文档库 最新最全的文档下载
当前位置:文档库 › 立体几何知识整理 打印

立体几何知识整理 打印

立体几何知识整理  打印
立体几何知识整理  打印

立体几何试题

一.选择题(每题4分,共40分)

1.已知AB//PQ ,BC//QR,则∠PQP 等于( )

A 030

B 030

C 0150

D 以上结论都不对

2.在空间,下列命题正确的个数为( )

(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形

(3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4

3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( )

A 平行

B 相交

C 在平面内

D 平行或在平面内 4.已知直线m//平面α,直线n 在α内,则m 与n 的关系为( )

A 平行

B 相交

C 平行或异面

D 相交或异面 5.经过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个

6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( )

A 平行

B 垂直相交

C 异面

D 相交但不垂直

7.经过平面α外一点和平面α内一点与平面α垂直的平面有( )

A 0个

B 1个

C 无数个

D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=? D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个

二.填空题(每题4分,共16分)

11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________

12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有

_____________条

13.一块西瓜切3刀最多能切_________块

14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________

三、 解答题

15(10分)如图,已知E,F 分别是正方形1111ABCD A B C D -的棱1AA

和棱1CC 上的点,且1AE C F =。求证:四边形1EBFD 是平行四边形

16(10分)如图,P 为ABC ?所在平面外一点,AP=AC,BP=BC,D 为PC 的中点, 证明:直线PC 与平面ABD 垂直

P

D

C

B

A

17(12分)如图,正三棱锥A-BCD ,底面边长为a ,则侧棱长为2a ,E,F 分别为AC,AD 上的动点,求截面BEF ?周长的最小值和这时E,F 的位置.

A

F

E

D

C

B

18(12分)如图,长方形的三个面的对角线长分别是a,b,c ,求长方体对角线AC '的长

c

a

D1

C1

B1A1b

D

C

B

A

高一数学必修2立体几何测试题

试卷满分:100分 考试时间:120分钟

班级___________ 姓名__________ 学号_________ 分数___________

第Ⅰ卷

一、选择题(每小题3分,共30分)

1、线段AB 在平面α内,则直线AB 与平面α的位置关系是

A 、A

B α? B 、AB α?

C 、由线段AB 的长短而定

D 、以上都不对 2、下列说法正确的是

A 、三点确定一个平面

B 、四边形一定是平面图形

C 、梯形一定是平面图形

D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定

A 、平行

B 、相交

C 、异面

D 、以上都有可能 4、在正方体1111ABCD A BC D -中,下列几种说法正确的是

A 、11AC AD ⊥

B 、11D

C AB ⊥ C 、1AC 与

DC 成45 角 D 、11AC 与1BC 成60

角 5、若直线l ∥平面α,直线a α?,则l 与a 的位置关系是

A 、l ∥a

B 、l 与a 异面

C 、l 与a 相交

D 、l 与a 没有公共点

6、下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4

7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点P 不在直线AC 上 B 、点P 必在直线BD 上

C 、点P 必在平面ABC 内

D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ?M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 9、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于

A 、

34 B 、35

C 、

7

7

D 、377

10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1

和CC 1上,

AP=C 1Q ,则四棱锥B —APQC 的体积为

Q

P C'

B'

A'

C

B

A

B 1

C 1

A 1D 1

B

A

C

D A 、

2V B 、3V C 、4V D 、5

V 二、填空题(每小题4分,共16分)

11、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体

(填”大于、小于或等于”).

12、正方体1111ABCD A BC D -中,平面11AB D 和平面1BC D 的位置关系为 13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平

行则四边形

ABCD 一定是 .

14、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)

三、解答题(共54分,要求写出主要的证明、解答过程)

15、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长. (7分)

16、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.

求证:EH ∥BD . (8分)

17、已知ABC ?中90ACB ∠=

,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(8分)

H G F

E D B A C

S

D

C

B

A

18、已知正方体1111ABCD A BC D -,

O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D . (10分)

19、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,

(01).AE AF

AC AD

λλ==<< ∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且 (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (12分)

D 1O

D

B A

C 1

B 1

A 1

C

F

E

D

B

A

C

高一数学必修2立体几何测试题参考答案

一、选择题(每小题5分,共60分)

ACDDD BCBDB

二、填空题(每小题4分,共16分)

11、小于 12、平行 13、菱形 14、对角线A 1C 1与B 1D 1互相垂直

三、解答题(共74分,要求写出主要的证明、解答过程)

