文档库 最新最全的文档下载
当前位置:文档库 › 13《土木工程实验(一)》实验报告答案

13《土木工程实验(一)》实验报告答案

13《土木工程实验(一)》实验报告答案
13《土木工程实验(一)》实验报告答案

姓名:

院校学号:

学习中心:

层次:(高起专或专升本)

专业:

实验一:水泥实验

一、实验目的:本方法规定了水泥标准稠度用水量、凝结时间和体积安定性的测试方法。

本方法适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰硅酸盐水泥、复合硅酸盐水泥、道路硅酸盐水泥及指定采用本方法的其它品种水泥。

二、实验内容:

第1部分:水泥标准稠度用水量、凝结时间测定

实验仪器、设备:1、水泥净浆搅拌机:符合JC/T 729的要求。

2、标准法维卡仪:标准稠度测定用试秆有效长度50㎜±1㎜的圆柱形耐用腐蚀金属制成。测定凝结时间时取下试杆,用试杆代替试杆。试杆由钢制成,其有效长度初凝针为50㎜±1㎜、终凝针为30㎜±1㎜、直径为 1.13±0.05㎜的圆柱体。滑动部分的总质量为300±0.05g。与试杆、试针联结的滑动杆表面应光滑,能靠重力自由下落,不得有羞涩和旷动现象。

盛装水泥净浆的试模应由耐腐蚀的、有足够硬度的金属制成。试模深40㎜±0.2㎜、顶内径65±0.5㎜、底内径75±0.5㎜的截面圆锥体,每只试模应配备一个大于试模、厚度大于等于2.5㎜的平板玻璃底版。

3、沸煮箱:有效容积约为410㎜×240㎜×310㎜,箅板结构应不影响试验结果。

4、雷氏夹膨胀仪:由铜制材料制成。

5、量水器:分度值为0.1mL,精度1%。

6、天平:量程1000g,感量1g。

7、湿气养护箱:应能使温度控制在20℃±1℃,相对湿度大于90%。

8、雷氏夹膨胀值测定仪:标尺最小刻度0.5㎜。

9、秒表:分度值1s。

1、水泥标准稠度用水量

(1)实验原理:1、水泥试样应充分拌匀,通过0.9 ㎜方孔筛并记录筛余物情况,但要防止过筛时混进其它水泥。

2、试验用水必须是洁净的淡水,如有争议时可用蒸馏水。

(2)实验数据及结果

2、水泥凝结时间测定

(1)实验原理:GB/Tl346—2001《水泥标准稠度用水量·凝结时间·安定性检验方法)),等效采用ISO9597:1989。在本标准中规定:水泥标准稠度用水量的测定方法以试杆法为标准法,以试锥法作为代用法,当两种检验方法结果发生争议时,以试杆法为准。

(2)实验数据及结果

第2部分:水泥胶砂强度检验

实验依据:

1、本方法为40mm×40mm×160mm棱柱实体的水泥抗压强度和抗折强度测定。

2、试体是由按质量计的一份水泥、三份中国ISO标准砂,用0.5的水灰比拌制的一组塑

性胶砂制成。

3、胶砂用行星搅拌机搅拌,在振实台上成型。

4、试体连模一起在湿气中养护24h,然后脱模在水中养护至强度试验。

5、到试验龄期时将试体从水中取出,先进行抗折试验,折断后每截在进行抗压强度试验。

2、实验仪器、设备:金属丝网试验筛应符合GB/T6003要求。

行星搅拌机,应符合JC/T681要求。

试模由三个水平是模槽组成,可同时成型三条截面为40mm×40mm×160mm的棱

形试体,其材质和尺寸应符合JC/T726要求。在组装备用的干净模型时,应用黄干油等密封材料涂覆模型的外接缝。拭模的内表面应涂上一薄层模型油或机油。成型操作时,应在拭模上面加有一个壁高20mm是金属模套。

一个播料器和一金属刮平尺。

振实台应符合JC/T682要求。

抗折强度试验机应符合JC/T724要求。

抗压强度试验机。

3、实验数据及结果

水泥检验项目合格性评定:

(1)水泥的凝结时间是否符合要求,是如何判定的?

GB/T1346-2011试验初凝不少于45min终凝时间不大于600分钟

(2)水泥胶砂强度是否符合要求,是如何判定的?

水泥的胶砂强度检验必须符合要求,检验合格此批水泥才能出厂.判定:水泥胶砂强度是否符合要求即检验结果是否符合规定值,符合规定值就为合格水泥,否则就只能降低等级或为不合格水泥.检验水泥强度的目的:1.为了确定水泥等级,评定水泥质量的好坏.2.为设计混凝土等级提供依据

实验二:土的压缩试验一、实验目的:测定土体的压缩变形与荷载的关系。

二、实验原理:

1、计算公式

(1)试样初始孔隙比: e = Vp / Vc

(2)各级压力下试样固结变形稳定后的孔隙比:

S i =

∑Δh

i

×103

h

o

(3)

(4)

三、实验内容:

1、实验仪器、设备:DGY-ZH 1.0 型杠杆式压缩仪,杠杆比为1:12

a.压缩容器:环刀,截面积F=30cm2 ,直径=61.8mm,高H=20mm.

b.百分表

c.砝码:0.125,0.313,0.625,1.25,2.5,5,10.

d.台架主体:杠杆装置,加压框架。

2 天平:称量500g,感量0.01g.

