文档库 最新最全的文档下载
当前位置:文档库 › 自相关性检验

自相关性检验

自相关性检验
自相关性检验

关于x y的散点图

由散点图可以判断出才可能存在异方差。运用怀特检验判断是否有异方差

White Heteroskedasticity Test:

F-statistic 5.71174

5 Probability

0.00831

1

Obs*R-squared 8.98267

0 Probability

0.01120

6

由此可见,1%的显著水平上存在异方差。运用加权最小二乘法消除异方差:

Dependent Variable: Y

Method: Least Squares

Date: 10/29/14 Time: 14:46 Sample: 1 31

Included observations: 31

Weighting series: 1/ABS(RESID)

Variable Coeffici

ent Std. Error t-Statistic Prob.

C -2171.3

76 418.8113 -5.184616 0.0000

X 0.97610

4 0.022593 43.20372 0.0000 Weighted Statistics

R-squared 0.99927

0 Mean dependent var

16676.9

9

Adjusted R-squared 0.99924

5 S.D. dependent var

18232.7

8

S.E. of regression 501.062

0 Akaike info criterion

15.3336

8

Sum squared resid 728082

9. Schwarz criterion

15.4261

9

Log likelihood -235.67

20 F-statistic

1866.56

1

Durbin-Watson stat 1.37353

7 Prob(F-statistic)

0.00000

0 Unweighted Statistics

R-squared 0.92681

6 Mean dependent var

17975.6

8

Adjusted R-squared 0.92429

2 S.D. dependent var

5667.54

2

S.E. of regression 1559.42

4 Sum squared resid

705223

38

Durbin-Watson stat 1.57587

5

由上表,f检验的伴随概率为0.000000,说明在1%的显著水平上,拒绝原假设,t检验的伴随概率为0.0000,说明在1%的显著水平上,拒绝原假设y x 之间存在显著的线性关系,该模型很好的反映了实际情况,所以消除了异方差。

自相关模型的检验和处理:

用Eviews5.0 做出国民生产总值(gdp)和出口(m)的散点图:

运用拉格朗日成数进行检验。

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 4.59799

0 Probability

0.05004

6

Obs*R-squared 4.20291

8 Probability

0.04035

4

可以判断出存在一阶线性相关。

数据正态性检验及正态转化在spss中的实现

数据正态性检验及正态转换在spss中的实现 1数据正态性检验 观察分布,预先判断 主要观察直方图,以及根据峰度和偏度粗略估计研究变量的分布。采用spss中描述统计中的频率分析来实现,具体操作如下: (1)在spss中打开数据资料文件,依次点击“分析—描述统计—频率”,如下图: (2)在弹出的对话框中,选择左边方框中要研究的变量,点击中间的箭头,将其选入右边的对话框,本文选择“胫围”作示例分析,如下图:

(3)之后,选择最右边五个选项卡中的“统计”选项卡,在弹出的对话框中的右下角勾选“偏度”和“峰度”选项,点击“继续”,如下图: (4)再点击“图表”选项卡,在弹出的对话框中勾选“直方图”和“在直方图中显示正态曲线”选项,点击“继续”,如下图: (5)然后点击“确定”选项,得出如下结果:统计一栏中包括有偏度及其标准误差、峰度及其标准误差。由结果可知:(偏度)>*(偏度标准误差);(峰度)>*(峰度标 准误差),推测该胫围数据不符合正态分布。

正态分布显著性检验 采用spss中非参数分析方法对数据资料进行正态性检验,具体步骤如下: (1)在spss中打开数据资料文件,依次点击“分析—非参数检验—单样本k-s”,如下图:

(2)在弹出的对话框中,选择左边方框中要研究的变量,点击中间的箭头,将其选入右边的对话框,本文选择“胫围”作示例分析,如下图: (3)之后,点击最右边的“精确”选项卡,在弹出的对话框中有三个选项,1、“仅渐进法”:是基于渐进分布的显著性水平的检验指标,适用于大样本,如果样本 过小或者分布不好,就会影响检验的效力;2、“蒙特卡洛法”:适用于精确显著 性水平的无偏估计,如果样本过大,数据处理过程太长,就应该使用这个选项; 3、“精确”:精确计算概率值,可以设定数据处理的时间,如果数据处理时间超

