文档库 最新最全的文档下载
当前位置:文档库 › 泵与风机 何川主编 第四版 课后习题+思考题(全7章)答案

泵与风机 何川主编 第四版 课后习题+思考题(全7章)答案

泵与风机 何川主编 第四版 课后习题+思考题(全7章)答案
泵与风机 何川主编 第四版 课后习题+思考题(全7章)答案

绪论

思考题

1.在火力发电厂中有那些主要的泵与风机?其各自的作用是什么?

答:给水泵:向锅炉连续供给具有一定压力和温度的给水。

循环水泵:从冷却水源取水后向汽轮机凝汽器、冷油器、发电机的空气冷却器供给冷却水。

凝结水泵:抽出汽轮机凝汽器中的凝结水,经低压加热器将水送往除氧器。

疏水泵:排送热力系统中各处疏水。

补给水泵:补充管路系统的汽水损失。

灰渣泵:将锅炉燃烧后排出的灰渣与水的混合物输送到贮灰场。

送风机:向锅炉炉膛输送燃料燃烧所必需的空气量。

引风机:把燃料燃烧后所生成的烟气从锅炉中抽出,并排入大气。

2.泵与风机可分为哪几大类?发电厂主要采用哪种型式的泵与风机?为什么?

答:泵按产生压力的大小分:低压泵、中压泵、高压泵

风机按产生全压得大小分:通风机、鼓风机、压气机

泵按工作原理分:叶片式:离心泵、轴流泵、斜流泵、旋涡泵

容积式:往复泵、回转泵

其他类型:真空泵、喷射泵、水锤泵

风机按工作原理分:叶片式:离心式风机、轴流式风机

容积式:往复式风机、回转式风机

发电厂主要采用叶片式泵与风机。其中离心式泵与风机性能范围广、效率高、体积小、重量轻,能与高速原动机直联,所以应用最广泛。轴流式泵与风机与离心式相比,其流量大、压力小。故一般用于大流量低扬程的场合。目前,大容量机组多作为循环水泵及引送风机。3.泵与风机有哪些主要的性能参数?铭牌上标出的是指哪个工况下的参数?

答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。

在铭牌上标出的是:额定工况下的各参数

4.水泵的扬程和风机的全压二者有何区别和联系?

答:单位重量液体通过泵时所获得的能量增加值称为扬程;

单位体积的气体通过风机时所获得的能量增加值称为全压

联系:二者都反映了能量的增加值。

区别:扬程是针对液体而言,以液柱高度表示能量,单位是m。

全压是针对气体而言,以压力的形式表示能量,单位是Pa。

5.离心式泵与风机有哪些主要部件?各有何作用?

答:离心泵

叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。

吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。

压出室:收集从叶轮流出的高速流体,然后以最小的阻力损失引入压水管或次级叶轮进口,同时还将液体的部分动能转变为压力能。

导叶:汇集前一级叶轮流出的液体,并在损失最小的条件下引入次级叶轮的进口或压出室,同时在导叶内把部分动能转化为压力能。

密封装置:密封环:防止高压流体通过叶轮进口与泵壳之间的间隙泄露至吸入口。

轴端密封:防止高压流体从泵内通过转动部件与静止部件之间的间隙泄漏

到泵外。

离心风机

叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能

蜗壳:汇集从叶轮流出的气体并引向风机的出口,同时将气体的部分动能转化为压力能。

集流器:以最小的阻力损失引导气流均匀的充满叶轮入口。

进气箱:改善气流的进气条件,减少气流分布不均而引起的阻力损失。

6.轴流式泵与风机有哪些主要部件?各有何作用?

答:叶轮:把原动机的机械能转化为流体的压力能和动能的主要部件。

导叶:使通过叶轮的前后的流体具有一定的流动方向,并使其阻力损失最小。

吸入室(泵):以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。

集流器(风机):以最小的阻力损失引导气流均匀的充满叶轮入口。

扩压筒:将后导叶流出气流的动能转化为压力能。

7.轴端密封的方式有几种?各有何特点?用在哪种场合?

答:填料密封:结构简单,工作可靠,但使用寿命短,广泛应用于中低压水泵上。

机械密封:使用寿命长,密封效果好,摩擦耗功小,但其结构复杂,制造精度与安装技术要求高,造价贵。适用于高温高压泵。

浮动环密封:相对与机械密封结构较简单,运行可靠,密封效果好,多用于高温高压锅炉给水泵上。

8.目前火力发电厂对大容量、高参数机组的引、送风机一般都采用轴流式风机,循环水泵也越来越多采用斜流式(混流式)泵,为什么?

答:轴流式泵与风机与离心式相比,其流量大、压力小。故一般用于大容量低扬程的场合。

因此,目前大容量机组的引、送风机一般都采用轴流式风机。

斜流式又称混流式,是介于轴流式和离心式之间的一种叶片泵,斜流泵部分利用了离心力,部分利用了升力,在两种力的共同作用下,输送流体,并提高其压力,流体轴向进入叶轮后,沿圆锥面方向流出。可作为大容量机组的循环水泵。

9.试简述活塞泵、齿轮泵及真空泵、喷射泵的作用原理?

答:活塞泵:利用工作容积周期性的改变来输送液体,并提高其压力。

齿轮泵:利用一对或几个特殊形状的回转体如齿轮、螺杆或其他形状的转子。在壳体内作旋转运动来输送流体并提高其压力。

喷射泵:利用高速射流的抽吸作用来输送流体。

真空泵:利用叶轮旋转产生的真空来输送流体。

第一章

思考题

1.试简述离心式与轴流式泵与风机的工作原理。

答:离心式:叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。流体沿轴向流入叶轮并沿径向流出。

轴流式:利用旋转叶轮、叶片对流体作用的升力来输送流体,并提高其压力。流体沿轴向流入叶轮并沿轴向流出。

2.流体在旋转的叶轮内是如何运动的?各用什么速度表示?其速度矢量可组成怎样的图形?

答:当叶轮旋转时,叶轮中某一流体质点将随叶轮一起做旋转运动。同时该质点在离心力的

作用下,又沿叶轮流道向外缘流出。因此,流体在叶轮中的运动是一种复合运动。 叶轮带动流体的旋转运动,称牵连运动,其速度用圆周速度u 表示; 流体相对于叶轮的运动称相对运动,其速度用相对速度w 表示; 流体相对于静止机壳的运动称绝对运动,其速度用绝对速度v 表示。 以上三个速度矢量组成的矢量图,称为速度三角形。

3. 当流量大于或小于设计流量时,叶轮进、出口速度三角形怎样变化? 答:进口速度三角形的变化:

当流量小于设计流量时:轴面速度'1m v <1m v ,'1α<90°,'

1β<1β。(如图a ) 当流量大于设计流量时:轴面速度'1m v >1m v ,'1α>90°,'1β>1β。

(如图b )

出口速度三角形

小于设计流量

大于设计流量

4. 离心式泵与风机当实际流量在有限叶片叶轮中流动时,对扬程(全压)有何影响?如何

修正?

答:在有限叶片叶轮流道中,由于流体惯性出现了轴向涡流,使叶轮出口处流体的相对速度

产生滑移,导致扬程(全压)下降。

一般采用环流系数k 或滑移系数σ来修正。

5. 为了提高流体从叶轮获得的能量,一般有哪几种方法?最常采用哪种方法?为什么? 答:1)径向进入,即

901=α;2)提高转速n ;3)加大叶轮外径2D ;4)增大叶片出口安装角a 2β。

提高转速最有利,因为加大叶轮外径将使损失增加,降低泵的效率;提高转速则受汽蚀 的限制,对风机则受噪声的限制。增大叶片出口安装角a 2β将使动能头显著增加,降低泵与风机的效率。比较之下,用提高转速n 来提高理论能头,仍是当前普遍采用的主要方法。 6. 泵与风机的能量方程式有哪几种形式?并分析影响理论扬程(全压)的因素有哪些? 答:泵: T H ∞=

1

g

2211()u u u v u v ∞∞- g

g u u g v v H T 2222

21221221222∞

∞∞∞∞

-+

-+-=ωω

风机:)(∞∞∞-=u u v u v u 1122T p ρ

因素:转速n ;叶轮外径2D ;密度(影响全压)、叶片出口安装角a 2β;进口绝对速度角1α。

7. 离心式泵与风机有哪几种叶片形式?各对性能有何影响?为什么离心泵均采用后弯式

叶片?

答:后弯式、径向式、前弯式

后弯式:2a β<90°时,cot 2a β为正值,2a β越小,cot 2a β越大,T H ∞则越小。即随2a β不断减小,∞T H 亦不断下降。当a 2β减小到等于最小角min ,2a β时,0=∞T H 。

径向式:2a β=90°时,cot 2a β =0,2u v ∞=2u 。g

u

H T 2

2=∞

。 前弯式:2a β>90°时,cot 2a β为负值,2a β越大,cot 2a β越小,T H ∞则越大即随2a

β不断增大,T H ∞亦不断增大。当a 2β增加到等于最大角max ,2a β时,g

u

H T 2

22=∞

以上分析表明,随叶片出口安装角a 2β的增加,流体从叶轮获得的能量越大。因此,前弯式叶片所产生的扬程最大,径向式叶片次之,后弯式叶片最小。

当三种不同的叶片在进、出口流道面积相等,叶片进口几何角相等时,后弯式叶片流道较长,弯曲度较小,且流体在叶轮出口绝对速度小。因此,当流体流经叶轮及转能装置(导叶或蜗壳)时,能量损失小,效率高,噪声低。但后弯式叶片产生的总扬程较低,所以在产生相同的扬程(风压)时,需要较大的叶轮外径或较高的转速。为了高效率的要求,离心泵均采用后弯式叶片,通常a 2β为20°~30°。

8. 轴流叶轮进、出口速度三角形如何绘制?w ∞、β∞如何确定?有何意义?