3 其它设备:秒表,削土刀,浅盘,铝盒等。

2、实验数据及结果

3、实验成果整理(见下页表格)

四、实验结果分析与判定:

(1)根据实验结果,该土的压缩类别如何?

该土的压缩类别为中性压缩性土

实验三:水准测量实验

一、实验目的:

(1)掌握普通水准测量方法,熟悉记录、计算和检核。

(2)熟悉水准路线的布设形式

二、实验原理:

水准测量原理是利用水准仪提供的水平视线,借助于带有分划的水准尺,直接测定地面上两点间的高差,然后根据已知点高程和测得的高差,推算出未知点高程。

三、实验内容:

1、实验仪器、工具:水准仪1台套、水准尺1对、尺垫1对、记录板1个

2、水准仪的操作程序:

(1)做闭合的水准路线测量(即由某一已知水准点开始,经过若干转点、临时水准点再回到原来的水准点)或附合水准路线测量(即由某一已知水准点开始,经过若干转点、临时水准点后到达另一巳知水准点),

(2)观测精度符合要求后,根据观测结果进行水准路线高差闭合差的调整和高程计算(记录表及计算表见下页)。

(3) 实验课时为2学时

3、实验数据及结果(见下页表格)

水准测量记录表

注:表中相关数据计算公式需参考相关文献《测量学》或辅导资料三。

实验四:全站仪的认识与使用

一、全站仪的特点:

(l)采用同轴双速制、微动机构,使照准更加快捷、准确。

(2)控制面板具有人机对话功能。控制面板由键盘和显示屏组成。除照准以外的各种测量功能和参数均可通过键盘来实现。仪器的两侧均有控制面板,操作十分方便。

(3)设有双向倾斜补偿器,可以自动对水平和竖直方向进行修正,以消除竖轴倾斜误差的影响。

(4)机内设有测量应用软件,可以方便地进行三维坐标测量、导线测量、对边测量、悬高测量、偏心测量、后方交会、放样测量等工作。

二、全站仪的构造:

全站仪基本结构与传统经纬仪类似,主要可以分为:基座、照准部、永远镜、电子测距系统、电子测角部分、外部判读部分--显示屏、电池

三、全站仪的测量结果:

电工与电子技术的实验报告

电工与电子技术的实验报告 篇一:电工与电子技术实验报告XX 实验一电位、电压的测量及基尔霍夫定律的验证 一、实验目的 1、用实验证明电路中电位的相对性、电压的绝对性。 2、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 3、掌握直流电工仪表的使用方法,学会使用电流插头、插座测量支路电流的方法。 二、实验线路 实验线路如图1-1所示。 D AE1 2 B C 图1-1 三、实验步骤 将两路直流稳压电源接入电路,令E1=12V,E2=6V(以直流数字电压表读数为准)。 1、电压、电位的测量。 1)以图中的A点作为电位的参考点,分别测量B、C、D各点的电位值U及相邻两点之间的电压值UAB、UCD、UAC、UBD,数

据记入表1-1中。 2)以C点作为电位的参考点,重复实验内容1)的步骤。 2、基尔霍夫定律的验证。 1)实验前先任意设定三条支路的电流参考方向,如图中的I1,I2,I3所示,熟悉电流插头的结构,注意直流毫安表读出电流值的正、负情况。2)用直流毫安表分别测出三条支路的电流值并记入表1-2中,验证?I=0。 3)用直流电压表分别测量两路电源及电阻元件上的电压值并记入表1-2中,验证?U=0。 四、实验数据表1-1 表1-2 五、思考题 1、用万用表的直流电压档测量电位时,用负表棒(黑色)接参考电位点,用正表棒(红色)接被测各点,若指针正偏或显示正值,则表明该点电位参考点电位;若指针反向偏转,此时应调换万用表的表棒,表明该点电位参考点电位。 A、高于 B、低于 2、若以F点作为参考电位点,R1电阻上的电压 ()A、增大B、减小 C、不变 六、其他实验线路及数据表格 图1-2 表1-3 电压、电位的测量 实验二叠加原理和戴维南定理 一、实验目的

电工实验报告答案_(厦门大学)

实验四线性电路叠加性和齐次性验证表4—1实验数据一(开关S3 投向R3侧) 表4—2实验数据二(S3投向二极管VD侧 ) 1.叠加原理中U S1, U S2分别单独作用,在实验中应如何操作?可否将要去掉的电源(U S1或U S2)直接短接? 答: U S1电源单独作用时,将开关S1投向U S1侧,开关S2投向短路侧; U S2电源单独作用时,将开关S1投向短路侧,开关S2投向U S2侧。 不可以直接短接,会烧坏电压源。 2.实验电路中,若有一个电阻元件改为二极管,试问叠加性还成立吗?为什么? 答:不成立。二极管是非线性元件,叠加性不适用于非线性电路(由实验数据二可知)。

实验五电压源、电流源及其电源等效变换表5-1 电压源(恒压源)外特性数据 表5-2 实际电压源外特性数据 表5-3 理想电流源与实际电流源外特性数据 3.研究电源等效变换的条件