计量经济学异方差的检验与修正

《计量经济学》实训报告 实训项目名称异方差模型的检验与处理 实训时间 2012-01-02 实训地点实验楼308 班级 学号 姓名

实 训 (实 践 ) 报 告 实 训 名 称 异方差模型的检验与处理 一、 实训目的 掌握异方差性的检验及处理方法。 二 、实训要求 1.求销售利润与销售收入的样本回归函数,并对模型进行经济意义检验和统计检验; 2.分别用图形法、Goldfeld-Quant 检验、White 方法检验模型是否存在异方差; 3.如果模型存在异方差,选用适当的方法对异方差进行修正,消除或减小异方差对模型的影响。 三、实训内容 建立并检验我国制造业利润函数模型,检验异方差性,并选用适当方法对其进行修正,消除或不同) 四、实训步骤 1.建立一元线性回归方程; 2.建立Workfile 和对象,录入数据; 3.分别用图形法、Goldfeld-Quant 检验、White 方法检验模型是否存在异方差; 4.对所估计的模型再进行White 检验,观察异方差的调整情况,从而消除或减小异方差对模型的影响。 五、实训分析、总结 表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料。假设销售利润与销售收入之间满足线性约束,则理论模型设定为: 12i i i Y X u ββ=++ 其中i Y 表示销售利润,i X 表示销售收入。

表1 我国制造工业1998年销售利润与销售收入情况 行业名称销售利润Y 销售收入X 行业名称销售利润销售收入 食品加工业187.25 3180.44 医药制造业238.71 1264.1 食品制造业111.42 1119.88 化学纤维制品81.57 779.46 饮料制造业205.42 1489.89 橡胶制品业77.84 692.08 烟草加工业183.87 1328.59 塑料制品业144.34 1345 纺织业316.79 3862.9 非金属矿制品339.26 2866.14 服装制品业157.7 1779.1 黑色金属冶炼367.47 3868.28 皮革羽绒制品81.7 1081.77 有色金属冶炼144.29 1535.16 木材加工业35.67 443.74 金属制品业201.42 1948.12 家具制造业31.06 226.78 普通机械制造354.69 2351.68 造纸及纸品业134.4 1124.94 专用设备制造238.16 1714.73 印刷业90.12 499.83 交通运输设备511.94 4011.53 文教体育用品54.4 504.44 电子机械制造409.83 3286.15 石油加工业194.45 2363.8 电子通讯设备508.15 4499.19 化学原料纸品502.61 4195.22 仪器仪表设备72.46 663.68 1.建立Workfile和对象,录入销售收入X和销售利润Y: 图1 销售收入X和销售利润Y的录入 2.图形法检验 ⑴观察销售利润Y与销售收入X的相关图:在群对象窗口工具栏中点击

eviews自相关性检验

实验五自相关性 【实验目的】 掌握自相关性的检验与处理方法。 【实验内容】 利用表5-1资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。 【实验步骤】 一、回归模型的筛选 ⒈相关图分析 SCAT X Y 相关图表明,GDP指数与居民储蓄存款二者的曲线相关关系较为明显。现将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而加以比较分析。 ⒉估计模型,利用LS命令分别建立以下模型 ⑴线性模型:LS Y C X t (-6.706) (13.862) = 2 R=0.9100 F=192.145 S.E=5030.809 ⑵双对数模型:GENR LNY=LOG(Y) GENR LNX=LOG(X) LS LNY C LNX t (-31.604) (64.189) = 2 R=0.9954 F=4120.223 S.E=0.1221 ⑶对数模型:LS Y C LNX

=t (-6.501) (7.200) 2R =0.7318 F =51.8455 S.E =8685.043 ⑷指数模型:LS LNY C X =t (23.716) (14.939) 2R =0.9215 F =223.166 S.E =0.5049 ⑸二次多项式模型:GENR X2=X^2 LS Y C X X2 =t (3.747) (-8.235) (25.886) 2R =0.9976 F =3814.274 S.E =835.979 ⒊选择模型 比较以上模型,可见各模型回归系数的符号及数值较为合理。各解释变量及常数项都通过了t 检验,模型都较为显著。除了对数模型的拟合优度较低外,其余模型都具有高拟合优度,因此可以首先剔除对数模型。 比较各模型的残差分布表。线性模型的残差在较长时期内呈连续递减趋势而后又转为连续递增趋势,指数模型则大体相反,残差先呈连续递增趋势而后又转为连续递减趋势,因此,可以初步判断这两种函数形式设置是不当的。而且,这两个模型的拟合优度也较双对数模型和二次多项式模型低,所以又可舍弃线性模型和指数模型。双对数模型和二次多项式模型都具有很高的拟合优度,因而初步选定回归模型为这两个模型。 二、自相关性检验 ⒈DW 检验; ⑴双对数模型 因为n =21,k =1,取显著性水平α=0.05时,查表得L d =1.22, U d =1.42,而0<0.7062=DW