答:速度三角形一般只需已知三个条件即可画出,一般求出圆周速度u 、轴向速度a v 、圆周分速u v 即可按比例画出三角形。

轴流式和离心式泵与风机速度三角形相比,具有以下特点:一是流面进、出口处的圆周速度相同;二是流面进、出口的轴向速度也相同,即

2u =1u =u ;u v 1=u v 2=a v

因此,为研究方便起见,可以把叶栅进、出口速度三角形绘在一起。如图所示。

w ∞是叶栅前后相对速度1w 和2w 的几何平均值,其大小和方向由叶栅进、出口速度三角形的几何关系来确定。

w ∞

; β∞=arctg a u w w ∞=arctg

122a

u u w w w + 意义:由于流体对孤立翼型的绕流,并不影响来流速度的大小和方向,而对叶栅翼型的绕流,则将影响来流速度的大小和方向,所以在绕流叶栅的流动中,取叶栅的前后相对速度1w 和

2w 的几何平均值w ∞作为无限远处的来流速度。

9. 轴流式泵与风机与离心式相比较,有何性能特点?使用于何种场合?

答:轴流式泵与风机的性能特点是流量大,扬程低,比转数大,流体沿轴向流入、流出叶轮。 目前国内外大型电站普遍采用轴流式风机作为锅炉的送引风机、轴流式水泵作为循环水泵。

10. 轴流式泵与风机的扬程(全压)为什么远低于离心式? 答:因为轴流式泵与风机的能量方程式是:

T H =

22212v v g -+2212

2w w g

- ⑴ 离心式泵与风机的能量方程式是:

T H ∞=

22212v v g -+22212u u g -+2212

2w w g

- ⑵ 因为⑴式中1u =2u =u 故流体在轴流式叶轮中获得的总能量远小于离心式。

11. 轴流式泵与风机的翼型、叶栅的几何尺寸、形状对流体获得的理论扬程(全压)有何影

响?并分析提高其扬程(全压)的方法?

答:泵:()λ

λβcos sin 22

+?=∞∞g w v u t b c H a y T 风机:()λ

λβρcos sin 22

+?=∞∞w v u t b c P a y T 增加弦长b ;增大叶栅中翼型的升力系数y c ;减小栅距t ;增大∞β;增加升力角λ均可提高泵与风机的扬程(全压)。

泵与风机(课后习题答案)

第一章

1-1有一离心式水泵,其叶轮尺寸如下:1b =35mm, 2b =19mm, 1D =178mm,

2D =381mm, 1a β=18°,2a β=20°。设流体径向流入叶轮,如n=1450r/min ,试画出出口速度三角形,并计算理论流量,V T q 和在该流量时的无限多叶片的理论扬程T H ∞。

解:由题知:流体径向流入叶轮 ∴1α=90° 则:

1u =

1n

60

D π=

3178101450

60

π-???=13.51 (m/s )

1V =1m V =1u tg 1a β=13.51?tg 18°=4.39 (m/s )

∵1V q =π1D 1b 1m V =π?0.178?4.39?0.035=0.086 (3m /s ) ∴2m V =

122V

q D b π=0.0860.3810.019

π??=3.78 (m/s ) 2u =2D 60n π=3381101450

60π-???=28.91 (m/s ) 2u V ∞=2u -2m V ctg 2a β=28.91-3.78?ctg20°=18.52 (m/s ) T H ∞=

22u u V g

∞=28.9118.52

9.8?=54.63 (m )

1-2有一离心式水泵,其叶轮外径2D =220mm,转速n=2980r/min ,叶片出口安装角2a β=45°,出口处的轴面速度2m v =3.6m/s 。设流体径向流入叶轮,试按比例画出出口速度三角形,并计算无限多叶片叶轮的理论扬程T H ∞,又若环流系数K=0.8,流动效率h η=0.9时,泵的实际扬程H 是多少? 解:2u =

2D 60

n π=0.222980

60

π??=34.3 (m/s )

∵2m V =3.6 m/s 2a β=45°∴2w =

22sin m

a

v β=5.09 (m/s ) 画出出口速度三角形 2u V ∞=2u -2m V ctg 2a β=34.31-3.6?ctg45°=30.71 (m/s ) ∵1α=90°T H ∞=

22u u V g

∞=34.3130.71

9.8?=107.5 (m)

实际扬程H=K T H =K h ηT H ∞=0.8?0.9?107.5=77.41 (m)

1-3有一离心式水泵,叶轮外径2D =360mm ,出口过流断面面积2A =0.0232m ,叶片出口安装角2a β=30°,流体径向流入叶轮,求转速n=1480r/min ,流量

,V T q =86.8L/s 时的理论扬程T H 。设环流系数K=0.82。 解:流体径向流入叶轮 1α=90°

2u =

2D 60

n π=0.361480

60

π??=27.88 (m/s )

2m v =,V T

q A =383.8100.023

-?=3.64 (m/s )

2u v ∞=2u -2m v 2a ctg β=27.88-3.64? (m/s ) T H ∞=

22u u V g

∞=27.8821.58

9.8?=61.39 (m )

T H =K T H ∞=0.82?61.39=50.34 (m )

1-4有一叶轮外径为300mm 的离心式风机,当转速为2890r/min 时。无限多叶片叶轮的理论全压T p ∞是多少?设叶轮入口气体沿径向流入,叶轮出口的相对速度,设为半径方向。空气密度ρ=1.2kg/3m 。 解:气体沿径向流入1α=90°

又叶轮出口相对速度沿半径方向2a β=90°

2u =

2D 60

n π=0.32980

60

π??=46.79(m/s )

由图知2u =2u V ∞=46.79m/s

∴T p ∞=22u u V ρ∞=1.2?46.79?46.79=2626.7(Pa )

1-5有一离心式风机,转速n=1500r/min ,叶轮外径2D =600mm ,内径1D =480mm ,叶片进、出口处空气的相对速度为1w =25m/s 及2w =22m/s ,它们与相应的圆周速度的夹角分别为1β=60°,2β=120°,空气密度ρ=1.2kg/3m 。绘制进口及出口

速度三角形,并求无限多叶片叶轮所产生的理论全压T p ∞。

解:1u =

1n 60D π=0.481500

60π??=37.68(m/s ) 2u =2D 60n π=0.61500

60π??=47.1(m/s )

1m v =11sin a w β=25?sin 60?=21.65(m/s ) 2m v =22sin a w β=22?sin120?=19.05(m/s ) 知u 、m v 、β可得速度三角形

18.2560cos 2568.37cos 2111=?-=-=∞ a u w u v β(m/s ) 2u v ∞=2u -2w 2cos a β=47.1-22?cos120?=58.1(m/s )

()()27.214518.2568.371.581.472.11122=?-??=-=∞∞∞u u T v u v u p ρ(Pa) 1-6有一离心式水泵,在转速n=1480r/min 时,流量V q =89L/s ,扬程H=23m ,水以径向流入叶轮,叶轮内的轴面速度1m v =3.6m/s 。内、外径比1D /2D =0.5,叶轮出口宽度2b =0.122D ,若不计叶轮内的损失和叶片厚度的影响,并设叶轮进口叶片的宽度1b =200mm ,求叶轮外径2D 、出口宽度2b 及叶片进、出口安装角1a β和

2a β。

解:由V q =π

1D 1b 1m V 得1D =

11V m q b v π=3

89100.2 3.6

π-??=0.039(m)=39mm 由1D /2D =0.5得 2D =21D =2?390=78(mm) 2b =0.122D =9.36mm

1u =

1n 60D π=0.0391480

60

π??=3.02(m/s ) tg 1a β=

11m v u =3.63.02

=1.192 得1a β=50° 2u =

2D 60

n π=0.0781480

60

π??=6.04(m/s )

2m v =

22V q D b π=389100.0780.009

π-???=38.8(m/s )

由T H ∞=

22u u V g

=23 得2u V ∞=37.31(m/s ) ()()806.08.38/31.3704.6/2222-=-=-=∞m u a v v u ctg β

85.1282=a β(数据有问题,离心泵出口安装角应是锐角,即后弯式叶片)

1-7 有一离心式风机,叶轮外径2D =600mm ,叶轮出口宽度2b =150mm ,叶片出口安装角2a β=30°,转速n=1450r/min 。设空气在叶轮进口处无预旋,空气密度

ρ=1.2kg/3m ,试求:

(1)当理论流量,V T q =100003m /h 时,叶轮出口的相对速度2w 和绝对速度2v ; (2)叶片无限多时的理论全压T p ∞; (3)叶片无限多时的反作用度τ;

(4)环流系数K 和有限叶片理论全压T p (设叶片数z=12) 解:(1)2u =

2D 60

n π=0.61450

60

π??=45.53(m/s )

由,V T q =π2D 2b 2m V 得2m V =

,22

V T

q D b π=

10000

36000.60.15

π???=9.83(m/s )

2w =

22sin m

a V β=9.83sin 30?

=19.66(m/s ) 2V

=30.15(m/s )

(2)∵2u =45.53m/s 2m V =9.83m/s

∴2u V ∞=2u -2m V ctg 2a β=45.53-9.83?ctg30°=28.5(m/s )

T p ∞=ρ2u 2u V ∞=1.2?45.53?28.5=1557.3(Pa ) (3)τ=1-

22

2u V u ∞

=1-28.5245.53?=0.687

⑷由风机的斯托道拉公式:K =1-

22,2222sin ()

a

V T

a

u q z u D b tg πβπβ-

K =1-

45.53sin 3010000

12(45.53)

360000.60.1530tg ππ??

-?????

=0.79

∴T p =K T p ∞=0.79?1557.3=1230.3(Pa )

1-8有一轴流式风机,在叶轮半径380mm 处。空气以1v =33.5m/s 的速度沿轴向流入叶轮,当转速n=1450r/min 时,其全压p =692.8Pa ,空气密度ρ=1.2kg/3m ,求该半径处的平均相对速度w ∞的大小和方向。 解:u =

60Dn π=

67.5760

1450

238.014.3=???(m/s ) a w v =1=33.5(m/s )

2u v =

p

u ρ=

01.1067

.572.18.692=?(m/s ) 由题知轴向进入01=u v ,所以u w u =1。66.4701.1067.5722=-=-=u u v u w (m/s)

42.62266.4767.575.3322

22

2121=???

??++=??

? ??++=∞u u w w v w m/s

34.3266.4767.5735.3322211

=??? ??+?=???

?

??