图(a )计算)(6.117S S S mA R U I == 图(b )测得Is=123Ma 1. 电压源的输出端为什么不允许短路?电流源的输出端为什么不允许开路? 答:电压源内阻很小,若输出端短路会使电路中的电流无穷大;电流源内阻很大,若输出端开路会使加在电源两端的电压无穷大,两种情况都会使电源烧毁。 2. 说明电压源和电流源的特性,其输出是否在任何负载下能保持恒值? 答:电压源具有端电压保持恒定不变,而输出电流的大小由负载决定的特性; 电流源具有输出电流保持恒定不变,而端电压的大小由负载决定的特性; 其输出在任何负载下能保持恒值。 3. 实际电压源与实际电流源的外特性为什么呈下降变化趋势,下降的快慢受哪个参数影 响? 答:实际电压源与实际电流源都是存在内阻的,实际电压源其端电压U 随输出电流I 增大而降低,实际电流源其输出电流I 随端电压U 增大而减小,因此都是呈下降变化趋势。下降快慢受内阻R S 影响。 4.实际电压源与实际电流源等效变换的条件是什么?所谓‘等效’是对谁而言?电压源与电流源能否等效变换? 答:实际电压源与实际电流源等效变换的条件为: (1)实际电压源与实际电流源的内阻均为RS ; (2)满足S S S R I U =。 所谓等效是对同样大小的负载而言。 电压源与电流源不能等效变换。

浙大电工电子学实验报告实验二单向交流电路

实验报告 课程名称: 电工电子学实验 指导老师: 实验名称: 单向交流电路 一、实验目的 1.学会使用交流仪表(电压表、电流表、功率表)。 2.掌握用交流仪表测量交流电路电压、电流和功率的方法。 3.了解电感性电路提高功率因数的方法和意义。 二、主要仪器设备 1.实验电路板 2.单相交流电源(220V) 3.交流电压表或万用表 4.交流电流表 5.功率表 6.电流插头、插座 三、实验内容 1.交流功率测量及功率因素提高 按图2-6接好实验电路。 图2-6 (1)测量不接电容时日光灯支路的电流I RL 和电源实际电压U 、镇流器两端电压U L 、日光灯管两端电压U R 及电路功率P ,记入表2-2。 计算:cos φRL = P/ (U·I RL )= 0.46 测量值 计算值 U/V U L /V U R /V I RL /A P/W cos φRL 219 172 112 0.380 38.37 0.46 表2-2 (2)测量并联不同电容量时的总电流I 和各支路电流I RL 、I C 及电路功率,记入表2-3。 并联电容C/μF 测量值 计算值 判断电路性质 (由后文求得) I/A I C /A I RL /A P/W cos φ 0.47 0.354 0.040 0.385 39.18 0.51 电感性 1 0.322 0.080 0.384 39.66 0.56 电感性 1.47 0.293 0.115 0.383 39.63 0.62 电感性 2.2 0.257 0.170 0.387 40.52 0.72 电感性 3.2 0.219 0.246 0.387 40.77 0.85 电感性 4.4 0.199 0.329 0.389 41.37 0.95 电感性 表2-3 注:上表中的计算公式为cos φ= P/( I ·U),其中U 为表2-2中的U=219V 。 姓名: 学号:__ _ 日期: 地点:

电路实验报告1--叠加原理

电路实验报告1-叠加原理的验证 所属栏目:电路实验- 实验报告示例发布时间:2010-3-11 实验三叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路, 按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。

叠加原理 实验报告范文(含数据处理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时, I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。

电工实验报告答案 厦门大学

实验四线性电路叠加性和齐次性验证 测量项目实验内容U S1 (V) U S2 (V) I1 (mA) I2 (mA) I3 (mA) U AB (V) U CD (V) U AD (V) U DE (V) U FA (V) U S1单独作用12 0 8.65 -2.39 6.25 2.39 0.789 3.18 4.39 4.41 U S2单独作用0 -6 1.19 -3.59 -2.39 3.59 1.186 -1.221 0.068 0.611 U S1, U S2共同作用12 -6 9.85 -5.99 3.85 5.98 1.976 1.965 5.00 5.02 2U S2单独作用0 -12 2.39 -7.18 -4.79 7.18 2.36 -2.44 1.217 1.222 测量项目实验内容U S1 (V) U S2 (V) I1 (mA) I2 (mA) I3 (mA) U AB (V) U CD (V) U AD (V) U DE (V) U FA (V) U S1单独作用12 0 8.68 -2.50 6.18 2.50 0.639 3.14 4.41 4.43 U S2单独作用0 -6 1.313 -3.90 -2.65 3.98 0.662 -1.354 0.675 0.677 U S1, U S2共同作用12 -6 10.17 -6.95 3.21 6.95 0.688 1.640 5.16 5.18 2U S2单独作用0 -12 2.81 -8.43 -5.62 8.43 0.697 -2.87 1.429 1.435 1.叠加原理中U S1, U S2分别单独作用,在实验中应如何操作?可否将要去掉的电源(U S1或U S2)直接短接? 答: U S1电源单独作用时,将开关S1投向U S1侧,开关S2投向短路侧; U S2电源单独作用时,将开关S1投向短路侧,开关S2投向U S2侧。 不可以直接短接,会烧坏电压源。 2.实验电路中,若有一个电阻元件改为二极管,试问叠加性还成立吗?为什么? 答:不成立。二极管是非线性元件,叠加性不适用于非线性电路(由实验数据二可知)。 实验五电压源、电流源及其电源等效变换 表5-1 电压源(恒压源)外特性数据 R2(Ω) 470 400 300 200 100 0 I (mA) 8.72 9.74 11.68 14.58 19.41 30.0 U (V) 6.00 6.00 6.00 6.00 6.00 6.00 表5-2 实际电压源外特性数据 R2(Ω) 470 400 300 200 100 0 I (mA) 8.12 8.99 10.62 12.97 16.66 24.1 U (V) 5.60 5.50 5.40 5.30 5.10 4.80 表5-3 理想电流源与实际电流源外特性数据 R2(Ω)470 400 300 200 100 0 R S=∞ 5.02 5.02 5.02 5.02 5.02 5.01 U (V) 2.42 2.06 1.58 1.053 0.526 0 R S=1KΩI (mA) 3.41 3.58 3.86 4.18 4.56 5.01 U (V) 1.684 1.504 1.215 0.877 0.478 0 3.研究电源等效变换的条件