15、解:设圆台的母线长为l ,则 1分

圆台的上底面面积为224S ππ=?=上 2分

圆台的上底面面积为2525S ππ=?=下 3分 所以圆台的底面面积为29S S S π=+=下上 4分 又圆台的侧面积(25)7S l l ππ=+=侧 5分

于是725l ππ= 6分

即29

7

l =

为所求. 7分 16、证明:,EH FG EH ? 面BCD ,FG ?面BCD

∴EH ∥面BCD 4分

又EH ? 面BCD ,面BCD 面ABD BD =,

∴EH ∥BD 8分

17、证明:90ACB ∠=

B C A C ∴⊥ 1分

又SA ⊥面ABC S A B C ∴⊥ 3分 BC ∴⊥面SAC 4分 BC AD ∴⊥ 6分 又,SC AD SC BC C ⊥=

AD ∴⊥面SBC 8分

18、解:如图,设所截等腰三角形的底边边长为xcm . 在Rt △EOF 中,

1

5,2

EF cm OF xcm ==

, 2分 所以21

254

EO x =

-, 5分

于是2211

2534

V x x =

- 7分 依题意函数的定义域为{|010}x x << 9分

19、证明:(1)连结11AC ,设11111AC B D O =

连结1AO , 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11AC AC = 1分 又1,O O 分别是11,AC AC 的中点,∴O 1C 1∥AO 且11O C AO =

11AOC O ∴是平行四边形 3分 111,C O AO AO ∴? 面11AB D ,1C O ?面11AB D

∴C 1O ∥面11AB D 5分 (2)1CC ⊥ 面1111A B C D 11!C C B D

∴⊥ 6分 又1111AC B D ⊥ , 1111B D A C C ∴⊥面 7分 1

11AC B D ⊥即 8分 同理可证1

1AC AB ⊥, 9分 又1111D B AB B =

∴1

AC ⊥面11AB D 10分

20、证明:(Ⅰ)∵AB ⊥平面BCD , ∴AB ⊥CD , ∵CD ⊥BC 且AB ∩BC=B , ∴CD ⊥平面ABC. 2分 又),10(<<==λλAD

AF AC AE

∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC ,EF ?平面BEF,

∴不论λ为何值恒有平面BEF ⊥平面ABC. 5分 (Ⅱ)由(Ⅰ)知,BE ⊥EF ,又平面BEF ⊥平面ACD ,

∴BE ⊥平面ACD ,∴BE ⊥AC. 7分 ∵BC=CD=1,∠BCD=90°,∠ADB=60°, ∴,660tan 2,2===

AB BD 9分

,722=+=∴BC AB AC 由AB 2

=AE ·AC 得,7

6,7

6==∴=AC

AE AE λ 11分

故当7

6

=λ时,平面BEF ⊥平面ACD. 12分

立体几何测试题 1.以下关于几何体的三视图的论述中,正确的是( ) A .球的三视图总为全等的圆

B .正方体的三个视图总是正三个全等的正方形

C .水平放置的正四面体的三个视图都是正三角形

D .水平放置的圆台的俯视图是一个圆

2.圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是( )

A .S π

B .S π2

C .S π4

D .

S π3

3

2 3.正方体1111ABCD A B C D -中,P 、Q 、R 分别是

AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是( )。

A .三角形

B .四边形

C .五边形

D .六边形

4.将棱长为1的正方体木块切削成一个体积最大的球,则该球的体积为( )

A .

π2

3

B .

π3

2

C .6π

D .34π

5.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( )

A .75°

B .60°

C .45°

D .30° 6.正六棱柱的底面边长为2,最长的一条对角线长为52,则它的侧面积为( )

A .24

B .12

C .224

D .212

7.设γβα,,是三个不重合的平面,l 是直线,给出下列命题 ①若γββα⊥⊥,,则γα⊥; ②若l 上两点到α的距离相等,则α//l ; ③若βαβα⊥⊥则,//,l l

④若.//,//,,//βαββαl l l 则且?

其中正确的命题是 ( )

A .①②

B .②③

C .②④

D .③④ 8.在正四面体P -ABC 中,D ,

E ,

F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...

的是( )。 A .BC//平面PDF B .DF ⊥平面P A E

C .平面PDF ⊥平面ABC

D .平面P A

E ⊥平面 ABC

9.一个水平放置的平面图形的斜二测直观图是一个底角为

45,腰和上底边均为1的等腰梯形,则这个平面图形的面积是 ( )

A .

2

221+ B . 22+ C . 21+ D . 221+

10.(文科)如图1,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是( )。

E

B C

F

P

D

A

A .515

B .