+=∞arctg w w v arctg u u β 1-9有一单级轴流式水泵,转速n=580r/min ,在叶轮直径700mm 处,水以1v =5.8m/s 的速度沿轴向流入叶轮,又以圆周分速2u v =2.3m/s 从叶轮流出,试求y c b

t

为多少?设λ=1°。

解:u =60Dn π=

25.2160580

7.014.3=??(m/s ) 8.51===a a v w v (m/s )

由题知轴向进入01=u v ,所以u w u =1。95.183.225.2122=-=-=u u v u w (m/s)

09.1695.1825.218.522211

=??? ??+?=???

? ??+=∞arctg w

w v arctg u u

β ()()207.009

.16/1109.16sin 8.503.22/1sin 212=+?-?=+-=∞∞

tg tg tg tg v v v t b c a u u y βλβ

1-10有一后置导叶型轴流式风机,在外径2D =0.47m 处,空气从轴向流入,

a v =30m/s ,在转速n=2000r/min 时,圆周分速2u v =5.9m/s ,求y b

c t

。设λ=1°。 解:u =

60Dn π=

19.4960

2000

47.014.3=??(m/s ) 301===a a v w v (m/s )

由题知轴向进入01=u v ,所以u w u =1。29.439.519.4922=-=-=u u v u w (m/s)

97.3229.4319.493022211

=??? ??+?=???

?

??

+=∞arctg w w v arctg u u β ()()208.097

.32/1197.32sin 3009.52/1sin 212=+?-?=+-=∞∞

tg tg tg tg v v v t b c a u u y βλβ 1-11有一单级轴流式水泵,转速为375r/min ,在直径为980mm 处,水以速度

1v =4.01m/s 轴向流入叶轮,在出口以2v =4.48m/s 的速度流出。试求叶轮进出口相对速度的角度变化值(2β-1β)。 解: u =

60Dn π=0.98375

60

π??=19.23(m/s ) 水轴向流入 1u v =0

2u v

201.448.422=-(m/s ) 由速度三角形可知:1tg β=a v u =1v u

= 4.01

19.23=0.2085 得1β= 78.11

由2tg β=

2a u v u v -=1

2u v u v -=

2327.02

23.1901.4=- 得2β= 10.13 2β-1β==- 78.1110.13 1.32°

1-12有一单级轴流式风机,转速n=1450r/min ,在半径为250mm 处,空气沿轴向以24m/s 的速度流入叶轮,并在叶轮入口和出口相对速度之间偏转20°,求此时的理论全压T p 。空气密度ρ=1.2kg/3m 。 解:u =

60Dn π=

94.3760

1450

225.014.3=???(m/s ) 6326.094

.372411===

u v tg β 32.321=β 32.522012=+=ββ ()()43.88332.5232.322494.372.121=-???=-= ctg ctg ctg ctg uv p a T ββρPa

第二章 思考题

1. 在泵与风机内有哪几种机械能损失?试分析损失的原因以及如何减小这些损失。 答:(1)机械损失:主要包括轴端密封与轴承的摩擦损失及叶轮前后盖板外表面与流体之间的圆盘摩擦损失两部分。

轴端密封和轴承的摩擦损失与轴端密封和轴承的结构形式以及输送流体的密度有关。这项损失的功率P ?约为轴功率的1%—5%,大中型泵多采用机械密封、浮动密封等结构,轴端密封的摩擦损失就更小。

圆盘摩擦损失是因为叶轮在壳体内的流体中旋转,叶轮两侧的流体,由于受离心力的作用,形成回流运动,此时流体和旋转的叶轮发生摩擦而产生能量损失。这项损失的功率约为轴功率的2%-10%,是机械损失的主要部分。

提高转速,叶轮外径可以相应减小,则圆盘摩擦损失增加较小,甚至不增加,从而可提 高叶轮机械效率。

(2)容积损失:泵与风机由于转动部件与静止部件之间存在间隙,当叶轮转动时,在间隙两侧产生压力差,因而时部分由叶轮获得能量的流体从高压侧通过间隙向低压侧泄露,这种损失称容积损失或泄露损失。

容积损失主要发生在叶轮人口与外壳密封环之间及平衡装置与外壳之间。

如何减小:为了减少进口的容积损失,一般在进口都装有密封环(承磨环或口环),在间 隙两侧压差相同的情况下,如间隙宽度b 减小,间隙长度l 增加,或弯曲次数较多,则密封效果较好,容积损失也较小。

(3)流动损失:流动损失发生在吸入室、叶轮流道、导叶与壳体中。流体和各部分流道壁面摩擦会产生摩擦损失;流道断面变化、转弯等会使边界层分离、产生二次流而引起扩散损失;由于工况改变,流量偏离设计流量时,入口流动角与叶片安装角不一致,会引起冲击损失。

如何减小:减小流量可减小摩擦及扩散损失,当流体相对速度沿叶片切线流入,则没有冲击损失,总之,流动损失最小的点在设计流量的左边。 2. 为什么圆盘摩擦损失属于机械损失?

答:因为叶轮在壳体内的流体中旋转,叶轮两侧的流体,由于受离心力的作用,形成回流运动,此时流体和旋转的叶轮发生摩擦而产生能量损失。由于这种损失直接损失了泵与风机的轴功率,因此归属于机械损失。

3. 功率分为哪几种?它们之间有什么关系?

答:常用功率分为原动机功率g P 、轴功率P 和有效功率e P

g P =g η,g in P

P =tm ηg P

e P =ηP

4.离心式叶轮的理论,V T q -T H ∞曲线及,V T q -T p ∞曲线为直线形式,而实验所得的V q -H 及

V q -p 关系为曲线形式,原因何在?

答:对于有限叶片的叶轮,由于轴向涡流的影响使其产生的扬程降低,该叶轮的扬程

可用环流系数进行修正。

∞=T T KH H

环流系数K 恒小于1,且基本与流量无关。因此,有限叶片叶轮的T V q ,—T H 曲线,也是一条向下倾斜的直线,且位于无限多叶片所对应的T V q ,—∞T H 曲线下方。如图中b 线所示。考虑实际流体粘性的影响,还要在

H q T V -,曲线上减去因摩擦、扩散和冲击

而损失的扬程。因为摩擦及扩散损失随流量的平方增加,在减去各流量下因摩擦及扩散

而损失的扬程后即得图中的c 线。冲击损失在设计工况下为零,在偏离设计工况时则按抛物线增加,在对应流量下再从c 曲线上减去因冲击而损失的扬程后即得d 线。除此之外,还需考虑容积损失对性能曲线的影响。因此,还需在d 线的各点减去相应的泄漏量q ,即得到流量与扬程的实际H q V -性能曲线,如图中e 线所示。

对风机的V q —H 曲线分析与泵的V q —H 曲线分析相同。

5.为什么前弯式叶片的风机容易超载?在对前弯式叶片风机选择原动机时应注意什么问题?

答:前弯式叶轮随流量的增加,功率急剧上升,原动机容易超载。所以,对前弯式叶轮的风机在选择原动机时,容量富裕系数K 值应取得大些。 6.离心式和轴流式泵与风机在启动方式上有何不同?

答:离心式泵与风机,在空载时,所需轴功率(空载功率)最小,一般为设计轴功率的30%左右。在这种状态下启动,可避免启动电流过大,原动机过载。所以离心式泵与风机要在阀门全关的状态下启动。

轴流式泵与风机,功率P 在空转状态(V q =0)时最大,随流量增加而减小,为避免原动机过载,对轴流式泵与风机要在阀门全开状态下启动。 7.轴流式泵与风机空载运行时,功率为什么不为零? 答:由于存在机械损失和二次回流损失。

8.轴流式泵与风机的性能曲线有何特点?其V q -H 及V q -p 曲线为什么出现拐点? 答:轴流式泵与风机的V q —H (V q —p )性能曲线具有如下特点:当在设计工况时,对应

曲线上的d 点,此时沿叶片各截面的流线分

布均匀,效率最高。当V q

力系数也增加,因而扬程(全压)上升;当流量达到Vc q 时冲角已增加到使翼型上产生附面层分离,出现失速现象,因而升力系数降低,扬程(全压)也随之下降,当流量减小到Vb q 时,扬程(全压)最低;当V q

9.热力学法测效率是基于什么原理?有什么特点?

答:原理:对于高温高压泵,由于不能忽略流体受到压缩而导致密度和比热的变化,因此热力学原理奠定了热力学测试方法的基础。泵叶轮旋转对流体做功,除了使流体获得有用功率之外,尚有各种损失转化为热能,使水温升高;同时流体从泵进口到出口的等熵压缩过程,也会使水温升高。形成泵进出口的温差,因此只需测出泵进、出口的温度和压力,即可求得泵效率η。

特点:热力学法测效率,扬程越高,温差越大,其相对测量误差越小,测量精度很高,因而适用于100m 以上的高扬程泵。并可在现场运行条件下进行测试,同时,不必测出水泵的流量,即可求得泵效率。

第二章

2-1有一叶轮外径为460mm 的离心式风机,在转速为1450r/min 时,其流量为5.13m /s ,试求风机的全压与有效功率。设空气径向流入叶轮,在叶轮出口处的相对速度方向为半径方向,设其p /T p ∞=0.85,ρ=1.2kg/3m 。 解:2u =

260D n π=0.461450

60

π??=34.9(m/s )

∵叶轮出口处的相对速度为半径方向

∴2β=90°2u V ∞=2u

T p ∞=ρ2u 2u V ∞=1.2?34.9?34.9=1462.14(Pa )

p =0.85T p ∞=0.85?1462.1=1242.82(Pa )

e P =

1000v q P =5.11242.81000

?=6.34(kW ) 2-2有一单级轴流式水泵,转速为375r/min ,入口直径为980mm ,水以1v =4.01m/s 的速度沿轴向流入叶轮,以2v =4.48m/s 的速度由叶轮流出,总扬程为H=3.7m ,求该水泵的流动效率h η。

解:u =60Dn π=398010375

60π-???=19.23(m/s )

