1996; 2001) found considerably shallower root penetration (mostly <300 mm) in gravel-bed systems than those reported by Gersberg et al. (1986; 300–760 mm depending on species) and com-monly cited in guidelines. In mesocosm studies comparing bulrush root growth over a range of wastewater dilutions in the presence of excess nutrients, Tanner (1994a) found C.C. Tanner 13

that increasing concentration of BOD rather than nutrients was the primary environmental factor influencing the depth of root penetration. This is consistent with current theories and models of plant aeration (Armstrong et al ., 1990; Sorrell et al ., 2000) which predict that for a given root morphology, length will be controlled by cumulative radial and longitudinal consumption due to root respiration and leakage from the root. The extent of leakage is dependant both on anatomical properties of the root (e.g. diameter, degree of endodermal and lateral development, Sorrell et al ., 2000) and the intensity of rhizospheric oxygen consumption (Sorrell and Armstrong, 1994). Obviously, it will normally be in the plants’interest to restrict radial oxygen losses from the root as much as possible; generally to areas of active root growth and nutrient assimilation. Further studies are needed to quantify and compare the oxygen release characteristics of different emergent species and their response to environmental conditions in the root-zone of SSF treatment wetlands.As well as acting as a conduit for gas transport into (O 2) and out (e.g. CH 4, CO 2, N 2O,H 2S) of the substratum (Sebacher et al ., 1985), the internal ventilation systems of emergent wetland plants may regulate the balance between gas production and consumption process-es in the sediments. Tanner et al . (1997) found lower methane emissions for planted than unplanted SSF treatment wetlands, postulating that plant oxygen release was suppressing methanogenesis (a strictly anaerobic process) in the gravel media and/or enhancing root-zone methane oxidation.Synthesis Table 1 uses the ecosystem engineering paradigm of Jones et al . (1997), to synthesise the concepts discussed above with a range of other roles identified for plants in treatment sys-tems (e.g. Brix, 1994). Some of the ecosystem engineering roles identified probably only have tenuous links to treatment performance. However, this approach does emphasise the importance of the indirect effects of plants on carbon and nutrient cycling, and ultimately the structure and functioning of treatment wetland ecosystems. The fundamental impor-tance of factors such as the decomposition dynamics of plant litter and the efficacy of root-zone aeration, which ultimately determine the rate and sustainability of carbon and nutrient transformation and sequestration, are highlighted.Conclusions Data from comparative studies of planted and unplanted SSF systems suggests that, in

C.C. Tanner 14Figure 3Comparison of in situ redox potentials (Eh) measured 3 m from the in?ow at 100 mm depth in the gravel media of unplanted (left) and planted (right) SSF wetlands treating farm dairy wastewaters. Plant shoots are shown as open circles. Measurements made at 50mm spacings using platinum disc electrodes (Tanner et al ., 1997)

15

Acknowledgements

This study was funded by the New Zealand Foundation for Research, Science and Technology. I am grateful to John Clayton and James Sukias (NIWA) for reviewing the manuscript, and Joan Garcia (Technical University of Catalonia) for constructive discussion.

References

Armstrong, W., Armstrong, J. and Beckett, P.M. (1990). Measurement and modelling of oxygen release from roots of Phragmites australis . In, Constructed Wetlands in Water Pollution Control . P.F. Cooper and B.C. Findlater (eds.). Pergamon Press, Oxford. pp. 41–52.

Bavor, H.J., Roser, D.J. and McKersie, S.A. (1987). Treatment of wastewater using artificial wetlands,large-scale fixed-film bioreactors. Aust. J. Biotech.1, 67–73.

Burgoon, P.S., DeBusk, T.A., Reddy, K.R. and Koopman, B. (1991a). Vegetated submerged beds with artificial substrates. I. BOD removal. J. Environ. Eng.117, 394–407.

Burgoon, P.S., DeBusk, T.A., Reddy, K.R. and Koopman, B. (1991b). Vegetated submerged beds with artifical substrates. II, N and P removal. J. Environ. Eng.117, 408–424.

Burgoon, P.S., Reddy, K.R. and DeBusk, T.A. (1995). Performance of subsurface flow wetlands with batch-load and continuous-flow conditions. Water Environ. Res.67, 855–862.

Brix, H. (1994). Functions of macrophytes in constructed wetlands. Water Sci. Tech.29(4), 71–78.Cottingham, P.D., Davies, T.H. and Hart, B.T. (1999). Aeration to promote nitrification in constructed wetlands. Environ. Tech.20, 69–75.

DeBusk, T.A., Langston, M.A., Burgoon, P.S. and Reddy, K.R. (1990). A performance comparison of

vegetated submerged beds and floating macrophytes for domestic wastewater treatment. In: Constructed Wetlands in Water Pollution Control , P.F. Cooper and B.C. Findlater (eds.). Pergamon Press, Oxford,UK. pp. 301–308.

Decamp, O., Warren, A. and Sanchez, R. (1999). The role of ciliated protozoa in subsurface flow wetlands and their potential as bioindicators. Water Sci. Tech.40(3), 91–98.

Dunbabin, J.S., Pokorny, J. and Bowmer, K.H. (1988). Rhizosphere oxygenation by Typha domingensis in minature artificial wetland filters used for metal removal from wastewaters. Aquat. Bot.29, 303–317.Gersberg, R.M., Elkins, B.V. and Goldman, C.R. (1983). Nitrogen removal in artificial wetlands. Water Res.20, 363–367.

Gersberg, R.M., Elkins, B.V., Lyon, S.R. and Goldman, C.R. (1986). Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res.20(3), 363–368.

Gersberg, R.M., Brenner, R., Lyon, S.R. and Elkins, B.V. (1987). Survival of bacteria and viruses in municipal wastewaters applied to artificial wetlands. In: Aquatic Plants for Water Treatment and

Resource Recovery , K.R. Reddy and W.H. Smith (eds.). Magnolia Pubishing, Orlando FL. pp. 237–246.Howard-Williams, C. (1985). Cycling and retention of nitrogen and phosphorus in wetlands, a theoretical and applied perspective. Freshwat. Biol.15, 391–431.

Jones, C.G., Lawton, J.H. and Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78, 1946–1957.

Kadlec, R.H. and Knight, R.L. (1996). Treatment Wetlands , CRC Press, Boca Raton, FL.

Reddy, K.R., D’Angelo, E.M. and DeBusk, T.A. (1989a). Oxygen transport through aquatic macrophytes,the role in wastewater treatment. J. Environ. Qual.19, 261–267.

Reddy, K.R., Patrick, W.H. and Lindau, C.W. (1989b). Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnol. Oceanogr.34, 1004–1013.

Reed, S.C., Middlebrooks, E.J. and Crites, R.W., eds. (1995). Natural Systems for Waste Management and Treatment . 2nd ed. McGraw-Hill, New York.

Rogers, K.H., Breen, P.F. and Chick, A.J. (1991). Nitrogen removal in experimental wetland treatment systems, evidence for the role of aquatic plants. J. Water Poll. Contr. Fed.63, 934–941.