电工的实验报告(完整版)

报告编号:YT-FS-3025-90 电工的实验报告(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

电工的实验报告(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 中国地质大学(武汉)电工实验报告 姓名:汪尧 班级:072141 姓名汪尧班号072141学号20xx1002094 日期20xx。 10。27指导老师张老师成绩 实验名称微分积分电路的研究 实验名称:微分电路与积分电路实验目的: (1)进一步掌握微分电路和积分电路的相关知识; (2)学会用运算放大器组成积分微分电路; (3)设计一个RC微分电路,将方波变换成尖脉冲波; (4)设计一个RC积分电路,将方波变换成三角波。

主要仪器设备:EE1641C型函数信号发生器/计数器;双踪示波器;电子实验箱;导线若干。输入波形:实验内容:微分电路:上图所示是RC微分电路(设电路处于零状态)。输入的是矩形脉冲电压u1,在电阻两端输出的电压为u2。通过改变电阻R和电容C来记录u2的变化情况。微分电路参数R/Ω300 100 100 300 1k C/μF 0。10 0。10 0。22 0。 22 0。47 2、积分电路:上图所示是RC积分电路(设电路处于零状态)。输入的是矩形脉冲电压u1,在电容两端输出的电压为u2。通过改变电阻R和电容C来记录u2的变化情况。积分电路参数R 1k 300 300 100 100 C 0。47 0。47 0。22 0。22 0。10 实验结果:微分电路与积分电路是矩形脉冲激励下的RC电路。若选取不同的时间常数,可构成输出电压波形与输入电压波形之间的特定(微分或积分)的关系。微分电路:输出信号与输入信号的微分成正比的电路,称为微分电路。微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只

电工电子实验报告

实验一基尔霍夫定律的验证 班级姓名学号 一、实验目的 1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2、学会用电流插头、插座测量各支路电流。 二、原理说明 基尔霍夫定律是电路的基本定律。测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL)和电压定律(KVL)。即对电路中的任一个节点而言,应有I=O;对任何一个闭合回路而言,应有U=0。 运用上述定律时必须注意各支路电流或闭合回路的正方向,此方向可预先任意设定。 三、实验设备 可调直流稳压电源,万用表,实验电路板 四、实验内容 实验线路图如下,用DVCC-03挂箱的“基尔霍夫定律/叠加原理”电路板。 1、实验前先任意设定三条支路电流正方向。如图中的I1, I2, I3的方向己设定。 闭合回路的正方向可任意设定。 2、分别将两路直流稳压源接入电路,令U1=6V, U2=12V。 3、熟悉电流插头的结构,将电流插头的两端接至数字毫安表的“+、-”两端。 4、将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。

五、实验注意事项 1、所有需要测量的电压值,均以电压表测量的读数为准。U1、U2也需测量,不应取 电源本身的显示值。 2、防止稳压电源两个输出端碰线短路。 3、用指针式电压表或电流表测量电压或电流时,如果仪表板指针反偏,则必须调换仪 表极性,重新测量。此时指针不偏,但读得电压或电流值必须冠以负号。若用数显电压表或电流表测量,则可直接读出电压或电流值。但应注意:所读得的电压或电流值的正确正负号应根据设定的电流参考方向来判断。 六、思考题 1、根据实验数据,选定节点A,验证KCL的正确性。 2、根据实验数据,选定实验电路中的任一个闭合回路,验证KVL的正确性。 3、误差原因分析。

电路基础实验报告

基尔霍夫定律和叠加定理的验证 组长:曹波组员:袁怡潘依林王群梁泽宇郑勋 一、实验目的 通过本次实验验证基尔霍夫电流定律和电压定律加深对“节点电流代数和”及“回路电压代数和”的概念的理解;通过实验验证叠加定理,加深对线性电路中可加性的认识。 二、实验原理 ①基尔霍夫节点电流定律[KCL]:在集总电路中,任何时刻,对任一结点,所有流出结点的支路电流的代数和恒等于0。 ②基尔霍夫回路电压定律[KVL]:在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和恒等于0。 ③叠加定理:在线性电阻电路中,某处电压或电流都是电路中各个独立电源单独作用时,在该处分别产生的电压或电流的叠加。 三、实验准备 ①仪器准备 1.0~30V可调直流稳压电源 2.±15V直流稳压电源 3.200mA可调恒流源 4.电阻 5.交直流电压电流表 6.实验电路板 7.导线