计量经济学--自相关性的检验及修正

经济计量分析实验报告 一、实验项目 自相关性的检验及修正 二、实验日期 2015.12.13 三、实验目的 对于国内旅游总花费的有关影响因素建立多元线性回归模型,对变量进行多重共线性的检验及修正后,对随机误差项进行异方差的检验和补救及自相关性的检验和修正。 四、实验内容 建立模型,对模型进行参数估计,对样本回归函数进行统计检验,以判定估计的可靠程度,包括拟合优度检验、方程总体线性的显著性检验、变量的显著性检验,以及参数的置信区间估计。 检验变量是否具有多重共线性并修正。 检验是否存在异方差并补救。 检验是否存在相关性并修正。 五、实验步骤 1、建立模型。 以国内旅游总花费Y 作为被解释变量,以年底总人口表示人口增长水平,以旅行社数量表示旅行社的发展情况,以城市公共交通运营数表示城市公共交通运行状况,以城乡居民储蓄存款年末增加值表示城乡居民储蓄存款增长水平。 2、模型设定为: t t t t t μβββββ+X +X +X +X +=Y 443322110t 其中:t Y — 国内旅游总花费(亿元) t 1X — 年底总人口(万人) t 2X — 旅行社数量(个) t 3X — 城市公共交通运营数(辆) t 4X — 城乡居民储蓄存款年末增加值(亿元) 3、对模型进行多重共线性检验。 4、检验异方差是否存在并补救。 5、检验自相关性是否存在并修正。 六、实验结果

消除多重共线性及排除异方差性之后的回归模型为:2382963.08388.301?X Y +-= 检验 I 、图示法 1、1-t e ,t e 散点图 -1,500 -1,000 -500 500 1,000 1,500 -2,000 -1,00001,0002,000 ET(-1) E T 大部分落在第Ⅰ,Ⅲ象限,表明随机误差项存在正自相关。 2、t e 折线图 -1,500 -1,000 -500 500 1,000 1,500 86 88 90 92 94 96 98 00 02 04 06 08 10 RESID Ⅱ、解析法 1、D-W 检验

spss进行正态性检验方法

用SPSS进行正态性分布检验全过程 (2008-06-21 13:26:12) 转载 标签: 杂谈 1、先做直方图看看是否大概符合正态分布,这个不用说了吧,Graph-->legacy dialogs-->histogram-->选入变量--》OK.如果距离正态分布的样子太远了,你就不要做下面的工作啦。 2、Analyze-->descriptive statistic-->explore--》选入变量--》选右上角的plots-->打开后,选中间的normally plots with tests -->OK。结果就出来啦。 3、它会用两种方法来检验正态分布,当sig>0.05时服从正态分布,如果不服从正态分布,就要看峰度和偏度啦: 偏度主要是研究分布形状是否对称。约=0 则可以认为分布是对称的; >0则可以认为右偏态,此时在均值右边的数据更为分散; <0则可以认为左偏态,同理。 峰度它是以正态分布为标准,比较两侧极端数据分布情况的指标。 正态的=0 >0 此时分布有一个沉重的尾巴, <0正好相反。 附加检验: (Ⅱ)附加检验之一,观察正态概率图,如果数据来自正态分布,图形的散点应该呈现一条直线。用Plot绘制正态分布的概率图,里面的“+”构成一条直线(正态分布数据概率图散点应该成一条直线),“*”代表样本数据散点。根据“*”覆盖“+”的程度,说明样本数据是否来自正态分布数据。 (Ⅲ)附加检验之二,绘制数据的条形图,如果数据来自正态分布,条形图呈现“钟形”分