Richardson, C.J. and Craft, C.B. (1993). Effective phosphorus retention in wetlands: fact or fiction? In: Constructed Wetlands for Water Quality Improvement , G.A. Moshiri (ed.). Lewis Publishers, Boca Raton FL. pp. 271–282.

Sebacher, D.I., Harriss, R.C. and Bartlett, K.B. (1985). Methane emissions to the atmosphere through aquatic plants. J. Environ. Qual.14, 40–46.

Shaver, G.R. and Melillo, J.M. (1984). Nutrient budgets of marsh plants, efficiency concepts and relation to availability. Ecology 65, 1491–1510.C.C. Tanner 16

Sorrell, B.K. and Armstrong, W. (1994). On the difficulties of measuring oxygen release by root systems of wetland plants. J. Ecol.82, 177–183.

Sorrell, B.K., Mendelssohn, I.A., McKee, K.L. and Woods, R.A. (2000). Ecophysiology of wetland plant roots, a modelling comparison of aeration in relation to species distribution. Ann. Bot.86, 675–685.

Soto, F., Garcia, M., de Luis, E. and Becares, E. (1999). Role of Scirpus lacustris in bacterial and nutrient removal from wastewater. Water Sci. Tech.40(3), 241–247.

Tanner, C.C. (1994a). Growth and nutrition of Schoenoplectus validus in agricultural wastewaters. Aquat.

Bot.47, 131–153.

C.C. Tanner Tanner, C.C. (1994b). Treatment of dairy farm wastewaters in horizontal and up-flow gravel-bed

constructed wetlands. Water Sci. Tech.29(4), 85–94.

Tanner, C.C. (1996). Plants for constructed wetland treatment systems – A comparison of the growth and nutrient uptake characteristics of eight emergent species. Ecol. Eng.7, 59–83.

Tanner, C.C. (2001). Growth and nutrient dynamics of soft-stem bulrush in constructed wetlands treating nutrient-rich wastewaters. Wetl. Ecol. Manag.9, 49–73.

Tanner, C.C., Adams, D.D. and Downes, M.T. (1997). Methane emissions from constructed wetlands treating agricultural wastewaters. J. Environ. Qual.26, 1056–1062.

Tanner, C.C., Clayton, J.S. and Upsdell, M.P. (1995a). Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands I. Removal of oxygen demand, suspended solids and

faecal coliforms. Water Res.29, 17–26.

Tanner, C.C., Clayton, J.S. and Upsdell, M.P. (1995b). Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands II. Removal of nitrogen and phosphorus. Water Res. 29,

27–34.

Tanner, C.C., D’Eugenio, J., McBride, G.B., Sukias, J.P.S. and Thompson, K. (1999). Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms. Ecol. Eng.12, 67–92.

Tanner, C.C. and Sukias, J.P. (1995). Accumulation of organic solids in gravel-bed constructed wetlands.

Water Sci. Tech.32(3), 229–240.

Tanner, C.C., Sukias, J.P.S. and Upsdell, M.P. (1998a). Organic matter accumulation during maturation of gravel-bed constructed wetlands treating farm dairy wastewaters. Water Res.32, 3046–3054.

Tanner, C.C., Sukias, J.P.S. and Upsdell, M.P. (1998b). Relationships between loading rates and pollutant removal during maturation of gravel-bed constructed wetlands. J. Environ. Qual.27, 448–458.

Tanner, C.C., Sukias, J.P.S. and Upsdell, M.P. (1998c). Substratum phosphorus accumulation during maturation of gravel-bed constructed wetlands. Water Sci. Tech.40(3), 647–659.

Van Oostrom, A.J. and Cooper, R.N. (1990). Meat processing effluent treatment in surface-flow and gravel-bed constructed wastewater wetlands. In: Constructed Wetlands in Water Pollution Control, P.F. Cooper

and B.C. Findlater (eds.). Pergamon Press, Oxford. pp. 321–332.

Williams, J.B., May, E., Ford, M.G. and Butler, J.E. (1994). Nitrogen transformations in gravel bed hydroponic beds used as a tertiary treatment stage for sewage effluents. Water Sci. Tech.29(4), 29–36.

Wolverton, B.C., McDonald, R.C. and Duffer, W.R. (1983). Microorganisms and higher plants for waste water treatment. J. Environ. Qual.12, 236–242.

17

草图大师8.0常用快捷键

1 、Ctrl+ 表示与Windows系统本身重合的命令 2、字母表示最常用的命令 3、 Alt+ 表示相对常用的命令 4、Shift+ 1、表示“反”命令; 5、表示有对话框的命令 F2-F8 表示视图方向

sketchup的一些使用技巧(转贴) 一、建模开始前一定要记得设置单位,最好是常用的毫米(mm)。 二、软件操作要快,鼠标和键盘的结合才能真正快。SU的自定义快捷键可以为单字母或CTRL、SHIFT、ALT加单字母。最好定义成跟常用的如CAD一样的快捷键,最常用的是下面的命令,建议你将它定义为如下:画线L、画弧A、画圆C、平行拷贝O、移动M、删除E、旋转R、缩放S、放大Z、填充材质H、画矩形和拉伸可依你认为易记的来定义。 三、在切换命令时初学者往往会不知如何结束正在执行的命令,所以特别建议你将选择定义为空格键。按ESC键可取消正在执行的操作或习惯按一下空格键结束正在执行的命令,将会十分方便,又可避免误操作。另外快捷键不要定义得太多,常用的即可。 四、在su中用画线、画矩形等几个简单的命令即可建模,期间不会有任何的面板切换,连数据输入面板也不用点击。相信用过MAX建模的人对面板的频繁切换之麻烦有深切体会。另外,对面的任意切割、直观的任意拉伸也是SU的方便性重要的一面。加上放样命令的存在可以建出很多复杂的模型。 五、SU的捕捉是自动的,有端点、中点、等分点、圆心、面等。对建模过程中的大部分命令都适用,加上可输入实际数据,所以不必担心精确对齐和准确性等问题。 六、su建模大部分可通过面拉伸成物体来完成。而面是可很方便的通过画线等面命令来分割的。面也可通过拉伸来随时修改。SU的方便性的真正体现。 七、关于视图缩放控制:在执行画线或移动拷贝等命令时,常常要缩放视图以便精确捕捉:可随时透明执行缩放命令,结束缩放命令后会自动回到前面的命令执行状态而不会中断当前操作。(放大命令例外:可透明执行但要右键方可退出回到前面命令执行状态。)另外,按中键可随时旋转视图;中键加按SHIFT键即为平移。 八、关于建筑建模:a、如果是CAD导入的平立面,在用画线工具将墙线封闭成面然后拉伸成墙体(物体)时往往会在平面窗等位置多一些线出来,建议删除多余的线。 b、在没有CAD图而又想开窗口定位准确的话,可利用线对线的分割来定位:在一条已有的线上再画一条比它短的线,会自动在后者的结束点处将前面那条线分割开。利用这一特性可随时准确定位。另外画线也可当标尺来使用:执行画线命令可动态在右下角数值框显示出线的长度,由此可判断出其它物体的长度和测量距离。 九、有时常常在建模时用到矩形但发觉长宽不对时可即时修改:长宽同时修改则输入(长度数值,宽度数值);只修改长度可直接只输入长度数值;修改宽度则输入(,宽度数值)。