②实验电路图设计简图 四、实验步骤及内容 1、启动仪器总电源,连通整个电路,分别用导线给电路中加上直流电压U1=15v,U2=10v。 2、先大致计算好电路中的电流和电压,同时调好各电表量程。 3、依次用直流电压表测出电阻电压U AB、U BE、U ED,并记录好电压表读数。 4、再换用电流表分别测出支路电流I1、I2、I3,并记录好电流读数。 5、然后断开电压U2,用直流电压表测出电阻电压U、BE,用电流表分别测出支路电流I、1并记录好电压表读数。 6、然后断开电压U1,接通电压U2,用直流电压表测出电阻电压U、、BE,用电流表分别测出支路电流I、、1并记录好电压表读数。 7、实验完毕,将各器材整理并收拾好,放回原处。 实验过程辑录 图1 测出U AB= 图2 测出电压U BE=

电工实验报告

实训三十 555定时器的应用 一、实训目的 1.熟悉555型集成时基电路结构、工作原理及其特点。 2.掌握555型集成时基电路的基本应用。 二、实训电路 图30-1 单稳态触发器 图30-2 多谐振荡器 图30-3 施密特触发器

四、实训内容与步骤 1.单稳态触发器 (1) 按图30-1连线,取R=100k,C=47μF,输入信号Vi由单次脉冲源提供,用双踪示波器观测Vi,Vc,V o波形。 (2) 将R改为1k,C改为0.1μF,输入端加1kHz的连续脉冲,观测Vi,Vc,V o波形。 2.多谐振荡器 按图30-2接线,用双踪示波器观测Vc与V o的波形,测定频率。 3.施密特触发器 按图30-3接线,Vs接实训台上的正弦波,预先调好Vs的频率为1kHz,接通电源,逐渐加大Vs的幅度,观测输出波形。 五、实训报告 1.总结555定时器的工作原理及其应用。 2.分析、总结实训结果。 实训十九 TTL集成逻辑门 一、实训目的 1.掌握TTL集成逻辑门的逻辑功能及其测试方法。 2.掌握TTL器件的使用规则。 3.熟悉电工电子技术实训装置的结构、基本功能和使用方法。

二、实训电路 图19-1 TTL集成逻辑门芯片管脚图 四、实训内容与步骤 用实训连接线将实训台上+5V电源和地连入实训挂箱DDZ-22。实训用集成芯片的管脚图见图19-1。 1.TTL与门74LS08逻辑功能测试 (1) 在DDZ-22上选取一个14P插座,按定位标记插好74LS08集成块。 (2) 根据图19-1的管脚图,将实训挂箱上+5V直流电源接74LS08的14脚,地接7脚。 (3) 用实训连接线将逻辑电平输出口和74LS08两个输入端A、B(1脚和2脚)相连,以提供“0”与“1”电平信号,开关向上,输出逻辑“1”,向下为逻辑“0”。门的输出端Y(3脚)接由LED发光二极管组成的逻辑电平显示的输入口,LED亮为逻辑“1”,不亮为逻辑“0”。

实验二 电路原理图的绘制实验报告

实验二电路原理图的绘制实验报告 一、实验目的 (1)掌握设计项目的建立和管理; (2)掌握原理图图纸参数的设置、原理图环境参数的设置; (3)掌握元器件库的装载,学会元器件、电源、接地、网络标号、总线、输入/输出端口、节点等电路元素的选取、放置等操作; (4)掌握电路元素的参数修改方法。 二、实验原理 1、创建一个新的项目文件。 在Altium Designer 10中,根据不同的设计主要有三种形式的项目文件,分别是:PCB项目文件,文件后缀为PrjPCB;FPGA项目文件,文件后缀为PrjFPG;库文件,根据电路原理图和印制电路板图设计的不同,其后缀有SchLib和PcbLib 两种。在我们实验中均建立一个PCB项目文件。 (1)执行菜单命令“文件\工程\PCB Project”,建立一个空的项目文件后的项目工作面板; (2)执行菜单命令“File\Save Project”,保存文件。 2、新建原理图文件 (1)执行菜单命令“File\New\Schematic”,在刚才建立的项目中新建原理图,默认的文件名为Sheet1.SchDoc。 (2)执行菜单命令“File\Save Project”,保存文件。 3、设置原理图选项 (1)图纸参数设定:执行菜单命令“设计\文档选项”,系统弹出文档选项对话框,在此对话框的“方块电路选项”标签页设置图纸参数。 (2)填写图纸设计信息:执行菜单命令“设计\文档选项”,系统弹出文档选项对话框,在此对话框的“参数”标签页设置图纸参数。 (3)原理图环境参数设置:执行菜单命令“工具\设置原理图参数”,系统将弹出“喜好”对话框,在此对话框的左边树状图中选择原理图选项,此选项组中有12个选项卡,它们分别是原理图参数选项、图形编辑参数选项、编译器选项、导线分割选项、默认的初始值选项和软件参数选项等,分别用于设置原理图绘制过程中的各类功能选项。