布。用histogram绘制直方图/normal在直方图中拟合正态分布的密度曲线,可以看到,曲线几乎是个标准钟形,可以认为数据是正态分布。 (Ⅳ)附加检验之三,观察描述性统计量中偏度系数(Skewness)g1和峰度系数(Kurtosis)g2,如果数据来自正态分布,则两者都应该是0。用g1,g2,бg1,бg2来计算U值,用U检验法。U1=同理计算U2,要两个都小于1.96,即p大于0.05才可以

试验一异方差的检验与修正-时间序列分析

案例三 ARIMA 模型的建立 一、实验目的 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念 所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验内容及要求 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2007年中国进出口贸易总额数据运用经典B-J 方法论建立合适的ARIMA (,,p d q )模型,并能够利用此模型进行进出口贸易总额的预测。 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA 模型;如何利用ARIMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验指导 1、模型识别 (1)数据录入 打开Eviews 软件,选择“File”菜单中的“New --Workfile”选项,在“Workfile structure type ”栏选择“Dated –regular frequency ”,在“Date specification ”栏中分别选择“Annual ”(年数据) ,分别在起始年输入1950,终止年输入2007,点击ok ,见图3-1,这样就建立了一个工作文件。点击File/Import ,找到相应的Excel 数据集,导入即可。

SPSS统计分析1:正态分布检验.

正态分布检验 一、正态检验的必要性[1] 当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。 当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方 法,而应采用非参数检验。 二、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 Q-Q图为佳,效率较高。 以上两种方法以 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 三、计算法 1、峰度(Kurtosis)和偏度(Skewness) (1)概念解释 峰度是描述总体中所有取值分布形态陡缓程度的统计量。这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比

较为平坦,为平顶峰。峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异 程度越大。 峰度的具体计算公式为: 注:SD就是标准差σ。峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。 偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。偏度的绝对值数值越大表示其分布形态的偏斜程度越大。 偏度的具体计算公式为: 各种正态分布,尽管μ和σ可以分别取不同的值,但偏度都等于0,峰度都等于3,它们的密度函数曲线的形状都是一样的[1]。(SPSS中峰度减3与0比较 (2)适用条件 样本含量应大于200。 (3)检验方法 计算得到的峰度、偏度根据正态分布的值3、0(SPSS中为0、0)来直观判断是 否接近。 应对二者分别进行U检验来定量描述显著性,方法如下[2]:峰度U检验:|峰度-3| / 峰度标准差 <= U0.05 = 1.96(SPSS中将3替换为0)偏度U检验:|偏度-0| / 偏度标准差 <= U0.05 = 1.96 如果上述都成立,则可认为在0.05显著水平符合正态分布(下例偏度可判断不符合。

SPSS检验正态分布

下面我们来看一组数据,并检验“期初平均分” 数据是否呈正态分布(此数据已在SPSS里输入好) 在SPSS里执行“分析—>描述统计—>频数统计表”(菜单见下图,英文版的可以找到相应位置),然后弹出左边的对话框,变量选择左边的“期初平均分”,再点下面的“图表”按钮,弹出图中右边的对话框,选择“直方图”,并选中“包括正态曲线”

设置完后点“确定”,就后会出来一系列结果,包括2个表格和一个图,我们先来看看最下面的图,见下图, 上图中横坐标为期初平均分,纵坐标为分数出现的频数。从图中可以看出根据直方图绘出的曲线是很像正态分布曲线。如何证明这些数据符合正态分布呢,光看曲线还不够,还需要检验:

检验方法一:看偏度系数和峰度系数 我们把SPSS结果最上面的一个表格拿出来看看(见下图): 偏度系数Skewness=-0.333;峰度系数Kurtosis=0.886;两个系数都小于1,可认为近似于正态分布。 检验方法二:单个样本K-S检验 在SPSS里执行“分析—>非参数检验—>单个样本K-S检验,弹出对话框,检验变量选择“期初平均分”,检验分布选择“正态分布”,然后点“确定”。 检验结果为:

从结果可以看出,K-S检验中,Z值为0.493,P值(sig 2-tailed)=0.968>0.05,因此数据呈近似正态分布 检验方法三:Q-Q图检验 在SPSS里执行“图表—>Q-Q图”,弹出对话框,见下图: 变量选择“期初平均分”,检验分布选择“正态”,其他选择默认,然后点“确定”,最后可以得到Q-Q图检验结果,结果很多,我们只需要看最后一个图,见下图。