∵水沿轴向流入 ∴01=u V 1V =1a V =2a V =4.01m/s

2u v ∞

T H =

()()9.30998.18

.923.1912=-?=-u u V V g u

m h η=

T H H =3.73.9

=0.949=94.9% 2-3有一离心式水泵,转速为480r/min ,总扬程为136m 时,流量V q =5.73m /s ,轴功率为P =9860KW ,其容积效率与机械效率均为92%,求流动效率。设输入的水温度及密度为:t=20℃,ρ=1000kg/3m 。 解:η=

e P P =1000V gq H P ρ=1000 5.713610009860

g ????=0.77 又∵η=h ηV ηm η ∴h η=

V m η

ηη=0.770.920.92

?=0.91=91% 2-4用一台水泵从吸水池液面向50m 高的水池输送V q =0.33m /s 的常温清水(t=20℃,ρ=1000kg/3m ),设水管的内径为d =300mm ,管道长度L =300m ,管道阻力系数λ=0.028,求泵所需的有效功率。

解:根据伯努利方程 1z +1p g ρ+212v g +H =2z +2p g ρ+2

2

2v g +w

h

由题知:1z -2z =50; 1p =2p =0; 1v =2v 1v =2v =

2

4

V

q d π=

2

0.3

0.34

π

?=4.246(m/s )

w h =λl d 22v g =76.258

.92246.43.0300028.02

=???

m 代入方程得H =75.76(m)

e P =

1000

V gq H

ρ=

7.2221000

76

.753.08.91000=???(kW )

2-5设一台水泵流量V q =25L /s ,出口压力表读数为323730Pa ,入口真空表读数为39240Pa ,两表位差为0.8m ,(压力表高,真空表低),吸水管和排水管直径为1000mm 和750mm ,电动机功率表读数为12.5kW ,电动机效率g η=0.95,求轴功率、有效功率、泵的总功率(泵与电动机用联轴器直接连接)。 解:由题知:2e P =323730Pa ,1v P =39240Pa ,1e P =-1v P =-39240Pa 12z z -=0.8m ,1d =1000mm=1m ,2d =750mm=0.75m 'g P =12.5kW , g η=0.95, tm η=0.98

032.01

14.3100025

442

211=???==

d q v v πm/s 057.075.014.3100025

442

2

22=???==

d q v v πm/s 1z +

1p g ρ+212v g +H =2z +2p g ρ+22

2v g

得: H =12z z -+21p p g ρ-+2

2

212v v g

-=0.8+323730(39240)10009.8--?8.92032.0057.022?-+=37.84m

e P =

1000V gq H

ρ=310009.8251037.84

1000

-????=9.27(KW ) P ='g P tm ηg η=12.5?0.98?0.95=11.64(KW )

η=

e P P

?100%=9.311.64?100%=79.6%

2-6有一送风机,其全压是1962Pa 时,产生V q =403m /min 的风量,其全压效率为50%,试求其轴功率。 解:P =

1000V q p η=

62.25

.010********

40=???(kW ) 2-7要选择一台多级锅炉给水泵,初选该泵转速n=1441r/min ,叶轮外径

=2D 300mm ,流动效率h η=0.92,流体出口绝对速度的圆周分速为出口圆周速度的55%,泵的总效率为90%,输送流体密度ρ=9613/kg m ,要求满足扬程

H =176m ,流量V q =81.63m /h ,试确定该泵所需要的级数和轴功率各为多少(设

流体径向流入,并不考虑轴向涡流的影响)?

解:2u =260D n π=0.31441

60π??=22.62(m/s )

由题知:2u v =0.552u =0.55?22.62=12.44(m/s ) T H =

22u u v g

=22.6212.44

9.8?=28.7(m )

42.2692.07.281=?==h T H H η(m) 766.642

.26176

1≈===

H H i (级) 7.419

.036001000176

6.818.996110001000=?????===

ηρηH gq P P V e kW 2-8一台G4-73型离心式风机,在工况1(流量V q =703003m /h ,全压p =1441.6Pa ,轴功率P =33.6k W )及工况2(流量V q =378003m /h ,全压p =2038.4Pa ,轴功率

P =25.4k W )下运行,问该风机在哪种工况下运行较为经济?

解:工况1:1η=e P P =1000V q p P = 6.33360010006

.144170300??? ?100%=83.78%

工况2:2η=e P P =1000V q p P =4

.25360010004

.203837800????100%=84.26%

∵2η?1η ∴在工况2下运行更经济。

第三章 思考题

1. 两台几何相似的泵与风机,在相似条件下,其性能参数如何按比例关系变化?

答:流量相似定律指出:几何相似的泵与风机,在相似工况下运行时,其流量之比与几何尺寸之比的三次方成正比、与转速比的一次方成正比,与容积效率比的一次方成正比。

扬程相似定律指出:几何相似的泵与风机,在相似工况下运行时,其扬程之比与几何尺寸比的平方成正比,与转速比的平方成正比,与流动效率比的一次方成正比。

功率相似定律指出:几何相似的泵与风机,在相似工况下运行时,其功率之比与几何尺寸比的五次方成正比,与转速比的三次方成正比,与密度比的一次方成正比,与机械效率比的一次方成正比。

2. 当一台泵的转速发生改变时,其扬程、流量、功率将如何变化? 答:根据比例定律可知:流量Vp q =Vm

q p m

n n 扬程p H =m H 2(

)p m

n n 功率p P =m P 3(

)p m

n n

3. 当某台风机所输送空气的温度变化时其全压、流量、功率将如何变化?

答:温度变化导致密度变化,流量与密度无关,因而流量不变。

全压

m

P

m

p p p ρρ=

功率 m P m p P P ρρ=

4. 为什么说比转数是一个相似特征数?无因次比转数较有因次有何优点?

答:比转数是由相似定律推导而得,因而它是一个相似准则数。

优点:有因次比转数需要进行单位换算。 5. 为什么可以用比转数对泵与风机进行分类?

答:比转数反映了泵与风机性能上及结构上的特点。如当转数不变,对于扬程(全压)高、流量小的泵与风机,其比转数小。反之,在流量增加,扬程(全压)减小时,比转数随之增加,此时,叶轮的外缘直径2D 及叶轮进出口直径的比值02D D 随之减小,而叶轮出口宽度2b 则随之增加。当叶轮外径2D 和02D D 减小到某一数值时,为了避免引起二次回流,致使能量损失增加,为此,叶轮出口边需作成倾斜的。此时,流动形态从离心式过渡到混流式。当

2D 减小到极限02D D =1时,则从混流式过渡到轴流式。由此可见,叶轮形式引起性能参

数改变,从而导致比转数的改变。所以,可用比转数对泵与风机进行分类。 6.随比转数增加,泵与风机性能曲线的变化规律怎样?

答:在低比转数时,扬程随流量的增加,下降较为缓和。当比转数增大时,扬程曲线逐渐变陡,因此轴流泵的扬程随流量减小而变得最陡。

在低比转数时(s n <200),功率随流量的增加而增加,功率曲线呈上升状。但随比转数的增加(s n =400),曲线就变得比较平坦。当比转数再增加(s n =700),则功率随流量的增加而减小,功率曲线呈下降状。所以,离心式泵的功率是随流量的增加而增加,而轴流式泵的功率却是随流量的增加而减少。

比转数低时,效率曲线平坦,高效率区域较宽,比转数越大,效率曲线越陡,高效率区域变得越窄,这就是轴流式泵和风机的主要缺点。为了克服功率变化急剧和高效率区窄的缺点,轴流式泵和风机应采用可调叶片,使其在工况改变时,仍保持较高的效率。 7.无因次的性能曲线是如何绘制的?与有因次性能曲线相比有何优点?

答:凡几何相似的泵或风机,在相似工况下运行时,其无因次系数相同。用无因次系数,可以绘出无因次性能曲线。

用无因次性能参数V q 、p 、P ,η绘制无因次性能曲线时,首先要通过试验求得某一几何形状叶轮在固定转速下不同工况时的V q 、P 、p 及,η值,然后计算出相应工况时的

V q 、P 、p 、η,并绘制出以流量系数V q 为横坐标,以压力系数p 、功率系数P 及效率

η为纵坐标的一组V q —p 、V q —P 及V q —η曲线。无因次性能曲线的特点是,由于同

类泵与风机都是相似的,同时没有计量单位,而只有比值关系,所以可代表一系列相似泵或风机的性能。因此,如把各类泵或风机的无因次性能曲线绘在同一张图上,在选型时可进行性能比较。

8.通用性能曲线是如何绘制的?

答:通用性能曲线可以用试验方法得到,也可以用比例定律求得。

用比例定律可以进行性能参数间的换算,如已知转速为1n 时的性能曲线,欲求转速为2n 时的性能曲线,则可在转速为1n 时的V q —H 性能曲线上取任意点1、2、3…等的流量与扬程代入比例定律,由

V V q n n

q 122

= 12

122H n n H ???

? ??= 可求得转速为2n 时与转速为1n 时相对应的工况点1'、2'、3'…。将这些点连成光滑的曲线,则得转速为2n 时的V q —H 性能曲线。

制造厂所提供的是通过性能试验所得到的通用性能曲线。

第三章 相似理论

3-1有一离心式送风机,转速n=1450r/min ,流量V q =1.53m /min ,全压p =1200Pa ,输送空气的密度为ρ=1.23/kg m 。今用该风机输送密度ρ=0.93/kg m 的烟气,要求全压与输送空气时相同,问此时转速应变为多少?流量又为多少? 解:由题知:

p m

D D =1 ;各效率相等,p p =m p

根据全压相似关系 p

m p p =p m ρρ2()p m D D 2()p m n n =p m ρρ2

()p m

n n =1

得m n =p

n

?流量与密度无关,根据相似关系

Vp Vm

q q =

p m

n n 得

Vm q =m Vp

p

n q n =1674.321.51450?=1.73(3m /min)

3-2有一泵转速n=2900r/min ,扬程H=100m ,流量V q =0.173m /s ,若用和该泵相似但叶轮外径2D 为其2倍的泵,当转速n=1450r/min 时,流量为多少? 解:由题知:2m D =22p D ,由于两泵相似

泵与风机部分思考题与习题答案.(何川_郭立君.第四版)