电工学实验答案

哈哈、b两端电压测量的准确性。 电流表的内阻越小越好,以减小其上的电压,以保证a、b支路电流测量的准确性。 实验4 RLC串联交流电路的研究 七、实验报告要求及思考题 2列表整理实验数据,通过实验总结串联交流电路的特点。 答:当X L X C时,电路呈电感性,此时电感上的电压大于电容上的电压,且电压超前电流。 当X L=X C时,电路发生串联谐振,电路呈电阻性,此时电感上的电压与电容上的电压近似相等,且大于输入电压。电路中的电流最大,电压与电流同相位。 4从表4.1~4.3中任取一组数据(感性、容性、电阻性),说明总电压与分电压的关系。答:取f=11kHz时的数据:U=6V,U R=3.15V,U Lr=13.06V,U C=8.09V,将以上数据代入 公式 2 2 2 2) ( ) ( C L C L R X X R I U U U U- + = - + = =5.88V,近似等于输入电压6V。 6实验数据中部分电压大于电源电压,为什么? 答:因为按实验中所给出的频率,X L及X C的值均大于电路中的总阻抗。 9本实验中固定R、L、C参数,改变信号源的频率,可改变电路的性质。还有其它改变电路性质的方法吗? 答:也可固定频率,而改变电路中的参数(R、L、C)来改变电路的性质。 实验5 感性负载与功率因数的提高 七、实验报告要求及思考题 6根据表5.2所测数据和计算值,在坐标纸上作出I=f(C)及cos ?= f(C)两条曲线。 说明日光灯电路要提高功率因数,并联多大的电容器比较合理,电容量越大,是否越高? 答:并联2.88uF的电容最合理,所得到的功率因数最大.由实验数据看到,并联最大电容4.7uF时所得的功率因数并不是最大的,所以可以得出,并不是电容量越大,功率因数越高. 8说明电容值的改变对负载的有功功率P、总电流I,日光灯支路电流I RL有何影响?答:电容值的改变并不会影响负载的有功功率及日光灯支路的电流. 11提高电路的功率因数为什么只采用并联电容法,而不采用串联法? 答:因为串联电容虽然也可以提高功率因数,但它会使电路中的电流增大,从而增大日光灯的有功功率,可能会超过它的额定功率而使日光灯损坏. 实验6 三相交流电路 七、实验报告要求及思考题 2根据实验数据分析:负载对称的星形及三角形联接时U l与U p,I l与I p之间的关系。分析星形联接中线的作用。按测量的数据计算三相功率。

电路原理图设计及Hspice实验报告

电子科技大学成都学院 (微电子技术系) 实验报告书 课程名称:电路原理图设计及Hspice 学号: 姓名: 教师: 年06月15日 实验一基本电路图的Hspice仿真 实验时间:同组人员: 一、实验目的 1.学习用Cadence软件画电路图。 2.用Cadence软件导出所需的电路仿真网表。 3.对反相器电路进行仿真,研究该反相器电路的特点。 二、实验仪器设备 Hspice软件、Cadence软件、服务器、电脑 三、实验原理和内容 激励源:直流源、交流小信号源。 瞬态源:正弦、脉冲、指数、分线段性和单频调频源等几种形式。 分析类型:分析类型语句由定义电路分析类型的描述语句和一些控制语句组成,如直流分析(.OP)、交流小信号分析(.AC)、瞬态分析(.TRAN)等分析语句,以及初始状态设置(.IC)、选择项设置(.OPTIONS)等控制语句。这类语句以一个“.”开头,故也称为点语句。其位置可以在标题语句之间的任何地方,习惯上写在电路描述语句之后。 基本原理:(1)当UI=UIL=0V时,UGS1=0,因此V1管截止,而此时|UGS2|> |UTP|,所以V2导通,且导通内阻很低,所以UO=UOH≈UDD,即输出电平. (2)当UI=UIH=UDD时,UGS1=UDD>UTN,V1导通,而UGS2=0<|UTP|,因此V2截止。此时UO=UOL≈0,即输出为低电平。可见,CMOS反相器实现了逻辑非的功能. 四、实验步骤

1.打开Cadence软件,画出CMOS反相器电路图,导出反相器的HSPICE网表文件。 2.修改网表,仿真出图。 3.修改网表,做电路的瞬态仿真,观察输出变化,观察波形,并做说明。 4.对5个首尾连接的反相器组成的振荡器进行波形仿真。 5.分析仿真结果,得出结论。 五、实验数据 输入输出仿真: 网表: * lab2c - simple inverter .options list node post .model pch pmos .model nch nmos *.tran 200p 20n .dc vin 0 5 1m sweep data=w .print v(1) v(2) .param wp=10u wn=10u .data w wp wn 10u 10u 20u 10u 40u 10u 40u 5u .enddata vcc vcc 0 5 vin in 0 2.5 *pulse .2 4.8 2n 1n 1n 5n 20n cload out 0 .75p m1 vcc in out vcc pch l=1u w=wp m2 out in 0 0 nch l=1u w=wn .alter vcc vcc 0 3 .end 图像: 瞬态仿真: 网表: * lab2c - simple inverter .options list node post .model pch pmos .model nch nmos .tran 200p 20n .print tran v(1) v(2) vcc vcc 0 5 vin in 0 2.5 pulse .2 4.8 2n 1n 1n 5n 20n cload out 0 .75p m1 vcc in out vcc pch l=1u w=20u