自相关性检验

关于x y的散点图 由散点图可以判断出才可能存在异方差。运用怀特检验判断是否有异方差 White Heteroskedasticity Test: F-statistic 5.71174 5 Probability 0.00831 1 Obs*R-squared 8.98267 0 Probability 0.01120 6

由此可见,1%的显著水平上存在异方差。运用加权最小二乘法消除异方差: Dependent Variable: Y Method: Least Squares Date: 10/29/14 Time: 14:46 Sample: 1 31 Included observations: 31 Weighting series: 1/ABS(RESID) Variable Coeffici ent Std. Error t-Statistic Prob. C -2171.3 76 418.8113 -5.184616 0.0000 X 0.97610 4 0.022593 43.20372 0.0000 Weighted Statistics R-squared 0.99927 0 Mean dependent var 16676.9 9 Adjusted R-squared 0.99924 5 S.D. dependent var 18232.7 8 S.E. of regression 501.062 0 Akaike info criterion 15.3336 8 Sum squared resid 728082 9. Schwarz criterion 15.4261 9 Log likelihood -235.67 20 F-statistic 1866.56 1 Durbin-Watson stat 1.37353 7 Prob(F-statistic) 0.00000 0 Unweighted Statistics R-squared 0.92681 6 Mean dependent var 17975.6 8 Adjusted R-squared 0.92429 2 S.D. dependent var 5667.54 2 S.E. of regression 1559.42 4 Sum squared resid 705223 38 Durbin-Watson stat 1.57587 5 由上表,f检验的伴随概率为0.000000,说明在1%的显著水平上,拒绝原假设,t检验的伴随概率为0.0000,说明在1%的显著水平上,拒绝原假设y x 之间存在显著的线性关系,该模型很好的反映了实际情况,所以消除了异方差。

spss_数据正态分布检验方法及意义

spss 数据正态分布检验方法及意义判读 要观察某一属性的一组数据是否符合正态分布,可以有两种方法(目前我知道这两种,并且这两种方法只是直观观察,不是定量的正态分布检验): 1:在spss里的基本统计分析功能里的频数统计功能里有对某个变量各个观测值的频数直方图中可以选择绘制正态曲线。具体如下:Analyze-----Descriptive S tatistics-----Frequencies,打开频数统计对话框,在Statistics里可以选择获得各种描述性的统计量,如:均值、方差、分位数、峰度、标准差等各种描述性统计量。在Charts里可以选择显示的图形类型,其中Histograms选项为柱状图也就是我们说的直方图,同时可以选择是否绘制该组数据的正态曲线(With nor ma curve),这样我们可以直观观察该组数据是否大致符合正态分布。如下图: 从上图中可以看出,该组数据基本符合正态分布。 2:正态分布的Q-Q图:在spss里的基本统计分析功能里的探索性分析里面可以通过观察数据的q-q图来判断数据是否服从正态分布。 具体步骤如下:Analyze-----Descriptive Statistics-----Explore打开对话框,选择Plots选项,选择Normality plots with tests选项,可以绘制该组数据的q-q 图。图的横坐标为改变量的观测值,纵坐标为分位数。若该组数据服从正态分布,则图中的点应该靠近图中直线。 纵坐标为分位数,是根据分布函数公式F(x)=i/n+1得出的.i为把一组数从小到大排序后第i个数据的位置,n为样本容量。若该数组服从正态分布则其q-q图应该与理论的q-q图(也就是图中的直线)基本符合。对于理论的标准正态分布,其q-q图为y=x直线。非标准正态分布的斜率为样本标准差,截距为样本均值。 如下图:

实验异方差地检验与修正

实验异方差的检验与修正 实验目的 1、理解异方差的含义后果、 2、学会异方差的检验与加权最小二乘法 实验容 一、准备工作。建立工作文件,并输入数据,用普通最小二乘法估计方程(操作 步骤与方法同前),得到残差序列。 表2列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。 表2 我国制造工业1998年销售利润与销售收入情况 二、异方差的检验 1、图形分析检验 ⑴观察销售利润(Y)与销售收入(X)的相关图(图3-1):SCAT X Y