超全SU快捷键

常用快捷键 显示/旋转鼠标中键 显示/平移Shift+中键 编辑/辅助线/显示Shift+Q 编辑/辅助线/隐藏Q 编辑/撤销Ctrl+z 编辑/放弃选择Ctrl+T; Ctrl+D(用林京的快捷键) 文件/导出/DWG/DXF Ctrl+Shift+D 编辑/群组G 编辑/炸开/解除群组Shift+G 编辑/删除Delete 编辑/隐藏H 编辑/显示/选择物体Shift+H 编辑/显示/全部Shift+A 编辑/制作组建Alt+G 编辑/重复Ctrl+Y 查看/虚显隐藏物体Alt+H 查看/坐标轴Alt+Q 查看/阴影Alt+S 窗口/系统属性Shift+P 窗口/显示设置Shift+V (用林京的快捷键) 工具/材质X 工具/测量/辅助线Alt+M 工具/尺寸标注D 工具/量角器/辅助线Alt+P 工具/偏移O 工具/剖面Alt+/ 工具/删除 E 工具/设置坐标轴Y 工具/缩放S 工具/推拉U 工具/文字标注Alt+T 工具/旋转Alt+R 工具/选择Space 工具/移动M 绘制/多边形P 绘制/矩形R 绘制/徒手画F 绘制/圆弧A 绘制/圆形C 绘制/直线L 文件/保存Ctrl+S 文件/新建Ctrl+N 物体内编辑/隐藏剩余模型I

物体内编辑/隐藏相似组建J 相机/标准视图/等角透视F8 相机/标准视图/顶视图F2 相机/标准视图/前视图F4 相机/标准视图/左视图F6 相机/充满视图Shift+Z 相机/窗口Z 相机/上一次TAB 相机/透视显示V 渲染/线框Alt+1 渲染/消影Alt+2 问题解答: 如何镜向?用旋转+Ctrl,配合恰当的参考点即可。还可用插件。 如何补面?加线封闭面即可。 如何作布尔运算?运算后,删除线面即可。如作了群组,须先炸开再删线面。 如何沿路径复制?若为单弧线,可找到弧心用旋转复制。还可用插件。 如何分页?Shift+E 锁定与解锁有何妙用?锁定就无法编辑。 如何由线推出面? 用xx插件 如何作出拉膜结构? 先用定位方法画出弧形边线,再用地形生成工具生成膜。 模型对绘图速度的影响有那些? 高分辨率材质、阴影、透明度对3D专业显卡要求高;模型边线或细部对CPU要求高(可用窗口尺寸改小来测试)。 物体如何对齐?依靠辅助线是其中的一种方法。 如何准确画出立体的线段?使用辅助线、面来定位。 如何一开机,长度单位就默认为毫米?在系统属性下的模板选好图形模板即可。 sketch up一族之迷: 1.恢复箭头图标命令直接点击空格键盘 2。如何复制,移动组合的实体 先点击空格键盘·或者在“工具”栏点击“选择”(S) 3如何重复多次复制同一个实体 Alt+T 标注尺寸工具 Space 选择工具(Ctrl键为增加选择,Shift键为加减选择)Delete 删除选择的物体 A 圆弧工具(*S定义弧的段数,*R定义弧的半径) B 矩形工具 C 画圆工具(*S定义圆的段数) D 路径跟随工具 E 橡皮擦工具 F 平行偏移复制工具 G 定义为组 H 隐藏选择的物体 I 以隐掉组件外其它模型方式单独编辑组件

常用的草图大师快捷键大全及解释

常用的草图大师快捷键大全: 编辑/撤销Ctrl+z 编辑/放弃选择Ctrl+t 编辑/辅助线/删除Alt+E 编辑/辅助线/显示Shift+Q 编辑/辅助线/隐藏Q 编辑/复制Ctrl+C 编辑/剪切Ctrl+X 编辑/全选Ctrl+A 编辑/群组G 编辑/删除Delete 编辑/显示/全部Shift+A 编辑/显示/上一次Shift+L 编辑/显示/选择物体Shift+H 编辑/隐藏H 编辑/粘贴Ctrl+V 编辑/制作组建Alt+G 编辑/重复Ctrl+Y 编辑/将面翻转Alt+V 编辑/炸开/解除群组Shift+G 查看/工具栏/标准Ctrl+1 查看/工具栏/绘图Ctrl+2 查看/工具栏/视图Ctrl+3 查看/工具栏/图层Shift+W 查看/工具栏/相机Ctrl+4 查看/显示剖面Alt+,查看/显示剖切Alt+. 查看/虚显隐藏物体Alt+H 查看/页面/创建Alt+A 查看/页面/更新Alt+U 查看/页面/幻灯演示Alt+Space 查看/页面/删除Alt+D 查看/页面/上一页pageup 查看/页面/下一页pagedown 查看/页面/演示设置Alt+: 查看/坐标轴Alt+Q 查看/X光模式T 查看/阴影Alt+S 窗口/材质浏览器Shift+X 窗口/场景信息Shift+F1 窗口/图层Shift+E 窗口/系统属性Shift+P 窗口/页面设置Alt+L 窗口/阴影设置Shift+S 窗口/组建Shift+C 工具/材质X 工具/测量/辅助线Alt+M 工具/尺寸标注D 草图大师(sketchup7.0)快捷键大全 一、安装SketchUp7.0版本的快捷键 SketchUp7.0版本的快捷键与SketchUp6.0版本的快捷键有所不同,为避免产生冲突,必须先卸载SketchUp 6.0的快捷键,再导入SketchUp7.0的快捷键,并在导入前先点击Reset All 按钮。选择系统属性命令(Window>Preferences),在System Preferences(系统属性)对话框中,单击Reset All按钮,将之前的快捷键设置彻底清除,接着单击Import按钮,找到您在这个帖子下载的附件Preferences.dat文件,再次单击Import按钮,完成SketchUp7.0快捷键的安装。 二、快捷键设定的一般规则 1、字母及单个键表示最常用的命令。 2、Ctrl+ (1)表示Windows系统命令;(2)表示文件导入导出命令;(3)表示与删除有关的命令。