电工和电子技术(A)1实验报告

实验一 电位、电压的测定及基尔霍夫定律 1.1电位、电压的测定及电路电位图的绘制 一、实验目的 1.验证电路中电位的相对性、电压的绝对性 2. 掌握电路电位图的绘制方法 三、实验内容 利用DVCC-03实验挂箱上的“基尔霍夫定律/叠加原理”实验电路板,按图1-1接线。 1. 分别将两路直流稳压电源接入电路,令 U 1=6V ,U 2=12V 。(先调准输出电压值,再接入实验线路中。) 2. 以图1-1中的A 点作为电位的参考点,分别测量B 、C 、D 、E 、F 各点的电位值φ及相邻两点之间的电压值U AB 、U BC 、U CD 、U DE 、U EF 及U FA ,数据列于表中。 3. 以D 点作为参考点,重复实验内容2的测量,测得数据列于表中。 图 1-1

四、思考题 若以F点为参考电位点,实验测得各点的电位值;现令E点作为参考电位点,试问此时各点的电位值应有何变化? 答: 五、实验报告 1.根据实验数据,绘制两个电位图形,并对照观察各对应两点间的电压情况。两个电位图的参考点不同,但各点的相对顺序应一致,以便对照。 答: 2. 完成数据表格中的计算,对误差作必要的分析。 答: 3. 总结电位相对性和电压绝对性的结论。 答:

1.2基尔霍夫定律的验证 一、实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 学会用电流插头、插座测量各支路电流。 二、实验内容 实验线路与图1-1相同,用DVCC-03挂箱的“基尔霍夫定律/叠加原理”电路板。 1. 实验前先任意设定三条支路电流正方向。如图1-1中的I1、I2、I3的方向已设定。闭合回路的正方向可任意设定。 2. 分别将两路直流稳压源接入电路,令U1=6V,U2=12V。 3. 熟悉电流插头的结构,将电流插头的两端接至数字电流表的“+、-”两端。 4. 将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。 5. 用直流数字电压表分别测量两路电源及电阻元件上的电压值,记录之。 三、预习思考题 1. 根据图1-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定电流表和电压表的量程。 答: 2. 实验中,若用指针式万用表直流毫安档测各支路电流,在什么情况下可能出现指针反偏,应如何处理?在记录数据时应注意什么?若用直流数字电流表进行测量时,则会有什么显示呢? 答:

电工实验思考题答案汇总

实验1 常用电子仪器的使用 实验报告及思考题 1.总结如何正确使用双踪示波器、函数发生器等仪器,用示波器读取被测信号电压值、周期(频率)的方法。答:要正确使用示波器、函数发生器等仪器,必须要弄清楚这些仪器面板上的每个旋钮及按键的功能,按照正确的操作步骤进行操作. 用示波器读取电压时,先要根据示波器的灵敏度,知道屏幕上Y轴方向每一格所代表的电压值,再数出波形在Y轴上所占的总格数h,按公式计算出电压的有效值。 用示波器读取被测信号的周期及频率时,先要根据示波器的扫描速率,知道屏幕上X轴方向每一格所代表的时间,再数出波形在X轴上一个周期所占的格数d,按公式T= d ×ms/cm,,计算相应的周期和频率。 2.欲测量信号波形上任意两点间的电压应如何测量?答:先根据示波器的灵敏度,知道屏幕上Y轴方向每一格所代表的电压值,再数出任意两点间在垂直方向所占的格数,两者相乘即得所测电压。 3.被测信号参数与实验仪器技术指标之间有什么关系,如何根据实验要求选择仪器?

答:被测信号参数应在所用仪器规定的指标范围内,应按照所测参量选择相应的仪器。如示波器、函数发生器、直流或交流稳压电源、万用表、电压表、电流表等。 4.用示波器观察某信号波形时,要达到以下要求,应调节哪些旋纽?①波形清晰;②波形稳定;③改变所显示波形的周期数;④改变所显示波形的幅值。答:①通过调节聚焦旋钮可使波形更清晰。 ②通过配合调节电平、释抑旋钮可使波形稳定。 ③调节扫描速度旋钮。 ④调节灵敏度旋钮。 实验2 基尔霍夫定律和叠加原理的验证 七、实验报告要求及思考题 1.说明基尔霍夫定律和叠加原理的正确性。计算相对误差,并分析误差原因。 答:根据实验数据可得出结论:基尔霍夫定律和叠加原理是完全正确的。 实验中所得的误差的原因可能有以下几点:

(完整word版)日光灯实验报告答案

日光灯实验报告答案 篇一:日光灯实验报告 单相电路参数测量及功率因数的提高 实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。3.研究日光灯电路中电压、电 流相量之间的关系。4.理解改善电路功率因数的意义并掌握其应用方法。 实验原理 1.日光灯电路的组成日光灯电路是一个rl串联电路,由灯管、镇流器、起辉器组成,如图所示。由于 有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。图日光灯的组成电路灯管:内壁

涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器 突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二 是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯 管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻rl和一个电感l串联 组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双 金属片制成的u形动触片。动触片由两种热膨胀系数不同的金属制成,受

热后,双金属片伸 张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动 开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触 片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流 过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、 静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很 高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气