泵与风机(思考题答案) 绪论 3.泵与风机有哪些主要的性能参数?铭牌上标出的是指哪个工况下的参数?答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。 在铭牌上标出的是:额定工况下的各参数 5.离心式泵与风机有哪些主要部件?各有何作用? 答:离心泵 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。 吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。 压出室:收集从叶轮流出的高速流体,然后以最小的阻力损失引入压水管或次级叶轮进口,同时还将液体的部分动能转变为压力能。 导叶:汇集前一级叶轮流出的液体,并在损失最小的条件下引入次级叶轮的进口或压出室,同时在导叶内把部分动能转化为压力能。 密封装置:密封环:防止高压流体通过叶轮进口与泵壳之间的间隙泄露至吸入口。 轴端密封:防止高压流体从泵内通过转动部件与静止部件之间的 间隙泄漏到泵外。 离心风机 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能 蜗壳:汇集从叶轮流出的气体并引向风机的出口,同时将气体的部分动能转化为压力能。 集流器:以最小的阻力损失引导气流均匀的充满叶轮入口。 进气箱:改善气流的进气条件,减少气流分布不均而引起的阻力损失。 9.试简述活塞泵、齿轮泵及真空泵、喷射泵的作用原理? 答:活塞泵:利用工作容积周期性的改变来输送液体,并提高其压力。 齿轮泵:利用一对或几个特殊形状的回转体如齿轮、螺杆或其他形状的转子。在壳体内作旋转运动来输送流体并提高其压力。 喷射泵:利用高速射流的抽吸作用来输送流体。 真空泵:利用叶轮旋转产生的真空来输送流体。 第一章 1.试简述离心式与轴流式泵与风机的工作原理。 答:离心式:叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。流体沿轴向流入叶轮并沿径向流出。 轴流式:利用旋转叶轮、叶片对流体作用的升力来输送流体,并提高其压力。 流体沿轴向流入叶轮并沿轴向流出。 2.流体在旋转的叶轮内是如何运动的?各用什么速度表示?其速度矢量可组成怎样的图形? 答:当叶轮旋转时,叶轮中某一流体质点将随叶轮一起做旋转运动。同时该质点在离心力的作用下,又沿叶轮流道向外缘流出。因此,流体在叶轮中的运动是一种复合运动。 叶轮带动流体的旋转运动,称牵连运动,其速度用圆周速度u表示;

泵与风机课后习题参考答案(完整版)

泵与风机(课后习题答案) 第五章 5-1 水泵在n=1450r/min 时的性能曲线绘于图5-48中,问转速为多少时水泵供给管路中的流量为Hc=10+17500q v 2(q v 单位以m 3/s 计算)?已知管路特性曲线方程Hc=10+8000q v 2(q v 单位以m 3/s 计算)。 【解】根据Hc=10+8000q v 2取点如下表所示,绘制管路特性曲线: q v (L/s) q v (m 3/s) 0 0.01 0.02 0.03 0.04 0.05 Hc (m ) 10 10.8 13.2 17.2 22.8 30 管路特性曲线与泵并联前性能曲线交于M 点(46L/s ,27m ) 同一水泵,且输送流体不变,则根据相似定律得: 5-2 某水泵在管路上工作,管路特性曲线方程Hc=20+2000q v 2(q v 单位以m 3/s 计算),水泵性能曲线如图5-49所示,问水泵在管路中的供水量是多少?若再并联一台性能相同的水泵工作时,供水量如何变化? 【解】绘出泵联后性能曲线 根据Hc=20+2000q v 2取点如下表所示,绘制管路特性曲线: q v (L/s) 60 q v (m 3/s) 0 0.01 0.02 0.03 0.04 0.05 0.06 Hc (m ) 20 20.2 20.8 21.8 23.2 25 27.2 管路特性曲线与泵并联前性能曲线交于C 点(33L/s ,32m ) 管路特性曲线与泵并联后性能曲线交于M 点(56L/s ,25m ). 5-3为了增加管路中的送风量,将No.2风机和No.1风机并联工作,管路特性曲线方程为p =4 q v 2(q v 单位以m 3/s 计,p 以p a 计),No.1 及No.2风机的性能曲线绘于图5-50中,问管路中的风量增加了多少? 【解】根据p =4 q v 2取点如下表所示,绘制管路特性曲线: q v (103m 3/h) 0 5 10 15 20 25 q v (m 3/s) 0 1.4 2.8 4.2 5.6 7 p (p a ) 0 7.84 31.36 70.56 125.44 196 管路特性曲线与No.2风机和No.1风机并联工作后性能曲线交于点M (33×103m 3/h ,700p a ) 于单独使用No.1风机相比增加了33×103-25×103=8 m 3/h 5-4 某锅炉引风机,叶轮外径为1.6m ,q v -p 性能曲线绘于图5-51中,因锅炉提高出力,需改风机在B 点(q v =1.4×104m 3/h ,p =2452.5p a )工作,若采用加长叶片的方法达到此目的,问叶片应加长多少? 【解】锅炉引风机一般为离心式,可看作是低比转速。 求切割直线: B p 36005.2452?min /r 114246145030m m p m p =?==v v v q n n q q ,

泵与风机 杨诗成 第四版 简答题及答案

2-1试述离心泵与风机的工作原理。 通过入口管道将流体引入泵与风机叶轮入口,然后在叶轮旋转力的作用下, 流体随叶轮一同旋转,由此就产生了离心力,使流体沿着叶轮流道不断前进,同时使其压力能和动能均有所提高,到达叶轮出口以后,再由泵壳将液体汇集起来并接到压出管中,完成流体的输送,这就是离心泵与风机的工作原理。 2-2离心泵启动前为何一定要将液体先灌入泵内? 离心泵是靠叶轮旋转产生离心力工作的,如启动前不向泵内灌满液体,则叶轮只能带动空气旋转。而空气的质量约是液体(水)质量的千分之一,它所形成的真空不足以吸入比它重700多倍的液体(水),所以,离心泵启动前一定要将液体先灌入泵内。 2-3提高锅炉给水泵的转速,有什么优缺点? 泵与风机的转速越高: (1)它们所输送的流量、扬程、全压亦越大; (2)转速增高可使叶轮级数减少,泵轴长度缩短。 (3)泵转速的增加还可以使叶轮的直径相对地减小,能使泵的质量、体积大为降低。 所以国内、外普遍使用高转速的锅护给水泵。 但高转速受到材料强度、泵汽蚀、泵效率等因素的制约。 2-4如何绘制速度三角形?预旋与轴向旋涡对速度三角形有什么影响? 1.如何绘制速度三角形? 速度三角形一般只需已知三个条件即可画出: (1)圆周速度u (2)轴向速度v m (3)叶轮结构角βg角 即可按比例画出三角形。 (1)计算圆周速度u 在已知和叶轮转速n和叶轮直径D(计算出口圆周速度u2时,使用出口直径,反之,使用入口直径,以此类推)以后,即可以求出圆周速度u; (2)叶轮结构角βg 通常是已知的值,因为它是叶轮的结构角,分为入口和出口。 (3)轴向速度v m

因为过流断面面积(m2)与轴向速度v m(m/s)的乘积,就是从叶轮流过的流体的体积流量(m3/s),因此,只要已知体积流量,并计算出过流断面的面积,即可得出轴向速度v m(m/s),由此既可以绘制出速度三角形。 2.预旋与轴向旋涡对速度三角形有什么影响? (1)预旋对速度三角形的影响? 流体在实际流动中,由于在进入叶轮之前在吸入管中已经存在一个旋转运动,这个预先的旋转运动称为预旋。当流体进入叶轮前的绝对速度与圆周速度间的夹角是锐角,且绝对速度的圆周分速与圆周速度同向,此时的预旋称为正预旋;反之,流体进入叶轮前的绝对速度与圆周速度间的夹角是钝角,则绝对速度的圆周分速与圆周速度异向,此时的预旋称为负预旋。 由此可见,当无预旋时,流体流入角α1为90o,此时叶轮进口速度三角形为直角三角形,如图1所示;当正预旋时,流体流入角α1<90o,此时叶轮进口速度三角形为锐角三角形,如图2所示;当负预旋时,流体流入角α1>90o,此时叶轮进口速度三角形为钝角三角形,如图3所示。 (2)轴向漩涡对速度三角形的影响? 如图4所示,叶轮内流体从进口流向出口、同时在流道内一产生一个与叶轮转向相反的轴向旋涡,当叶轮内流体从进口流向出口时,流道内均匀的相对速度受到轴向旋涡的破坏。在叶片,工作面附近,相对速度的方向与轴向旋涡形成的流动速度方向相反,两个速度叠加的结果,使合成的相对速度减小。而在叶片非工作面附近,两种速度的方向相同,速度叠加的结果使合成的相对流速增加。 叶片数有限多时,出流角度从β2g降低至β2后,v2u∞就减小成v2u了,如图5所示。这就是相对速度产生滑移,造成流体出口的旋转不足。 2-5 H T∞、H T及之间有何区别?为什么H

泵与风机课后习题答案(标准版)

扬程:单位重量液体从泵进口截面到泵出口截面所获得的机械能。 流量qv :单位时间内通过风机进口的气体的体积。 全压p :单位体积气体从风机进口截面到风机出口截面所获得的机械能。 轴向涡流的定义:容器转了一周,流体微团相对于容器也转了一周,其旋转角速度和容器的旋转角速度大小相等而方向相反,这种旋转运动就称轴向涡流。影响:使流线发生偏移从而使进出口速度三角形发生变化。使出口圆周速度减小。 叶片式泵与风机的损失:(一)机械损失:指叶轮旋转时,轴与轴封、轴与轴承及叶轮圆盘摩擦所损失的功率。(二)容积损失:部分已经从叶轮获得能量的流体从高压侧通过间隙向低压侧流动造成能量损失。泵的叶轮入口处的容积损失,为了减小这部分损失,一般在入口处都装有密封环。(三),流动损失:流体和流道壁面生摸差,流道的几何形状改变使流体产生旋涡,以及冲击等所造成的损失。多发部位:吸入室,叶轮流道,压出室。 如何降低叶轮圆盘的摩擦损失:1、适当选取n 和D2的搭配。2、降低叶轮盖板外表面和壳腔内表面的粗糙度可以降低△Pm2。3、适当选取叶轮和壳体的间隙。 轴流式泵与风机应在全开阀门的情况下启动,而离心式泵与风机应在关闭阀门的情况下启动。 泵与风机(课后习题答案) 第一章 1-1有一离心式水泵,其叶轮尺寸如下:1b =35mm, 2b =19mm, 1D =178mm, 2D =381mm, 1a β=18°,2a β=20°。设流体径向流入叶轮,如n=1450r/min ,试 画出出口速度三角形,并计算理论流量,V T q 和在该流量时的无限多叶片的理论扬程T H ∞。 解:由题知:流体径向流入叶轮 ∴1α=90° 则: 1u = 1n 60 D π= 3178101450 60 π-???=13.51 (m/s ) 1V =1m V =1u tg 1a β=13.51?tg 18°=4.39 (m/s ) ∵1V q =π1D 1b 1m V =π?0.178?4.39?0.035=0.086 (3m /s ) ∴2m V = 122V q D b π=0.086 0.3810.019 π??=3.78 (m/s ) 2u = 2D 60 n π= 3381101450 60 π-???=28.91 (m/s ) 2u V ∞=2u -2m V ctg 2a β=28.91-3.78?ctg20°=18.52 (m/s )