SU快捷键大全

SU快捷键大全Ctrl+ 表示与Windows系统本身重合的命令 字母表示最常用的命令 Alt+ 表示相对常用的命令 Shift+ 1、表示“反”命令;2、表示有对话框的命令 F2-F8 表示视图方向 Edit -> Clear Selection 清除选区Ctrl+T Edit -> Copy 拷贝Ctrl+C Edit -> Cut 剪切Ctrl+X Edit -> Erase 删除选择的物体Delete Edit -> Erase Construction Geometry 删除辅助线Alt+E Edit -> Group 成组G Edit -> UnGroup 解开组Shift+G Edit -> Hide 隐去选择的物体H Edit -> UnHide 显示隐去的物体Shift+H Edit -> UnHide All 显示所有物体Shift+A Edit -> Hide Construction Geometry 隐去辅助线Q Edit -> UnHide Construction Geometry 显示辅助线Shift+Q Edit -> UnHide Last 显示最后隐去的物体Shift+L Page -> Add 增加动画页面Alt+A Page -> Delete 删除动画页面Alt+D Page -> List 动画页面Alt+L Page -> Next Page 下一个动画页面PageDown Page -> Previous Page 上一个动画页面PageUp Page -> Update 定义动画页面Alt+U Rendering/Wireframe 线框显示Alt+1 Rendering/Hidden line 消隐线框显示Alt+2 Rendering/Shaded 明暗着色显示Alt+3 Rendering/Shaded with patterns 贴图显示Alt+4 Rendering/Transparency 半透明/不透明状态切换T SketchUp/Context Help 即时帮助Alt+F1 Tools -> Arc 弧A Tools -> Axes 设置用户坐标轴Y Tools -> Circle 圆C Tools -> Customize -> Keyboard 设置快捷键Shift+K Tools -> Erase 删除E Tools -> Freehand 自由线F Tools -> Line 直线L Tools -> Measure 测距离或创建辅助线Alt+M Tools -> Move 移动M Tools -> Offset 平行偏移O Tools -> Paint 材质X Tools -> Polygon 多边形P

自定义SU快捷键大全

sketchup Q 旋转 W 文本 E 删除 R 画矩形 T 测量 Y 量角器 U 跟随路径 I O 环绕视角 P 推拉 A 画弧 S 拉伸 D 创建群组 F 偏移 G 创建组件 H 平移 J 插入组件 K 透视/不透视 L 直线 Z 放大镜 X 阴影 C 画圆 B 填充 N 多边形 M 移动/复制 Shift+F1 sketchup上下文帮助Ctrl+C 复制 Ctrl+X 剪切 Ctrl+V 粘贴 Ctrl+Z 撤销(后退) Ctrl+Y 取消撤销(前进)Ctrl+T 全部不选 Ctrl+A 全选 Ctrl+S 保存 Ctrl+P 打印 Ctrl+O 打开 Ctrl+N 新建 Ctrl+J 组件选项 Ctrl+W 三维文本 Ctrl+L 十字准线 Ctrl+I 导出二维图形 Ctrl+E 导出三维模型 Ctrl+U 打印预览

Ctrl+K 打印设置 Ctrl+R 导入 Ctrl+G 分解 Ctrl+F 翻转平面 Shift+I 标准视图/等轴Shift+B 标准视图/底部Shift+T 标准视图/顶部Shift+P 平行投影/透视图Shift+O 平行投影/透视图Shift+U 两点透视图 Shift+X 阴影 Shift+S 另存为 Shift+A 取消锁定全部项Shift+D 取消锁定选择项Shift+F 锁定 Alt+S 副本另存为 Alt+F 隐藏 Alt+G 取消隐藏最后项Alt+D 取消隐藏选定项Alt+A 取消隐藏全部项Ctrl+Shift+S 另存为模板 F2 使用偏好 F3 退出 F4 帮助中心 F5 检查更新 F6 关于sketchup

Sketchup常用快捷键一览表

Sketchup常用快捷键一览表 相机: 相机/标准视图/底视图F3 相机/标准视图/顶视图F2 相机/标准视图/后视图F5 相机/标准视图/前视图F4 相机/标准视图/右视图F7 相机/标准视图/左视图F6 相机/充满视图Shift+Z 相机/窗口缩放Z 相机/漫游W 相机/配置相机Alt+C 相机/绕轴旋转Alt+X 相机/上一次Tab 相机/实时缩放Alt+Z 相机/透视显示V 相机/标准视图/等角透视F8 工具: 工具/材质X 工具/测量/辅助线Alt+M 工具/尺寸标注 D 工具/量角器/辅助线Alt+P 工具/路径跟随Alt+F 工具/偏移O 工具/剖面Alt+/ 工具/删除 E 工具/设置坐标轴Y 工具/缩放S 工具/推拉U 工具/文字标注Alt+T 工具/旋转Alt+R 工具/选择Space 工具/移动M 绘制: 绘制/矩形R 绘制/徒手画 F 绘制/圆弧 A 绘制/圆形 C 绘制/直线L 绘制/多边形P 编辑: 编辑/撤销Ctrl+z 编辑/复制Ctrl+C 编辑/剪切Ctrl+X 编辑/粘贴Ctrl+V 编辑/全选Ctrl+A 编辑/群组G 编辑/删除Delete 编辑/显示/全部Shift+A

编辑/隐藏H 编辑/制作组件Alt+G 渲染: 渲染/材质贴图Alt+4 渲染/单色Alt+5 渲染/透明材质K 渲染/线框Alt+1 渲染/消影Alt+2 渲染/着色Alt+3 查看: 查看/坐标轴Alt+Q 查看/X光模式T 查看/阴影Alt+S 窗口: 窗口/组件Shift+C 窗口/场景信息Shift+F1 窗口/图层Shift+E 窗口/系统属性Shift+P 窗口/页面设置Alt+L

CAD,PS,SU常用快捷键命令大全

CAD常用快捷键命令1、绘图命令: PO, *POINT(点) L, *LINE(直线) XL, *XLINE(射线) PL, *PLINE(多段线)ML, *MLINE(多线) SPL, *SPLINE(样条曲线)POL, *POLYGON(正多边形)REC, *RECTANGLE(矩形)C, *CIRCLE(圆) A, *ARC(圆弧) DO, *DONUT(圆环) EL, *ELLIPSE(椭圆)REG, *REGION(面域)MT, *MTEXT(多行文本)T, *MTEXT(多行文本) B, *BLOCK(块定义) I, *INSERT(插入块)W, *WBLOCK(定义块文件)DIV, *DIVIDE(等分) ME,*MEASURE(定距等分) H, *BHATCH(填充) 2、修改命令: CO, *COPY(复制) MI, *MIRROR(镜像) AR, *ARRAY(阵列) O, *OFFSET(偏移) RO, *ROTATE(旋转) M, *MOVE(移动) E, DEL键 *ERASE(删除)X, *EXPLODE(分解) TR, *TRIM(修剪) EX, *EXTEND(延伸) S, *STRETCH(拉伸) LEN, *LENGTHEN(直线拉长)