图3-1 我国制造工业销售利润与销售收入相关图 从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。这说明变量之间可能存在递增的异方差性。 ⑵残差分析 首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。 图3-2 我国制造业销售利润回归模型残差分布 图3-2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。 2、Goldfeld-Quant检验 ⑴将样本安解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本) ⑵利用样本1建立回归模型1(回归结果如图3-3),其残差平方和为2579.587。 SMPL 1 10 LS Y C X

图3-3 样本1回归结果 ⑶利用样本2建立回归模型2(回归结果如图3-4),其残差平方和为63769.67。 SMPL 19 28 LS Y C X 图3-4 样本2回归结果 ⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和分别是模型1和模型2的残差平方和。 取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而 44.372.2405.0=>=F F ,所以存在异方差性 3、White 检验 ⑴建立回归模型:LS Y C X ,回归结果如图3-5。

【免费下载】eviews自相关性检验

实验五 自相关性【实验目的】 掌握自相关性的检验与处理方法。 【实验内容】利用表5-1资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。表5-1 我国城乡居民储蓄存款与GDP 统计资料(1978年=100)年份 存款余额Y GDP 指数X 年份存款余额Y GDP 指数X 1978 210.60100.019895146.90271.31979 281.00107.619907034.20281.71980 399.50116.019919107.00307.61981 523.70122.1199211545.40351.41982 675.40133.1199314762.39398.81983 892.50147.6199421518.80449.31984 1214.70170.0199529662.25496.51985 1622.60192.9199638520.84544.11986 2237.60210.0199746279.80592.01987 3073.30234.0199853407.47638.219883801.50260.7【实验步骤】一、回归模型的筛选 ⒈相关图分析SCAT X Y 相关图表明,GDP 指数与居民储蓄存款二者的曲线相关关系较为明显。现将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而 加以比较分析。⒉估计模型,利用LS 命令分别建立以下模型⑴线性模型: LS Y C X x y 5075.9284.14984?+-= (-6.706) (13.862)=t =0.9100 F =192.145 S.E =5030.8092R ⑵双对数模型:GENR LNY=LOG(Y) GENR LNX=LOG(X) LS LNY C LNX 、管路敷设技术护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规、电气设备调试高中资料试卷技术工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

spss数据正态分布检验

s p s s数据正态分布检验Newly compiled on November 23, 2020

spss数据正态分布检验

一、Z检验 第一步:录入数据。 1.命名“变量视图”; 2.“数据视图”中输入数据; 第二步:进行分析。 第三步:设置变量; 第四步:得到结果:

二、相关系数检验 在一项研究中,一个学生想检查生活意义和心理健康是否相关。同意参与这项研究的30个学生测量了生活意义和心理健康。生活意义的得分范围是10-70分(更高的得分表示更强的生活意义),心理健康的得分范围是5-35分(更高的得分表示更健康的心理状态)。 在研究中基本的兴趣问题也可以用研究问题的方式表示,例如 例题:生活意义和心理健康相关吗 相关系数数据的例子 ParticipantMeaninginLifeWell-being ParticipantMeaninginLifeWell-being 13519 26527 31419 43535 56534 63334 75435 82028 92512 105821 113018 123725 135119 145025 153029 167031 172512 185520 196131 205325 216032 223512 233528 245020 253924 266834 275628 281912 295635 306035 说明:变量participant包含在数据中,但不用输入SPSS。 在spss中输入数据及分析 步骤1:生成变量 1.打开spss。 2.点击“变量视图”标签。 在spss中将生成两个变量,一个是生活意义,另一个是心理健康。变量分别被命名为meaning和wellbeing。 3.在“变量视图”窗口前两行分别输入变量名称meaning和wellbeing。 步骤2:输入数据 1.点击“数据视图”,变量meaning和wellbeing出现在数据视图前两列。

异方差性的检验和补救

异方差性的检验和补救 一、研究目的和要求 表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型,检验其是否存在异方差,并加以补救。 表1 我国制造工业1998年销售利润与销售收入情况 二、参数估计 EVIEWS 软件估计参数结果如下