泵与风机课后思考题答案

泵与风机课后思考题答案 Final approval draft on November 22, 2020

思考题答案 绪论 思考题 1.在火力发电厂中有那些主要的泵与风机其各自的作用是什么 答:给水泵:向锅炉连续供给具有一定压力和温度的给水。 循环水泵:从冷却水源取水后向汽轮机凝汽器、冷油器、发电机的空气冷却器供给冷却水。 凝结水泵:抽出汽轮机凝汽器中的凝结水,经低压加热器将水送往除氧器。 疏水泵:排送热力系统中各处疏水。 补给水泵:补充管路系统的汽水损失。 灰渣泵:将锅炉燃烧后排出的灰渣与水的混合物输送到贮灰场。 送风机:向锅炉炉膛输送燃料燃烧所必需的空气量。 引风机:把燃料燃烧后所生成的烟气从锅炉中抽出,并排入大气。 2.泵与风机可分为哪几大类发电厂主要采用哪种型式的泵与风机为什么 答:泵按产生压力的大小分:低压泵、中压泵、高压泵 风机按产生全压得大小分:通风机、鼓风机、压气机 泵按工作原理分:叶片式:离心泵、轴流泵、斜流泵、旋涡泵 容积式:往复泵、回转泵 其他类型:真空泵、喷射泵、水锤泵 风机按工作原理分:叶片式:离心式风机、轴流式风机 容积式:往复式风机、回转式风机 发电厂主要采用叶片式泵与风机。其中离心式泵与风机性能范围广、效率高、体积小、重量轻,能与高速原动机直联,所以应用最广泛。轴流式泵与风机与离心式相比,其流量大、压力小。故一般用于大流量低扬程的场合。目前,大容量机组多作为循环水泵及引送风机。 3.泵与风机有哪些主要的性能参数铭牌上标出的是指哪个工况下的参数 答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。 在铭牌上标出的是:额定工况下的各参数 4.水泵的扬程和风机的全压二者有何区别和联系 答:单位重量液体通过泵时所获得的能量增加值称为扬程; 单位体积的气体通过风机时所获得的能量增加值称为全压 联系:二者都反映了能量的增加值。 区别:扬程是针对液体而言,以液柱高度表示能量,单位是m。 全压是针对气体而言,以压力的形式表示能量,单位是Pa。 5.离心式泵与风机有哪些主要部件各有何作用 答:离心泵 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。 吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。

泵与风机课后习题参考答案

泵与风机(课后习题答案) 第五章 5-1 水泵在n=1450r/min时的性能曲线绘于图5-48中,问转速为多少时水泵供给管路中的流量为Hc=10+17500q v2(q v单位以m3/s计算)?已知管路特性曲线方程Hc=10+8000q v2(q v单位以m3/s计算)。 2 同一水泵,且输送流体不变,则根据相似定律得: 5-2 某水泵在管路上工作,管路特性曲线方程Hc=20+2000q v2(q v单位以m3/s计算),水泵性能曲线如图5-49所示,问水泵在管路中的供水量是多少?若再并联一台性能相同的水泵工作时,供水量如何变化? 【解】绘出泵联后性能曲线 2 管路特性曲线与泵并联后性能曲线交于M点(56L/s,25m). 5-3为了增加管路中的送风量,将风机和风机并联工作,管路特性曲线方程为 p=4 q v 2(q v 单位以m3/s计,p以p a计),及风机的性能曲线绘于图5-50中,问 管路中的风量增加了多少? 2 p a )于单独使用风机相比增加了33×103-25×103=8 m3/h 5-4 某锅炉引风机,叶轮外径为,q v-p性能曲线绘于图5-51中,因锅炉提高出力,需改风机在B点(q v=×104m3/h,p=)工作,若采用加长叶片的方法达到此目的,问叶片应加长多少?

【解】锅炉引风机一般为离心式,可看作是低比转速。 求切割直线: a A 点与B 点为对应工况点,则由切割定律得 m 8.1)11 14(D D )(22222==' '=',D D q q v v 则应加长 略 5-6 8BA-18型水泵的叶轮直径为268mm ,车削后的8BA-18a 型水泵的叶轮直径为250mm ,设效率不变,按切割定律计算qv 、H 、P 。如果把8BA-18a 型水泵的转速减至1200r/min ,假设效率不变,其qv 、H 、P 各为多少?8BA-18型水泵额定工况点的参数为:n=1450r/min ,q v =s ,H=18m ,P=,η=84%。 【解】根据公式得: 可知该泵为低比转速,可用如下切割定律求出切割后的qv 、H 、P ,其值如下: 对8BA-18a 型水泵只改变转速,可根据相似定律计算泵的qv 、H 、P ,其值如下:

泵与风机 何川主编 第四版 课后习题+思考题(全7章)答案

绪论 思考题 1.在火力发电厂中有那些主要的泵与风机?其各自的作用是什么? 答:给水泵:向锅炉连续供给具有一定压力和温度的给水。 循环水泵:从冷却水源取水后向汽轮机凝汽器、冷油器、发电机的空气冷却器供给冷却水。 凝结水泵:抽出汽轮机凝汽器中的凝结水,经低压加热器将水送往除氧器。 疏水泵:排送热力系统中各处疏水。 补给水泵:补充管路系统的汽水损失。 灰渣泵:将锅炉燃烧后排出的灰渣与水的混合物输送到贮灰场。 送风机:向锅炉炉膛输送燃料燃烧所必需的空气量。 引风机:把燃料燃烧后所生成的烟气从锅炉中抽出,并排入大气。 2.泵与风机可分为哪几大类?发电厂主要采用哪种型式的泵与风机?为什么? 答:泵按产生压力的大小分:低压泵、中压泵、高压泵 风机按产生全压得大小分:通风机、鼓风机、压气机 泵按工作原理分:叶片式:离心泵、轴流泵、斜流泵、旋涡泵 容积式:往复泵、回转泵 其他类型:真空泵、喷射泵、水锤泵 风机按工作原理分:叶片式:离心式风机、轴流式风机 容积式:往复式风机、回转式风机 发电厂主要采用叶片式泵与风机。其中离心式泵与风机性能范围广、效率高、体积小、重量轻,能与高速原动机直联,所以应用最广泛。轴流式泵与风机与离心式相比,其流量大、压力小。故一般用于大流量低扬程的场合。目前,大容量机组多作为循环水泵及引送风机。3.泵与风机有哪些主要的性能参数?铭牌上标出的是指哪个工况下的参数? 答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。 在铭牌上标出的是:额定工况下的各参数 4.水泵的扬程和风机的全压二者有何区别和联系? 答:单位重量液体通过泵时所获得的能量增加值称为扬程; 单位体积的气体通过风机时所获得的能量增加值称为全压 联系:二者都反映了能量的增加值。 区别:扬程是针对液体而言,以液柱高度表示能量,单位是m。 全压是针对气体而言,以压力的形式表示能量,单位是Pa。 5.离心式泵与风机有哪些主要部件?各有何作用? 答:离心泵 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。 吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。 压出室:收集从叶轮流出的高速流体,然后以最小的阻力损失引入压水管或次级叶轮进口,同时还将液体的部分动能转变为压力能。 导叶:汇集前一级叶轮流出的液体,并在损失最小的条件下引入次级叶轮的进口或压出室,同时在导叶内把部分动能转化为压力能。 密封装置:密封环:防止高压流体通过叶轮进口与泵壳之间的间隙泄露至吸入口。 轴端密封:防止高压流体从泵内通过转动部件与静止部件之间的间隙泄漏

泵与风机课后习题答案(完整版)

新浪微博:@孟得明 扬程:单位重量液体从泵进口截面到泵出口截面所获得的机械能。 流量qv :单位时间内通过风机进口的气体的体积。 全压p :单位体积气体从风机进口截面到风机出口截面所获得的机械能。 轴向涡流的定义:容器转了一周,流体微团相对于容器也转了一周,其旋转角速度和容器的旋转角速度大小相等而方向相反,这种旋转运动就称轴向涡流。影响:使流线发生偏移从而使进出口速度三角形发生变化。使出口圆周速度减小。 叶片式泵与风机的损失:(一)机械损失:指叶轮旋转时,轴与轴封、轴与轴承及叶轮圆盘摩擦所损失的功率。(二)容积损失:部分已经从叶轮获得能量的流体从高压侧通过间隙向低压侧流动造成能量损失。泵的叶轮入口处的容积损失,为了减小这部分损失,一般在入口处都装有密封环。(三),流动损失:流体和流道壁面生摸差,流道的几何形状改变使流体产生旋涡,以及冲击等所造成的损失。多发部位:吸入室,叶轮流道,压出室。 如何降低叶轮圆盘的摩擦损失:1、适当选取n 和D2的搭配。2、降低叶轮盖板外表面和壳腔内表面的粗糙度可以降低△Pm2。3、适当选取叶轮和壳体的间隙。 轴流式泵与风机应在全开阀门的情况下启动,而离心式泵与风机应在关闭阀门的情况下启动。 泵与风机(课后习题答案) 第一章 1-1有一离心式水泵,其叶轮尺寸如下:1b =35mm, 2b =19mm, 1D =178mm, 2D =381mm, 1a β=18°,2a β=20°。设流体径向流入叶轮,如n=1450r/min ,试 画出出口速度三角形,并计算理论流量,V T q 和在该流量时的无限多叶片的理论扬程T H ∞。 解:由题知:流体径向流入叶轮 ∴1α=90° 则: 1u = 1n 60 D π= 3178101450 60 π-???=13.51 (m/s ) 1V =1m V =1u tg 1a β=13.51?tg 18°=4.39 (m/s ) ∵1V q =π1D 1b 1m V =π?0.178?4.39?0.035=0.086 (3m /s ) ∴2m V = 122V q D b π=0.086 0.3810.019 π??=3.78 (m/s ) 2u = 2D 60 n π= 3381101450 60 π-???=28.91 (m/s ) 2u V ∞=2u -2m V ctg 2a β=28.91-3.78?ctg20°=18.52 (m/s )