SC, *SCALE(比例缩放) BR, *BREAK(打断) CHA, *CHAMFER(倒角) F, *FILLET(倒圆角) PE, *PEDIT(多段线编辑) ED, *DDEDIT(修改文本) 3、视窗缩放: P, *PAN(平移) Z+空格+空格, *实时缩放 Z, *局部放大 Z+P, *返回上一视图 Z+E, 显示全图 Z+W,显示窗选部分 4、尺寸标注: DLI, *DIMLINEAR(直线标注) DAL, *DIMALIGNED(对齐标注) DRA, *DIMRADIUS(半径标注) DDI, *DIMDIAMETER(直径标注) DAN, *DIMANGULAR(角度标注) DCE, *DIMCENTER(中心标注) DOR, *DIMORDINATE(点标注) LE, *QLEADER(快速引出标注) DBA, *DIMBASELINE(基线标注) DCO, *DIMCONTINUE(连续标注) D, *DIMSTYLE(标注样式) DED, *DIMEDIT(编辑标注) DOV, *DIMOVERRIDE(替换标注系统变量) DAR,(弧度标注,CAD2006) DJO,(折弯标注,CAD2006) 5、对象特性 ADC, *ADCENTER(设计中心“Ctrl+2”)CH, MO *PROPERTIES(修改特性“Ctrl+1”) MA, *MATCHPROP(属性匹配) ST, *STYLE(文字样式) COL, *COLOR(设置颜色) LA, *LAYER(图层操作) LT, *LINETYPE(线形) LTS, *LTSCALE(线形比例) LW, *LWEIGHT (线宽) UN, *UNITS(图形单位) ATT, *ATTDEF(属性定义) ATE, *ATTEDIT(编辑属性) BO, *BOUNDARY(边界创建,包括创建闭合多段线和面域)AL, *ALIGN(对齐) EXIT, *QUIT(退出) EXP, *EXPORT(输出其它格式文件)IMP, *IMPORT(输入文件) OP,PR *OPTIONS(自定义CAD设置)PRINT, *PLOT(打印) PU, *PURGE(清除垃圾) RE, *REDRAW(重新生成) REN, *RENAME(重命名) SN, *SNAP(捕捉栅格) DS, *DSETTINGS(设置极轴追踪)OS, *OSNAP(设置捕捉模式) PRE, *PREVIEW(打印预览) TO, *TOOLBAR(工具栏) V, *VIEW(命名视图) AA, *AREA(面积) DI, *DIST(距离) LI, *LIST(显示图形数据信息)(二)常用CTRL快捷键 【CTRL】+1 *PROPERTIES(修改特性) 【CTRL】+2 *ADCENTER(设计中心)【CTRL】+O *OPEN(打开文件)【CTRL】+N、M *NEW(新建文件)【CTRL】+P *PRINT(打印文件)【CTRL】+S *SAVE(保存文件)【CTRL】+Z *UNDO(放弃) 【CTRL】+X *CUTCLIP(剪切)【CTRL】+C *COPYCLIP(复制)【CTRL】+V *PASTECLIP(粘贴)【CTRL】+B *SNAP(栅格捕捉)【CTRL】+F *OSNAP(对象捕捉)【CTRL】+G *GRID(栅格) 【CTRL】+L *ORTHO(正交)【CTRL】+W *(对象追踪) 【CTRL】+U *(极轴) (三)常用功能键 【F1】 *HELP(帮助) 【F2】 *(文本窗口) 【F3】 *OSNAP(对象捕捉) 【F7】 *GRIP(栅格) 【F8】正交

纳米流体研究进展.

纳米流体研究进展 摘要:纳米流体作为一种新型换热工质展现出异常良好的换热性能和良好的稳定性目前,人 们对于纳米流体的研究还不够深入,纳米流体各种特性的机理尚不清楚。进一步开展纳米流 体各种特性的机理研究,有助于加深人们对纳米流体的认知,能够促进纳米流体的工程应用,是非常有意义的工作。本文综述了纳米流体制备、纳米流体的稳定性、传热特性、导热系数 研究进展。并对其在应用上作出了展望。 关键词:纳米流体;稳定新;传热特性;导热系数 1引言: 随着科学技术的飞速发展和能源问题的日益突出,热交换设备的传热负荷和传热强度日益增大,传统的纯液体换热工质已很难满足一些特殊条件下的传热与冷却要求,低传热性能的换热工质已成为研究新一代高效传热冷却技术的主要障碍。随着纳米科学与技术的进步,纳米尺度材料和技术越来越多地进入强化传热工作者的视野。1995年美国Argonne国家实验室的Choi等[1]率先提出了纳米流体的概念。所谓纳米流体,是指以一定的方式在液体介质中添加纳米粒子或纳米管而形成的悬浮液。纳米流体与传统换热介质相比,在增强传热方面有着优良的特性。研究表明:纳米流体能显著提高传统换热介质的导热系数[2]。此外纳米流体在氨水鼓泡吸收实验中也表现出了很好的强化氨气吸收效果。制备导热系数高、换热性能好、传质效果强的纳米流体也必定会促进其在能源、化工、微电子、信息等领域的发展[3]。纳米流体概念的提出给强化传热技术的研究带来了新的希望。开展纳米流体强化传热机理研究,搞清楚影响纳米流体强化传热的主要因素,对于促进纳米流体在传热领域的应用有重要的意义。基于此,本文主要从纳米流体制备、纳米流体的稳定性、传热特性、导热系数等方面的最新进展及存在的问题进行叙述。 2纳米流体的制备 关于纳米流体的制备,己有许多相关综述可以参考,文献中采用的制备方法主要有两步法和一步法[4,5]: 两步法是最为便利、经济的制备方法。纳米粉体工业已经较为成熟,可以通过物理或化学方法制备出金属或非金属的纳米颗粒、纳米管等纳米材料。两步法是指直接将纳米粒子分散到基液中的方法。首先,通过气相沉积法、化学还原法、机械球磨法或其它方法制备出纳米粒子、纳米纤维或纳米管,然后通过超声波振动、添加活性剂或分散剂、改变溶液pH值的方法,使纳米颗粒均匀地分散到基

纳米流体器件的制备

?制备方法分类 2.基于MEMS 的纳米制备方法 ?介质层释放(SLR)?蚀刻与粘合?蚀刻与沉积 ?边缘光刻和间壁技术 1.纳米光刻方法 电子束光刻(EBL ) 聚离子束技术(FIB ) 纳米压印光刻(NIL ) 干涉光刻(IL ) 球体光刻(SL ) 3.基于纳米材料的纳米制备方法 离子选择性聚合物 纳米多孔材料 纳米晶体 纳米线和纳米管

?纳米光刻方法-电子束光刻(EBL) 硅 负抗蚀剂图案化 抗蚀剂薄层 模具蚀刻软光刻 粘合 正抗蚀剂图案化 纳米通道蚀刻 粘合 在覆盖有电子敏感抗蚀剂薄层的表面上沿预定路径发射电子束,并随后选择性地去除曝光或未曝光的抗蚀剂 可实现10nm 或更小的特征;但成本较高,写入速度较