电工学实验报告A2

请在左侧装订成册 大连理工大学Array本科实验报告 课程名称:电工学实验A(二)学院(系): 专业: 班级: 学号: 学生姓名: 联系电话:

实验项目列表 姓名:学号: 注意集成运算放大器实验的上课时间(3学时):第一节:(1.2节课)7:30 第二节:(3.4节课)10:05 第三节:(5.6节课)13:00 第四节:(7.8节课)15:30 第五节:(9.10节课)18:00

电工学实验须知 一. 选课要求 实验选课前需确认已在教务选课系统中选择该课程。电工学实验实行网上选课,请按选课时间上课,有特殊情况需事先请假,无故选课不上者按旷课处理,不给补做,缺实验者不给成绩。 二. 预习要求 1.课前认真阅读实验教程,复习相关理论知识,学习本节实验预备知识,回答相关 问题,按要求写好预习报告,注意实验内容有必做实验和选做实验; 2.课前在实验报告中绘制电路原理图及实验数据表格(用铅笔、尺作图); 3.课前在实验报告中列出所用实验设备及用途、注意事项(设备型号课后填写); 4.设计性实验和综合性实验要求课前完成必要的电路设计和实验方案设计; 5.没有预习报告或预习报告不合格者不允许做实验。 三. 实验课上要求 1.每个实验均须独立完成,抄袭他人数据记0分,严禁带他人实验报告进入实验室; 2.认真完成实验操作和观测; 3.所有实验记录均需指导教师确认(盖印),否则无效; 4.请遵守《电工学实验室安全操作规则》。 四. 实验报告 1.请按要求提交预习报告; 2.所有绘图必须用坐标纸绘图,并自行粘贴在报告上; 3.实验完毕需各班统一提交实验报告,没有按要求提交报告者不给成绩;抄袭实验 报告记0分。 五. 其他 1.请注意3学时上课时间。 2.上课必须携带实验教材和实验报告。

电路分析 等效电源定理 实验报告

电路分析等效电源定理实验报告 一、实验名称 等效电源定理 二、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 三、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效内阻R0的测量 Uoc R0=── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。

五、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 表2 实验数据表二 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。 表3 实验数据表三 4. 验证诺顿定理 在图5-1(a)中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A、B两点的等效电阻值即为诺顿定理中R0,然后令

电工学实验报告

篇一:电工学实验报告 物教101 实验一电路基本测量 一、实验目的 1. 学习并掌握常用直流仪表的使用方法。 2. 掌握测量直流元件参数的基本方法。 3. 掌握实验仪器的原理及使用方法。二、实验原理和内容 1.如图所示,设定三条支路电流i1,i2,i3的参考方向。 2.分别将两个直流电压源接入电路中us1和us2的位置。 3.按表格中的参数调节电压源的输出电压,用数字万用表测量表格中的各个电压,然后与计算值作比较。 4.对所得结果做小结。三、实验电路图 四、实验结果计算 参数表格与实验测出的数据 us1=12v us2=10v 实验二基尔霍夫定律的验证 一、实验目的 1.验证基尔霍夫定律,加深对基尔霍夫定律的理解; 2.掌握直流电流表的使用以及学会用电流插头、插座测量各支路电流的方法; 3.学习检查、分析电路简单故障的能力。二、原理说明 基尔霍夫电流定律和电压定律是电路的基本定律,它们分别用来描述结点电流和回路电压,即对电路中的任一结点而言,在设定电流的参考方向下,应有∑i =0,一般流出结点的电流取正号,流入结点的电流取负号;对任何一个闭合回路而言,在设定电压的参考方向下,绕行一周,应有∑u =0,一般电压方向与绕行方向一致的电压取正号,电压方向与绕行方向相反的电压取负号。 在实验前,必须设定电路中所有电流、电压的参考方向,其中电阻上的电压方向应与电流方向一致。三、实验设备 1.直流数字电压表、直流数字毫安表。 2.可调压源(ⅰ、ⅱ均含在主控制屏上,根据用户的要求,可能有两个配置0~30v可调。)3.实验组件(含实验电路)。四、实验内容 实验电路如图所示,图中的电源us1用可调电压源中的+12v输出端,us2用0~+30v可调电压+10v输出端,并将输出电压调到+12v(以直流数字电压表读数为准)。实验前先设定三条支路的电流参考方向,如图中的i1、i2、i3所示,并熟悉线路结构。 1.熟悉电流插头的结构,将电流插头的红接线端插入数字毫安表的红(正)接线端,电流插头的黑接线端插入数字毫安表的黑(负)接线端。 2.测量支路电流 将电流插头分别插入三条支路的三个电流插座中,读出各个电流值。按规定:在结点a,电流表读数为‘+’,表示电流流出结点,读数为‘-’,表示电流流入结点,然后根据中的电流参考方向,确定各支路电流的正、负号,并记入表中。 3.测量元件电压 用直流数字电压表分别测量两个电源及电阻元件上的电压值,将数据记入表中。测量时电压表的红接线端应被插入被测电压参考方向的高电位端,黑接线端插下被测电压参考方向的低电位端。五、实验数据处理 验证基尔霍夫定律篇二:电工学实验答案 实验1 常用电子仪器的使用 七、实验报告及思考题

相关文档
相关文档 最新文档