Dependent Variable: Y Method: Least Squares Date: 06/01/16 Time: 20:16 Sample: 1 28 Included observations: 28 Variable Coefficient Std. Error t-Statistic Prob. C 12.03349 19.51809 0.616530 0.5429 X 0.104394 0.008442 12.36658 0.0000 R-squared 0.854694 Mean dependent var 213.4639 Adjusted R-squared 0.849105 S.D. dependent var 146.4905 S.E. of regression 56.90455 Akaike info criterion 10.98938 Sum squared resid 84191.34 Schwarz criterion 11.08453 Log likelihood -151.8513 Hannan-Quinn criter. 11.01847 F-statistic 152.9322 Durbin-Watson stat 1.212781 Prob(F-statistic) 0.000000 用规范的形式将参数估计和检验结果写下 2?12.033490.104394(19.51809)(0.008442) =(0.616530) (12.36658)0.854694152.9322 i Y X t R F =+ = = 三、 检验模型的异方差 (一) 图形法 1. 相关关系图 X Y X Y 相关关系图

自相关地检验与修正

实验2 自相关的检验与修正 一、实验目的: 掌握自相关模型的检验方法与处理方法.。 二、实验容及要求: 表1列出了1985-2007年中国农村居民人均纯收入与人均消费性支出的统计数据。 (1)利用OLS法建立中国农村居民人均消费性支出与人均纯收入的线性模型。 (2)检验模型是否存在自相关。 (3)如果存在自相关,试采用适当的方法加以消除。 表1 1985-2007年中国农村居民人均纯收入与人均消费性支出(单位:元)

实验如下: 首先对数据进行调整,将全年人均纯收入和全年人均消费性支出相应调整为全年实际人均纯收入和全年实际人均消费性支出。 图1

1、用OLS估计法估计参数 图2 图3

图4 从图4中可以看出,中国农村居民人均消费性支出与人均纯收入存在着显著的正相关关系。 估计回归方程: 从图3中可以得出,估计回归方程为: Y=56.21878+0.698928X t=(3.864210)(31.99973) R2=0.979904 F=1023.983 D.W.=0.409903

(1)图示法 图5 从图5中,可以看出残差的变化有系统模式,连续为正或连续为负,表示残差项存在一阶正自相关。

(2)DW检验 从图3中可以得到D.W.=0.409903,在显著水平去5%,n=23,k=2,d L=1.26, d U=1.44。此时0

SPSS 正态性检验方法

正态性检验方法的比较 理论部分 正态分布是许多检验的基础,比如F检验,t检验,卡方检验等在总体不是正太分布是没有任何意义。因此,对一个样本是否来自正态总体的检验是至关重要的。当然,我们无法证明某个数据的确来自正态总体,但如果使用效率高的检验还无法否认总体是正太的检验,我们就没有理由否认那些和正太分布有关的检验有意义,下面我就对正态性检验方法进行简单的归纳和比较。 一、图示法 1. P-P图 以样本的累计频率作为横坐标,以按照正态分布计算的相应累计概率作为纵坐标,以样本值表现为直角坐标系的散点。如果数据服从正态分布,则样本点应围绕第一象限的对角线分布。 2. Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为直角坐标系的散点。如果数据服从正太分布,则样本点应围绕第一象限的对角线分布。 以上两种方法以Q-Q图为佳,效率较高。 3. 直方图(频率直方图) 判断方法:是否以钟型分布,同时可以选择输出正态性曲线。 4. 箱线图 判断方法:观察矩形位置和中位数,若矩形位于中间位置且中位数位于矩形的中间位置,则分布较为对称,否则是偏态分布。 5. 茎叶图 判断方法:观察图形的分布状态,是否是对称分布。