?纳米光刻方法-聚离子束技术(FIB) 薄膜沉积、背腔蚀刻 FIB 研磨 纳米孔收缩 利用聚离子束实现特定位点制造的技术,如溶胀,研磨,注入,离子诱导沉积或蚀刻。 半导体行业中强大的缺陷修复工具 薄膜 纳米孔制备 纳米通道制备 直接FIB 扫描 引入介质层,然后是FIB 扫描和牺牲层蚀刻 与其他技术兼容;但设备昂贵,由于进行直接研磨/沉积,产量低

?纳米光刻方法-纳米压印光刻(NIL) 不同于传统光刻技术,NIL 通过将预定模具压入压印抗蚀剂来复制纳米级特征,克服了衍射极限 压印抗蚀涂层 压模残余抗蚀剂蚀刻直接热粘合 去模溶剂蒸汽密封熔化回流密封 直接模板密封 可在大面积上产生纳米级特征,与上述EBL和FIB相比 成本相对较低,模具可重复使用。与其他微制造方法兼容。

?纳米光刻方法-干涉光刻(IL) 与NIL类似,IL是一种能够制造大面积、纳米尺寸、周期性图案结构的技术。在该技术中,相干激光源被分成两个不同的光束,然后投射到光刻胶上。基于两个相干光束的干涉曝光,在光刻胶上形成具有一定间距的典型正弦干涉图案。 根据其工作原理,IL只能产生纳米链/纳米孔阵列,无法制造单个纳米链/纳米孔,这限制了其应用。

Revit实用快捷键大全绝对

R e v i t实用快捷键大全 绝对 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

Revit实用快捷键大全(绝对经典) 分享自: 设置快捷键时注意: 1。设置规则说明:以[ "WA" menu:"建模-墙" ]为例,"WA" 为快捷命令,"建模-墙" 为下拉彩单“建模”中的“墙”命令。注意:在引号中设置完快捷命令后,要将行首的分号 ; 删除掉,快捷命令才能生效。 2。目前revit的快捷命令为两个字符,例如墙的快捷命令为 WA,如果设置了一个字符如W,则在软件中必须连续单击“W+空格键”,才能激活命令。 3。编辑完文件并保存后,需要重新启动Revit 方才生效。此时在下拉菜单中的命令后 面会出现设置好的快捷命令。 ————编辑 menu———— "DE" menu:"编辑-删除" "MD" menu:"编辑-修改" ; "" menu:"编辑-上次选择" "SA" menu:"编辑-选择全部实例" "MV" menu:"编辑-移动" "CO" menu:"编辑-复制" ; "CC" menu:"编辑-复制" "RO" menu:"编辑-旋转" "AR" menu:"编辑-阵列" "MM" menu:"编辑-镜像" "RE" menu:"编辑-调整大小" "GP" menu:"编辑-成组-创建组" "EG" menu:"编辑-成组-编辑" "UG" menu:"编辑-成组-解组" "LG" menu:"编辑-成组-链接组" "EX" menu:"编辑-成组-排除构件" "MP" menu:"编辑-成组-将构件移到项目" "RB" menu:"编辑-成组-恢复已排除构件"

草图大师快捷键大全及详解

一、安装SketchUp7.0版本 SketchUp7.0版本的快捷键与SketchUp6.0版本的快捷键有所不同,为避免产生冲突,必须先卸载SketchUp 6.0的快捷键,再完成SketchUp7.0快捷键的安装。(附件出现问题,过程省略) 二、快捷键设定的一般规则 1、字母及单个键表示最常用的命令。 2、Ctrl+ (1)表示Windows系统命令;(2)表示文件导入导出命令;(3)表示与删除有关的命令。 3、Alt+ (1)表示相对常用的命令;(2)表示与动画有关的命令。 4、Shift+ (1)表示“反”的命令;(2)表示有对话框的命令;(3)表示与显示隐藏有关的命令。 5、F2~F12 F2~F9表示视图方向,F10~F12表示信息、属性等。 三、快捷键纵向解析快捷键纵向解析是以菜单及命令的开头字母为序。 1、Camera (1)Camera>Field of View - Alt+V 相机焦距,即相机视角,此命令可以很方便地调整透视变形程度。 (2)Camera>Look Around - Alt+L 环视工具,以视点为中心旋转观察。 (3)Camera>Orbit - Middle Botton(鼠标中键)视图旋转工具,以物体为中心旋转观察。用该命令确定物体的三点透视状态后,再用Walk命令输入视点高度,即可控制物体的三点透视及两点透视。 (4)Camera>Pan - Shift+Middle Botton(鼠标中键)视图平移工具,平移视图进行观察。(5)Camera>Perspective - V 透视/轴测切换。V=View,观察的意思。 (6)Camera>Position Camera - Alt+C 相机位置工具。C=Camera,相机的意思。 (7)Camera>Previous - F9键当前视图和上一个视图切换。SketchUp不支持无限返回,只能进行当前视图和上一个视图之间的切换。 (8)Camera>Standard>Back - F6键后视图。 (9)Camera>Standard>Bottom - F7键底视图。 (10)Camera>Standard>Front - F3键前视图。 (11)Camera>Standard>Iso - F8键透视或轴测视点。https://www.wendangku.net/doc/1f15851072.html, (12)Camera>Standard>Left - F4键左视图。 (13)Camera>Standard>Right - F5键右视图。 (14)Camera>Standard>Top - F2键顶视图。 (15)Camera>Walk - W 漫游工具。相机漫游,类似于虚拟现实。鼠标向上移动为向前,反之向后,左右移动同理。该命令的特点是视平线不会变化,另一个重要用途是可以控制视点高度。 (16)Camera>Zoom - Alt+Z 视图缩放工具,用来缩放视图及视角、镜头长度设置。*deg 定义视锥角度,*mm 定义镜头长度,其中*为需要输入的数字。此命令也可以很方便地调整透视变形程度, (17)Camera>Zoom Extents - Shift+ Z 视图全屏显示工具。