泵与风机杨诗成第四版习题集及标准答案

4-1 输送20℃清水的离心泵,在转速为1450r/min 时,总扬程为25.8m, q v =170m 3/h, P=15.7kW, ηv =0.92, ηm =0.90,求泵的流动效率ηh 。 4-1 解: 76.07 .151000/8.253600/17081.91000=???=== P H gq P P v e ρη h v m ηηηη??= ∴92.092 .090.076 .0=?= ?= v m h ηηηη 4-2 离心风机叶轮外径D 2=460mm,转速n=1450r/min,流量q v =5.1m 3/s,υ1u ∞=0,υ2u ∞ =u 2,(1+P)=1.176,流动效率ηh =0.90,气体密度ρ=1.2kg/ m 3。试求风机的全压及有效功率。 4-2,解: p T ∞=ρ(u 2v 2u ∞-u 1 v 1u ∞) ∵v 1u ∞=0 ∴p T ∞=ρu 2v 2u ∞=1.2×6046.014506046.01450?????ππ=1462.1(Pa ) 根据斯托道拉公式:P K +=11,∴855.017 .11==K ∴p= K·ηh ·p T ∞=0.855×0.90×1462.1=1124.7(Pa ) P e =pq v /1000=1124.7×5.1/1000=5.74 (kw) 4-3 离心风机n=2900r/min ,流量q v =12800 m 3/h ,全压p=2630Pa ,全压效率η=0.86,求风机轴功率P 为多少。 4-3 P=η P e =0.86×pq v /1000=0.86×2630×12800/3600/1000=8.04 (kw) 4-4 离心泵转速为480r/min ,扬程为136m ,流量q v =5.7m 3/s,轴功率P=9860kW 。设容积效率、机械效率均为92%,ρ=1000kg/m 3,求流动效率。 4-4解: 77.09860 1000/1367.581.91000=???=== P H gq P P v e ρη 91.092 .092.077 .0=?= ?= v m h ηηηη 4-5 若水泵流量q v =25L/s,泵出口出压力表读数为320kPa ,入口处真空表读数为40kPa ,吸入管路直径d=100cm,出水管直径为75cm ,电动机功率表读数为12.6kW ,电动机效率为0.90,传动效率为0.97。试求泵的轴功率、有效功率及泵的总效率。 ∵P e =ρg·q v ·H ∵()w Z g v v g p p H h Z 2122 12212+-+-+-=ρ

泵与风机考试试题,习题及答案

泵与风机考试试题 一、简答题(每小题5分,共30分) 1、离心泵、轴流泵在启动时有何不同,为什么? 2、试用公式说明为什么电厂中的凝结水泵要采用倒灌高度。 3、简述泵汽蚀的危害。 4、定性图示两台同性能泵串联时的工作点、串联时每台泵的工作点、仅有 一台泵运行时的工作点 5、泵是否可采用进口端节流调节,为什么? 6、简述风机发生喘振的条件。 二、计算题(每小题15分,共60分) 1、已知离心式水泵叶轮的直径D2=400mm,叶轮出口宽度b2=50mm,叶片 厚度占出口面积的8%,流动角β2=20?,当转速n=2135r/min时,理论 流量q VT=240L/s,求作叶轮出口速度三角形。 2、某电厂水泵采用节流调节后流量为740t/h,阀门前后压强差为980700Pa, 此时泵运行效率η=75%,若水的密度ρ=1000kg/m3,每度电费0.4元,求:(1)节流损失的轴功率?P sh; (2)因节流调节每年多耗的电费(1年=365日) 3、20sh-13型离心泵,吸水管直径d1=500mm,样本上给出的允许吸上真空 高度[H s]=4m。吸水管的长度l1=6m,局部阻力的当量长度l e=4m,设 沿程阻力系数λ=0.025,试问当泵的流量q v=2000m3/h,泵的几何安装高 度H g=3m时,该泵是否能正常工作。 (当地海拔高度为800m,大气压强p a=9.21×104Pa;水温为30℃,对应饱 和蒸汽压强p v=4.2365 kPa,密度ρ=995.6 kg/m3) 4、火力发电厂中的DG520-230型锅炉给水泵,共有8级叶轮,当转速为n =5050r/min,扬程H=2523m,流量q V=576m3/h,试计算该泵的比转 速。

南师大泵与风机试题及答案

南京师范大学《泵与风机》试题 一、填空题(每空1分,共10分) 1.泵与风机的输出功率称为_______。 2.绝对速度和圆周速度之间的夹角称为_______。 3.离心式泵与风机的叶片型式有_______、_______和_______三种。 4.为保证流体的流动相似,必须满足_______、_______和_______三个条件。 5.节流调节有_______节流调节和_______节流调节两种。 二、单项选择题(在每小题的四个备选答案中,选出一 个正确答案,并将正确答案的序号填在题干的括号内。每小题1分,共10分) 1.风机的全压是指( )通过风机后获得的能量。 A.单位重量的气体 B.单位质量的

气体 C.单位时间内流入风机的气体 D.单位体积的气体 2.低压轴流通风机的全压为( ) A. 1~3kPa B. 0.5kPa以下 C. 3~15kPa D. 15~340kPa 3.单位重量的液体从泵的吸入口到叶片入口压力最低处的总压降称为( ) A.流动损失 B.必需汽蚀余量 C.有效汽蚀余量 D.摩擦损失 4.关于冲击损失,下列说法中正确的是( ) A.当流量小于设计流量时,无冲击损失 B.当流量大于设计流量时,冲击发生在工作面上 C.当流量小于设计流量时,冲击发生在非工作面上

D.当流量小于设计流量时,冲击发生在工作面上 5.下列哪个参数与泵的有效汽蚀余量无关?( ) A.泵的几何安装高度 B.流体温度 C.流体压力 D.泵的转速 6.关于离心泵轴向推力的大小,下列说法中不正确的是( ) A.与叶轮前后盖板的面积有关 B.与泵的级数无关 C.与叶轮前后盖板外侧的压力分布有关 D.与流量大小有关 7.两台泵并联运行时,为提高并联后增加流量的效果,下列说法中正确的是( ) A.管路特性曲线应平坦一些,泵的性能曲线应陡一些 B.管路特性曲线应平坦一些,泵的性能曲线应平坦

泵与风机课后习题参考答案(完整版)

泵与风机(课后习题答案) 第五章 5-1 水泵在n=1450r/min 时的性能曲线绘于图5-48中,问转速为多少时水泵供给管路中的流量为Hc=10+17500q v 2(q v 单位以m 3/s 计算)已知管路特性曲线方程Hc=10+8000q v 2(q v 单位以m 3/s 计算)。 2同一水泵,且输送流体不变,则根据相似定律得: 5-2 某水泵在管路上工作,管路特性曲线方程Hc=20+2000q v 2 (q v 单位以m 3/s 计算),水泵性能曲线如图5-49所示,问水泵在管路中的供水量是多少若再并联一台性能相同的水泵工作时,供水量如何变化 【解】绘出泵联后性能曲线 2管路特性曲线与泵并联后性能曲线交于M 点(56L/s ,25m ). 5-3为了增加管路中的送风量,将风机和风机并联工作,管路特性曲线方程为p =4 q v 2(q v 单位以m 3/s 计,p 以 p a 计), 及风机的性能曲线绘于图5-50中,问管路中的风量增加了多少 2min /r 114246145030m m p m p =?==v v v q n n q q ,

管路特性曲线与风机和风机并联工作后性能曲线交于点M (33×103m 3/h ,700p a ) 于单独使用风机相比增加了33×103-25×103=8 m 3/h 5-4 某锅炉引风机,叶轮外径为,q v -p 性能曲线绘于图5-51中,因锅炉提高出力,需改风机在B 点(q v =×104m 3/h ,p =)工作,若采用加长叶片的方法达到此目的,问叶片应加长多少 【解】锅炉引风机一般为离心式,可看作是低比转速。 求切割直线: a A 点与B 点为对应工况点,则由切割定律得 m 8.1)11 14(D D )(22222==' '=',D D q q v v 则应加长 略 5-6 8BA-18型水泵的叶轮直径为268mm ,车削后的8BA-18a 型水泵的叶轮直径为250mm ,设效率不变,按切割定律计算qv 、H 、P 。如果把8BA-18a 型水泵的转速减至1200r/min ,假设效率不变,其qv 、H 、P 各为多少8BA-18型水泵额定工况点的参数为:n=1450r/min ,q v =s ,H=18m ,P=,η=84%。 【解】根据公式得: 可知该泵为低比转速,可用如下切割定律求出切割后的qv 、H 、P ,其值如下: 64.2218109.71450H n 4 /33 4/3s =?==-v q n kW 35.156.16)260250()(64.1681)260250()(L/s 3.77.9)260250()(442 22 2222222 =?=''='=?='' ='=?=''='P D D P P m H D D H H q D D q q v v v ,,,v vB B q p q p 06.6306 .63140003600 5.2452K ==?==