二、偏度、峰度检验法(冒牌K-S 检验法): 1. S ,K 的极限分布 样本偏度系数() 3 32 2B S B =;该系数用于检验对称性,S>0时,分布呈正偏态,S<0时, 分布呈负偏态。 样本峰度系数() 4 2 23B K B = -;该系数用于检验峰态,K>0时为尖峰分布,S<0时为 扁平分布;当S=0,K=0时分布呈正态分布。 0H :F(x)服从正态分布 1H :F(x)不服从正态分布 当原假设为真时,检验统计量 ~N(0,1) ~N (0,1) 对于给定的α, R ||={| >λ?| >λ} 其中14 u α - λ= 2. Jarque-Bera 检验(偏度和峰度的联合分布检验法) 检验统计量为 JB 22164n k S K -??= + ??? ()2 2χ~,JB 过大或过小时,拒绝原假设。 三、非参数检验方法 1. Kolmogorov-Smirnov 正态性检验(基于经验分布函数(ECDF )的检验) ()()0max ||n D F x F x =- ()n F x 表示一组随机样本的累计概率函数,()0F x 表示分布的分布函数。 当原假设为真时,D 的值应较小,若过大,则怀疑原假设,从而,拒绝域为 {}R D d =>。对于给定的α,{}p P D d α=>=,又?{}n n p P D D =≥ 2. Lilliefor 正态性检验 该检验是对Kolmogorov-Smirnov 检验的修正,参数未知 时,由22??,X S μσ==可计算得检验统计量?n D 的值。 3. Shapiro-Wilk(W 检验) 检验统计量:

SPSS中正态分布的检验

一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式: g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U 检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。 2、非参数检验方法 非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。由此可见,部分SPSS教材里面关于“Shapiro – Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。 对于此两种检验,如果P值大于0.05,表明资料服从正态分布。 三、SPSS操作示例 SPSS中有很多操作可以进行正态检验,在此只介绍最主要和最全面最方便的操作: 1、工具栏--分析—描述性统计—探索性

序列相关的检验和修正

序列相关的检验及修正 例题:中国居民总量消费函数 数据: 年份 GDP CONS CPI TAX GDPC X Y 1978 3605.6 1759.1 46.21 519.28 7802.6 6678.9 3806.8 1979 4092.6 2011.5 47.07 537.82 8694.7 7552.1 4273.4 1980 4592.9 2331.2 50.62 571.70 9073.3 7943.9 4605.3 1981 5008.8 2627.9 51.90 629.89 9650.9 8437.2 5063.4 1982 5590.0 2902.9 52.95 700.02 10557.1 9235.1 5482.3 1983 6216.2 3231.1 54.00 775.59 11511.5 10075.2 5983.5 1984 7362.7 3742.0 55.47 947.35 13273.3 11565.4 6746.0 1985 9076.7 4687.4 60.65 2040.79 14965.7 11600.8 7728.6 1986 10508.5 5302.1 64.57 2090.37 16274.6 13037.2 8211.4 1987 12277.4 6126.1 69.30 2140.36 17716.3 14627.8 8840.0 1988 15388.6 7868.1 82.30 2390.47 18698.2 15793.6 9560.3 1989 17311.3 8812.6 97.00 2727.40 17846.7 15034.9 9085.2 1990 19347.8 9450.9 100.00 2821.86 19347.8 16525.9 9450.9 1991 22577.4 10730.6 103.42 2990.17 21830.8 18939.5 10375.7 1992 27565.2 13000.1 110.03 3296.91 25052.4 22056.1 11815.1 1993 36938.1 16412.1 126.20 4255.30 29269.5 25897.6 13004.8 1994 50217.4 21844.2 156.65 5126.88 32057.1 28784.2 13944.6 1995 63216.9 28369.7 183.41 6038.04 34467.5 31175.4 15467.9 1996 74163.6 33955.9 198.66 6909.82 37331.9 33853.7 17092.5 1997 81658.5 36921.5 204.21 8234.04 39987.5 35955.4 18080.2 1998 86531.6 39229.3 202.59 9262.80 42712.7 38140.5 19363.9 1999 91125.0 41920.4 199.72 10682.58 45626.4 40277.6 20989.6 2000 98749.0 45854.6 200.55 12581.51 49239.1 42965.6 22864.4 2001 108972.4 49213.2 201.94 15301.38 53962.8 46385.6 24370.2 2002 120350.3 52571.3 200.32 17636.45 60079.0 51274.9 26243.7 2003 136398.8 56834.4 202.73 20017.31 67281.0 57407.1 28034.5 2004 160280.4 63833.5 210.63 24165.68 76095.7 64622.7 30306.0 2005 188692.1 71217.5 214.42 28778.54 88001.2 74579.6 33214.0 2006 221170.5 80120.5 217.65 34809.72 101617.5 85624.1 36811.6 1、 建立回归模型,模型的OLS 估计 t t t X Y μββ++=10 (1)录入数据 打开EViews6,点“File ” “New ”“Workfile ”

相关文档
相关文档 最新文档