su快捷键设定的一般规则

快捷键设定的一般规则 1、字母及单个键表示最常用的命令。 2、Ctrl+ (1)表示Windows系统命令;(2)表示文件导入导出命令;(3)表示与删除有关的命令。 3、Alt+ (1)表示相对常用的命令;(2)表示与动画有关的命令。 4、Shift+ (1)表示“反”的命令;(2)表示有对话框的命令;(3)表示与显示隐藏有关的命令。 5、F2~F12 F2~F9表示视图方向,F10~F12表示信息、属性等。 快捷键纵向解析快捷键纵向解析是以菜单及命令的开头字母为序。 1、Camera (1)Camera>Field of View - Alt+V 相机焦距,即相机视角,此命令可以很方便地调整透视变形程度。 (2)Camera>Look Around - Alt+L 环视工具,以视点为中心旋转观察。 (3)Camera>Orbit - Middle Botton(鼠标中键)视图旋转工具,以物体为中心旋转观察。用该命令确定物体的三点透视状态后,再用Walk命令输入视点高度,即可控制物体的三点透视及两点透视。 (4)Camera>Pan - Shift+Middle Botton(鼠标中键)视图平移工具,平移视图进行观察。(5)Camera>Perspective - V 透视/轴测切换。V=View,观察的意思。 (6)Camera>Position Camera - Alt+C 相机位置工具。C=Camera,相机的意思。 (7)Camera>Previous - F9键当前视图和上一个视图切换。SketchUp不支持无限返回,只能进行当前视图和上一个视图之间的切换。 (8)Camera>Standard>Back - F6键后视图。 (9)Camera>Standard>Bottom - F7键底视图。 (10)Camera>Standard>Front - F3键前视图。 (11)Camera>Standard>Iso - F8键透视或轴测视点。https://www.wendangku.net/doc/1f15851072.html, (12)Camera>Standard>Left - F4键左视图。 (13)Camera>Standard>Right - F5键右视图。 (14)Camera>Standard>Top - F2键顶视图。 (15)Camera>Walk - W 漫游工具。相机漫游,类似于虚拟现实。鼠标向上移动为向前,反之向后,左右移动同理。该命令的特点是视平线不会变化,另一个重要用途是可以控制视点高度。 (16)Camera>Zoom - Alt+Z 视图缩放工具,用来缩放视图及视角、镜头长度设置。*deg 定义视锥角度,*mm 定义镜头长度,其中*为需要输入的数字。此命令也可以很方便地调整透视变形程度, (17)Camera>Zoom Extents - Shift+ Z 视图全屏显示工具。 (18)Camera>Zoom Window - Z 视图窗口放大工具。 2、Draw (1)Draw>Arc - A 圆弧工具。*S定义弧的段数,*R定义弧的半径,其中*为需要输入的数字。 (2)Draw>Box 盒子组。不常用,未设快键。 (3)Draw>Circle - C 画圆工具。*S定义圆的段数,其中*为需要输入的数字。 (4)Draw>Freehand - Alt+F 不规则线段工具。按住Shift 键可以增加顺滑。截至5.0版本没有可以控制段数的参数,一般不用这个命令,多

常用的草图大师快捷键大全

常用的草图大师快捷键大全: 编辑/撤销 Ctrl+z 编辑/放弃选择 Ctrl+t 编辑/辅助线/删除 Alt+E 编辑/辅助线/显示 Shift+ Q 编辑/辅助线/隐藏 Q 编辑/复制 Ctrl+C 编辑/剪切 Ctrl+X 编辑/全选 Ctrl+A 编辑/群组 G 编辑/删除 Delete 编辑/显示/全部 Shift+A 编辑/显示/上一次 Shift+L 编辑/显示/选择物体 Shift+H 编辑/隐藏 H 编辑/粘贴 Ctrl+V 编辑/制作组建 Alt+G 编辑/重复 Ctrl+Y 编辑/将面翻转 Alt+V 编辑/炸开/解除群组 Shift+G 查看/工具栏/标准 Ctrl+1 查看/工具栏/绘图 Ctrl+2 查看/工具栏/视图 Ctrl+3 查看/工具栏/图层 Shift+W 查看/工具栏/相机 Ctrl+4 查看/显示剖面 Alt+,查看/显示剖切 Alt+. 查看/虚显隐藏物体 Alt+H 查看/页面/创建 Alt+A 查看/页面/更新 Alt+U 查看/页面/幻灯演示 Alt+Space 查看/页面/删除 Alt+D 查看/页面/上一页 pageup 查看/页面/下一页 pagedown 查看/页面/演示设置 Alt+: 查看/坐标轴 Alt+Q 查看/X光模式 T 查看/阴影 Alt+S 窗口/材质浏览器 Shift+X 窗口/场景信息 Shift+F1 窗口/图层 Shift+E 窗口/系统属性 Shift+P 窗口/页面设置 Alt+L 窗口/阴影设置 Shift+S 窗口/组建 Shift+C 工具/材质 X 工具/测量/辅助线 Alt+M 工具/尺寸标注 D 分享 草图大师(sketchup7.0)快捷键大全 一、安装SketchUp7.0版本的快捷键 SketchUp7.0版本的快捷键与SketchUp6.0版本的快捷键有所不同,为避免产生冲突,必须先卸载SketchUp 6 0的 快捷键,并在导入前先点击Reset All按钮。选择系统属性命令(Window>Preferences),在System Preferen Reset All按钮,将之前的快捷键设置彻底清除,接着单击Import按钮,找到您在这个帖子下载的附件Prefere 按钮,完成SketchUp7.0快捷键的安装。 二、快捷键设定的一般规则 1、字母及单个键表示最常用的命令。 2、Ctrl+ (1)表示Windows系统命令;(2)表示文件导入导出命令;(3)表示与删除有关的命令。

草图大师快捷键

线段L 矩形R 圆弧A 圆 C 多边形N 不规则线段F 选择空格键 油漆桶B 橡皮擦 E 定义组件G 移动M 旋转Q 缩放S 推拉P 路径跟随J 平行偏移F 测量T 量角器V 文字标注T 尺寸标注D 坐标轴Y 三维文字 SHIFT+T 视图旋转 鼠标中键 视图平移 H 视图缩放 Z 充满视图 SHIFT+Z 恢复上个视图 F8 回到下个视图 F9 相机位置 I 绕轴旋转 K 漫游 W 添加剖面 P 透明显示 A L T+` 线框显示 A L T+1 消隐显示 A L T+2 着色显示 A L T+3 贴图显示 A L T+4 单色显示 A L T+5 等角透视 F2 顶视图 F3 前视图 F4 后视图 F5 左视图 F6

右视图 F7 中文 编辑/撤销 Ctrl+z 编辑/放弃选择Ctrl+t 编辑/辅助线/删除Alt+E 编辑/辅助线/显示Shift+Q 编辑/辅助线/隐藏Q 编辑/复制 Ctrl+C 编辑/剪切 Ctrl+X 编辑/全选 Ctrl+A 编辑/群组 G 编辑/删除 Delete 编辑/显示/全部 Shift+A 编辑/显示/上一次 Shift+L 编辑/显示/选择物 体 Shift+H 编辑/隐藏 H 编辑/粘贴 Ctrl+V 编辑/制作组建 Alt+G 编辑/重复 Ctrl+Y 编辑/将面翻转 Alt+V 编辑/炸开/解除群 组 Shift+G 查看/工具栏/标准 Ctrl+1 查看/工具栏/绘图 Ctrl+2 查看/工具栏/视图 Ctrl+3 查看/工具栏/图层 Shift+W 查看/工具栏/相机 Ctrl+4 查看/显示剖面 Alt+, 查看/显示剖切 Alt+. 查看/虚显隐藏物体 Alt+H 查看/页面/创建 Alt+A 查看/页面/更新 Alt+U

sketchup 常用快捷键大全

sketchp常用快捷键 显示/旋转鼠标中键 显示/平移 Shift+中键 编辑/辅助线/显示 Shift+ Q 编辑/辅助线/隐藏 Q 编辑/撤销 Ctrl+z 编辑/放弃选择 Ctrl+T; Ctrl+D(用林京的快捷键) 文件/导出/DWG/DXF Ctrl+Shift+D 编辑/群组 G 编辑/炸开/解除群组 Shift+G 编辑/删除 Delete 编辑/隐藏 H 编辑/显示/选择物体 Shift+H 编辑/显示/全部 Shift+A 编辑/制作组建 Alt+G 编辑/重复 Ctrl+Y 查看/虚显隐藏物体 Alt+H 查看/坐标轴 Alt+Q 查看/阴影 Alt+S 窗口/系统属性 Shift+P 窗口/显示设置 Shift+V (用林京的快捷键) 工具/材质 X 工具/测量/辅助线 Alt+M 工具/尺寸标注 D