泵与风机课后思考题答案

思考题答案 绪论 思考题 1.在火力发电厂中有那些主要的泵与风机?其各自的作用是什么? 答:给水泵:向锅炉连续供给具有一定压力和温度的给水。 循环水泵:从冷却水源取水后向汽轮机凝汽器、冷油器、发电机的空气冷却器供给冷却水。 凝结水泵:抽出汽轮机凝汽器中的凝结水,经低压加热器将水送往除氧器。 疏水泵:排送热力系统中各处疏水。 补给水泵:补充管路系统的汽水损失。 灰渣泵:将锅炉燃烧后排出的灰渣与水的混合物输送到贮灰场。 送风机:向锅炉炉膛输送燃料燃烧所必需的空气量。 引风机:把燃料燃烧后所生成的烟气从锅炉中抽出,并排入大气。 2.泵与风机可分为哪几大类?发电厂主要采用哪种型式的泵与风机?为什么? 答:泵按产生压力的大小分:低压泵、中压泵、高压泵 风机按产生全压得大小分:通风机、鼓风机、压气机 泵按工作原理分:叶片式:离心泵、轴流泵、斜流泵、旋涡泵 容积式:往复泵、回转泵 其他类型:真空泵、喷射泵、水锤泵 风机按工作原理分:叶片式:离心式风机、轴流式风机 容积式:往复式风机、回转式风机 发电厂主要采用叶片式泵与风机。其中离心式泵与风机性能范围广、效率高、体积小、重量轻,能与高速原动机直联,所以应用最广泛。轴流式泵与风机与离心式相比,其流量大、压力小。故一般用于大流量低扬程的场合。目前,大容量机组多作为循环水泵及引送风机。3.泵与风机有哪些主要的性能参数?铭牌上标出的是指哪个工况下的参数? 答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。 在铭牌上标出的是:额定工况下的各参数 4.水泵的扬程和风机的全压二者有何区别和联系? 答:单位重量液体通过泵时所获得的能量增加值称为扬程; 单位体积的气体通过风机时所获得的能量增加值称为全压 联系:二者都反映了能量的增加值。 区别:扬程是针对液体而言,以液柱高度表示能量,单位是m。 全压是针对气体而言,以压力的形式表示能量,单位是Pa。 5.离心式泵与风机有哪些主要部件?各有何作用? 答:离心泵 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。 吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。 压出室:收集从叶轮流出的高速流体,然后以最小的阻力损失引入压水管或次级叶轮进口,同时还将液体的部分动能转变为压力能。 导叶:汇集前一级叶轮流出的液体,并在损失最小的条件下引入次级叶轮的进口或压出室,同时在导叶内把部分动能转化为压力能。

流体力学泵与风机1_试题及答案

《流体力学泵与风机》期末考试试卷参考答案 1.没有粘性的流体是实际流体。 错 (1分) 2.在静止、同种、不连续流体中,水平面就是等压面。如果不同时满足这三个条件,水 平面就不是等压面。错 (1分) 3.水箱中的水经变径管流出,若水箱水位保持不变,当阀门开度一定时,水流是非恒定流动。 错 (1分) 4.紊流运动愈强烈,雷诺数愈大,层流边层就愈厚。错 (1分) 5.Q 1=Q 2是恒定流可压缩流体总流连续性方程。错 (1分) 6.水泵的扬程就是指它的提水高度。错 (1分) 7.流线是光滑的曲线,不能是折线,流线之间可以相交。错 (1分) 8.一变直径管段,A 断面直径是B 断面直径的2倍,则B 断面的流速是A 断面流速的4倍。 对 (1分) 9.弯管曲率半径Rc 与管径d 之比愈大,则弯管的局部损失系数愈大。错 (1分) 10.随流动雷诺数增大,管流壁面粘性底层的厚度也愈大。错 (1分) 二、填空题(本大题共 4小题,每小题 3 分,共 12 分) 11.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。 (3分) 12.均匀流过流断面上压强分布服从于水静力学规律。 (3分) 13.正方形形断面管道(边长为a),其水力半径R 等于4a R =,当量直径de 等于a d e = ( 3分) 14.并联管路总的综合阻力系数S 与各分支管综合阻力系数的关系为 3211 111s s s s + +=。管嘴与孔口比较,如果水头H 和直径d 相同,其流速比V 孔口 /V 管嘴 等于82 .097 .0=,流量比Q 孔口 /Q 管嘴 等于 82 .060 .0= 。 (3分) 三、简答题(本大题共 4小题,每小题 3分,共 15 分) 15.什么是牛顿流体?什么是非牛顿流体? 满足牛顿内摩擦定律的流体为牛顿流体,反之为非牛顿流体。 (3分) 16.流体静压强的特性是什么? 流体静压强的方向垂直于静压面,并且指向内法线,流体静压腔的大小与作用面的方位无关,只于该点的位置有关。 (3分) 17.什么可压缩流体?什么是不可压缩流体? 流体的压缩性和热胀性很小,密度可视为常数的液体为不可压缩流体,反之为可压缩流体。(3分) 18.什么是力学相似? 原形流动与模型流动在力学上包括三方面的相似,即几何相似、运动相似、动力相似,统称为力学

泵与风机杨诗成,习题及答案(6)

6-1 某水泵在转速n=1450r/min 时的性能曲线见图6-57,此时管路性能曲线为H=10+8000q 2v (q v 按m 3/s 计),问转速为多少时水泵供水量为q v =30L/s 6-1,解:根据管路性能曲线方程,做出管路性能曲线: 23流量(L/s ) 10 20 30 40 5 扬程(m ) 1 30 变速调节,流量降为30(L/s )时,落在管路性能曲线上,因此在B 点。 过B 点做相似抛物线 即H=kq v 2 读出B 点坐标:流量q v =30 L/s, 扬程H=17m 代入相似抛物线,得: k= 0189.030 1722==v q H ,即过B 点的相似抛物线为H= q v 2 流量(L/s ) 20 30 40 45 扬程(m )

如图: 与原性能曲线相交于C 点,则C 、B 两点相似。 C 点坐标:流量q v =41 L/s, 扬程H=32m 根据相似定律得: 2 2121??? ? ??=n n H H min /198917 3214501 21 2r H H n n =?== 也可以通过: 2 1 21n n q q = min /198230 4114501 21 2r q q n n =?== 6-2 某离心风机在转速为n 1=1450r/min 时,p-q v 曲线见图6-58,管路性能曲线方程为 p=20q 2v 。若采用变转速的方法,使风机流量变为q 2v =27 000m 3/h,此时风机转速应为多少 2流量(m 3/s ) 2 4 6 8 10 风压(Pa ) 8 32 720 128 200

泵与风机考试试题,习题及答案

泵和风机测试试题 一、简答题(每小题5分,共30分) 1、离心泵、轴流泵在启动时有何不同,为什么? 2、试用公式说明为什么电厂中的凝结水泵要采用倒灌高度。 3、简述泵汽蚀的危害。 4、定性图示两台同性能泵串联时的工作点、串联时每台泵的工作点、仅有 一台泵运行时的工作点 5、泵是否可采用进口端节流调节,为什么? 6、简述风机发生喘振的条件。 二、计算题(每小题15分,共60分) 1、已知离心式水泵叶轮的直径D2=400mm,叶轮出口宽度b2=50mm,叶片 厚度占出口面积的8%,流动角β2=20?,当转速n=2135r/min时,理论 流量q VT=240L/s,求作叶轮出口速度三角形。 2、某电厂水泵采用节流调节后流量为740t/h,阀门前后压强差为980700Pa, 此时泵运行效率η=75%,若水的密度ρ=1000kg/m3,每度电费0.4元,求:(1)节流损失的轴功率?P sh; (2)因节流调节每年多耗的电费(1年=365日) 3、20sh-13型离心泵,吸水管直径d1=500mm,样本上给出的允许吸上真空 高度[H s]=4m。吸水管的长度l1=6m,局部阻力的当量长度l e=4m,设 沿程阻力系数λ=0.025,试问当泵的流量q v=2000m3/h,泵的几何安装高 度H g=3m时,该泵是否能正常工作。 (当地海拔高度为800m,大气压强p a=9.21×104Pa;水温为30℃,对应饱 和蒸汽压强p v=4.2365 kPa,密度ρ=995.6 kg/m3) 4、火力发电厂中的DG520-230型锅炉给水泵,共有8级叶轮,当转速为n =5050r/min,扬程H=2523m,流量q V=576m3/h,试计算该泵的比转 速。 三、分析题(每小题5分,共10分) 1、某风机工作点流量为q V A,现要求流量减小为q V B,试在同一幅图上,标 出采用出口端节流 调节、变速调节的工作点,并比较两种调节方法的经济性。

泵与风机 杨诗成 第四版第二章计算题及答案

2-1,某离心水泵叶轮b 1=3.2cm ,b 2=1.8cm 。叶片进口边内切圆圆心距轴心线的距离R 1c =8.6cm ,叶片出口边处R 2=19cm 。β1g =17°,β2g =21°,n=2950r/min ,设流体无预旋流入叶轮。绘制叶轮进、出口速度三角形,并计算通过叶轮的流量(不计叶片厚度)及扬程H T ∞。 1. 首先计算叶轮进口速度三角形: (1):u 1=)/(55.2660086.02295060229506011s m R D n c =???=???=πππ (2): 171=g β (3)流体无预旋, 901=α 根据以上条件可画出进口速度三角形:并计算出v 1、v 1m 、ω1: v 1=v 1m =u 1·tg β1g =26.55×tg17°=8.12m/s ω1= u 1/cos β1g =26.55/cos17°=27.76m/s 2. 根据进口轴面速度v 1m 及进口半径R 1c 计算出流量: q vt ∞=2πR 1c b 1 v 1m =2π×0.086×0.032×8.12=0.1403 m 3/s 3. 计算叶轮出口速度三角形 (1):u 2=)/(67.5860 19.02295060229506022s m R D n c =???=???=πππ (2): 212=g β (3)计算v 2m ,即出口速度三角形的高: 根据连续性方程: 进口过流断面面积(2πR 1c )×b 1×8.12=出口过流断面面积(2πR 2)×b 2×v 2m 即:2π×0.086×0.032×8.12=2π×0.19×0.018×v 2m 计算得: v 2m =6.53m/s 由此可画出出口速度三角形::并计算出v 2、ω2: v 2u =u 2-v 2m ·ctg β2g =58.67-6.53×ctg21°=41.66m/s ()() 17.4253.666.4122222 22=+=+=m u v v v ω2= v 2m /sin β2g =6.53/sin21°=18.22m/s

相关文档
相关文档 最新文档