工具/量角器/辅助线 Alt+P 工具/偏移 O 工具/剖面 Alt+/ 工具/删除 E 工具/设置坐标轴 Y 工具/缩放 S 工具/推拉 U 工具/文字标注 Alt+T 工具/旋转 Alt+R 工具/选择 Space 工具/移动 M 绘制/多边形 P 绘制/矩形 R 绘制/徒手画 F 绘制/圆弧 A 绘制/圆形 C 绘制/直线 L 文件/保存 Ctrl+S 文件/新建 Ctrl+N 物体内编辑/隐藏剩余模型 I 物体内编辑/隐藏相似组建 J 相机/标准视图/等角透视 F8 相机/标准视图/顶视图 F2 相机/标准视图/前视图 F4

相机/标准视图/左视图 F6 相机/充满视图 Shift+Z 相机/窗口 Z 相机/上一次 TAB 相机/透视显示 V 渲染/线框 Alt+1 渲染/消影 Alt+2 学习心得: 连续复制:选择物体后,按M,按Ctrl同时点击左键,移动复制的距离,点击左键,输入数字加X(例:5X,既复制5份); 间隔复制:同上,输入数字加/(例:5/,表示间隔复制5份); 当物体和轴关系不是很明确时,不能对某轴进行移动。得想别的方法。 画线时,可以寻求参考点来定位,很好用! 线能够闭合面、割断线、分割面。 选择物体时增加或减少用Shift配合。 在表面画了物体,剪切后粘贴,该物体会顺着目的表面安置,很好用。 这是Sketch UP的特点。如果须使其失去联系,可右键选分离。 快捷键的安装,须先安装原程序提供的,然后再自行设置自己的快捷键。或者先清空所有,再导入快捷键(4.0用5.0的快捷键时)。 善用辅助线:用于定位,有卷尺与量角器两种。系统可以捕捉到辅助线。 隐藏辅助线(Q);显示辅助线(shift+Q) 善用组和组件:组类似cad的定义块,不具有关联性;组件类似组,但具有关联性,修改一组件,其他相关联的组件也会被改变。

SU快捷键大全

SU常用快捷键 显示/旋转鼠标中键 显示/平移Shift+中键 编辑/辅助线/显示Shift+Q 编辑/辅助线/隐藏Q 编辑/撤销Ctrl+z 编辑/放弃选择Ctrl+T; Ctrl+D(用林京的快捷键) 文件/导出/DWG/DXF Ctrl+Shift+D 编辑/群组G 编辑/炸开/解除群组Shift+G 编辑/删除Delete 编辑/隐藏H 编辑/显示/选择物体Shift+H 编辑/显示/全部Shift+A 编辑/制作组建Alt+G 编辑/重复Ctrl+Y 查看/虚显隐藏物体Alt+H 查看/坐标轴Alt+Q 查看/阴影Alt+S 窗口/系统属性Shift+P 窗口/显示设置Shift+V (用林京的快捷键) 工具/材质X 工具/测量/辅助线Alt+M 工具/尺寸标注 D 工具/量角器/辅助线Alt+P 工具/偏移O 工具/剖面Alt+/ 工具/删除 E

工具/设置坐标轴Y 工具/缩放S 工具/推拉U 工具/文字标注Alt+T 工具/旋转Alt+R 工具/选择Space 工具/移动M 绘制/多边形P 绘制/矩形R 绘制/徒手画F 绘制/圆弧 A 绘制/圆形 C 绘制/直线L 文件/保存Ctrl+S 文件/新建Ctrl+N 物体内编辑/隐藏剩余模型I 物体内编辑/隐藏相似组建J 相机/标准视图/等角透视F8 相机/标准视图/顶视图F2 相机/标准视图/前视图F4 相机/标准视图/左视图F6 相机/充满视图Shift+Z 相机/窗口Z 相机/上一次TAB 相机/透视显示V 渲染/线框Alt+1 渲染/消影Alt+2 学习心得:

连续复制:选择物体后,按M,按Ctrl同时点击左键,移动复制的距离,点击左键,输入数字加X(例:5X,既复制5份); 间隔复制:同上,输入数字加/(例:5/,表示间隔复制5份); 当物体和轴关系不是很明确时,不能对某轴进行移动。得想别的方法。 画线时,可以寻求参考点来定位,很好用! 线能够闭合面、割断线、分割面。 选择物体时增加或减少用Shift配合。 在表面画了物体,剪切后粘贴,该物体会顺着目的表面安置,很好用。 这是Sketch UP的特点。如果须使其失去联系,可右键选分离。 快捷键的安装,须先安装原程序提供的,然后再自行设置自己的快捷键。或者先清空所有,再导入快捷键(4.0用5.0的快捷键时)。 善用辅助线:用于定位,有卷尺与量角器两种。系统可以捕捉到辅助线。 隐藏辅助线(Q);显示辅助线(shift+Q) 善用组和组件:组类似cad的定义块,不具有关联性;组件类似组,但具有关联性,修改一组件,其他相关联的组件也会被改变。 按住Shift键可以锁定当前参考。 绘制矩形中,出现Square(平方)提示,则说明为正方形;出现Golden Section(Golden 剖面)提示,则说明为带黄金分割的矩形。 绘制弧线后输入“数字S”,来指定弧形的段数。同样也可指定圆的段数。 问题解答: 如何镜向?用旋转+Ctrl,配合恰当的参考点即可。还可用插件。 如何补面?加线封闭面即可。 如何作布尔运算?运算后,删除线面即可。如作了群组,须先炸开再删线面。 如何沿路径复制?若为单弧线,可找到弧心用旋转复制。还可用插件。 如何分页?Shift+E 锁定与解锁有何妙用?锁定就无法编辑。 如何由线推出面? 用xx插件 如何作出拉膜结构? 先用定位方法画出弧形边线,再用地形生成工具生成膜。 模型对绘图速度的影响有那些? 高分辨率材质、阴影、透明度对3D专业显卡要求高;模型边线或细部对CPU要求高(可用窗口尺寸改小来测试)。

相关文档