22 C .5

10 D .1 (理科)甲烷分子结构是:中心一个碳原子,外围四个氢原子构成四面体,中心碳原子与四个氢原子等距离,且连成四线段,两两所成角

为θ,则cos θ值为( )

A .3

1

- B .31 C .21 D .21-

11.在正三棱柱111C B A ABC -中,若AB =2,11AA =则

点A 到平面BC A 1的距离为( )

A .

43 B .23 C .4

3

3 D .3 12.已知正方体ABC D -A 1B 1C 1D 1的棱长为1,在正方体的表面上与点A 距离是3

3

2的点的集合形成一条曲线,这条曲线的长度是 ( )

A .

π3

3 B π332 C .π635 D .π3

13.正三棱锥P -ABC 中,三条侧棱两两垂直,且侧棱长为a ,则P 点到面ABC 的距离是 14.三个平面两两垂直,它们的三条交线交于一点O ,P 到三个面的距离分别是6,8,10,则OP 的长为 。

已长方体的全面积是8,则其对角线长的最小值是 15.如图2,在四棱锥P -ABCD 中,PA ⊥底面ABCD , 底面各边都相等,M 是PC 上的一个动点,当点M 满足 时,平面M BD ⊥平面PCD .

16.在空间中:①若四点不共面,则这四点中任何三点都不共

线;②若两条直线没有共点,则这两条直线是异面直线.

以上两个命题中,逆命题为真命题的是 .(把符合要求的命题序号都填上)

17.如图3所示,一个圆锥形的空杯子上面放着一个半球形冰淇淋,如果冰淇淋融化了,会溢出杯子吗?

18.矩形ABCD 中,1,(0)AB BC a a ==>,PA ⊥平面AC ,BC 边上存在点Q ,使得PQ QD ⊥,

A

B C

D A 1

B 1

C 1

D 1

E

F

G 图1

P A

B D

C

M

2

cm 4 cm

12图3

求a 的取值范围.

19.如图4,在三棱锥P-ABC 中,AB BC ⊥, 1

2

AB BC PA ==, 点O,D分别是,AC PC 的中点,OP ⊥底面ABC .

(1)求证OD //平面PAB ;

(2)求直线OD 与平面PBC 所成角的正弦值的大小.

A

B

C

D

O

P

图4

P A

B C

O 第8题图 H

参考答案:

1.选A 。画几何体的三视图要考虑视角,对于球无论选择怎样的视角,其三个视图均为全等的圆。

2.选C 。圆柱的底面积为S ,则底面半径π

S

r =

,底面圆的周长是S r ππ22=,故侧面积

S r S ππ4)2(2==侧。

3.选D 。通过画图,可以得到这个截面与正方体的六个面都相交,所以截面为六边形。 4.选C 。正方体削成最大的球,即正方体棱长为球的直径,即12=R ,

21=R ,故621343

ππ

=??

?

???=球V 。

5.如图所示,设侧棱与底面所成的角为α,则

2

2

c o s ==

SC OC α,所以045=α。 6.选A 。由底面边长为2,可知底面半径为2,由勾股定理可知侧棱

长为2,所以24226=??=侧S 。

7.选D 。命题①α和β可能平行;命题②中l 和α相交。

8.选C 。如图所示:取DF 的中点O ,易证POA ∠为二面角A DE P --的平面角,因为P 点在底面上的射影是底面的中心,故POA ∠不可能为直角,所以平面PDF 与平面ABC 不垂直。

9.选B 。还原成平面图形为如图所示的直角梯形,且

21+=AB ,2=AD ,1=DC ,故222)211(2

1

+=?++?=

S 。 10.(文科)如图所示,连结G B 1、F B 1,则GF B 1∠或其补角是异面直线A 1E 与GF 所成的角,由

余弦定理:5105

22352211221211=

?-+=?-+=∠F B G B GF F B G B GF B ,所以510arccos =α。

A

B

C D A 1

B 1

C 1

D 1

E F

G

第10题(文)图

P

A

B

C H

O

D

第10题(理)图

A B C D 第9题图

A B

C

D S

第5题图

O

(理科)选A 。 即正四面体的各顶点与中心连线所成的角,如图,设棱长为1,则有:2

3=

AD ,33=

AH ,3

6

22=-=AH PA PH ,设

r OP OD OC OB OA =====,在O A H Rt ?中,由2

2

2

AH OH OA +=得:46

=

r ,故3121cos 2

22-=-+=r r r θ。 11.设点A 到平面BC A 1的距离为h ,则由

ABC A BC A A V V --=11可得:

23

1522

1311=

-??=?=

??BC A ABC S AA S h 。 12.曲线在过A 的三个面上都是以A 为圆心,

3

3

2为半径的四分之一圆弧,所以曲线的总长度为ππ33

32243=??。 13.设P 点到面ABC 的距离为h ,由体积公式可得:

()

32

6

1

23

1

a h a =?,故a h 332=。 14.如图,构造长方体,其中侧面AO ,BO ,A 1O 所在的平面

即为已知的三个两两垂直的平面,则长方体的长、宽、高分别为6,

8,10,而OP 的长即为长方体的体对角线的长,所以OP 2

=36+64+100=200. 故210=OP 。

(理科)设长方体的长、宽、高分别为c b a ,,,则4=++ca bc ab ,对角线

2

22c

b a l ++=22

2222222222=++≥++=ca

bc ab c b a

15.答案:BM ⊥PC (或DM ⊥PC ).底面四边形ABCD 各边都相等,所以四边形ABCD 是菱形,

故AC ⊥BD ,又因为PA ⊥平面ABCD ,所以PA ⊥BD ,又PA AC A ?=,所以BD ⊥平面PAC ,即有PC ⊥BD ,故要使平面MBD ⊥平面PCD ,只须BM ⊥PC ,或DM ⊥PC .

16.答案②.①的逆命题是:“若四点中的任何三点都不共线,则这四点不共面”,为假命题,反例可以找正方形,没有三点共线,但四个顶点共面;②的逆命题是:“若两条直线是异面直线,那么这两条直线没有公共点”,由异面直线的定义知这个命题正确.

17.解:3128434213ππ=

??=

半球V ;πππ641243

1

313122=??==?=h r Sh V 锥。因为锥半球V V <,A

B

C

A 1

B 1

C 1

第11题图

B C

A1

B1

O

第14题图

故冰淇淋融化了,不会溢出杯子。

18.如图,连结AQ ,∵PQ ⊥QD ,P A ⊥QD ,PQ ∩P A =P ,∴QD ⊥平面PQA ,于是QD ⊥AQ ,∴在线段BC 上存在一点Q ,使得QD ⊥AQ ,等价于以AD 为直径的圆与线段BC 有交点,∴12

≥a

,a ≥2.

19.(1) O、D分别为AC 、PC 的中点.∴ //OD PA ,又PA ?平面PAB ,PAB OD 面?,∴ OD //平面PAB .

(2) AB BC ⊥,OA OC =,∴,OA OB OC ==又 OP ⊥平面ABC ,∴PA PB PC ==.取

BC 中点E,连结PE ,则BC ⊥平面POE .作OF PE ⊥于F,连结DF ,则OF ⊥平面PBC ,∴ODF

∠是OD 与平面PBC 所成的角.在ODF Rt ?中,210

sin 30

OF ODF OD ∠=

=

.所以OD 与平面PBC 所成的角正弦值为

30

210

. 附试卷1参考答案

1.D

2.B

3.D

4.C

5.C

6.C

7.D

8.D

9.A 10.D 1三点共线2无数 无数 3. 7 4

212

3

a

P

A B

C D Q 第18题图

P A B C

D E

F

O 第19题图

《立体几何初步》单元知识总结

第一章《立体几何初步》单元知识总结 点击考点 (1)了解柱,锥,台,球及简单组合体的结构特征。 (2)能画出简单空间图形的三视图,能识别三视图所表示的立体模型,并会用斜二测法画出它们的直观图。 (3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式。 (4)理解柱,锥,台,球的表面积及体积公式。 (5)理解平面的基本性质及确定平面的条件。 (6)掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质。 (7)掌握空间直线与平面,平面与平面垂直的判定及性质。 名师导航 1.学习方法指导 (1)空间几何体 ①空间图形直观描述了空间形体的特征,我们一般用斜二测画法来画空间图形的直观图。 ②空间图形可以看作点的集合,用符号语言表述点,线,面的位置关系时,经常用到集合的有关符号,要注意文字语言,符号语言,图形语言的相互转化。 ③柱,锥,台,球是简单的几何体,同学们可用列表的方法对它们的定义,性质,表面积及体积进行归纳整理。

④对于一个正棱台,当上底面扩展为下底面的全等形时,就变为一个直棱柱;当上底面收缩为中心点时,就变为一个正棱锥。由1()2S c c h ''= +正棱台侧 和()3h V s s '=正棱台,就可看出它们的侧面积与体积公式的联系。 (2) 点,线,面之间的位置关系 ①“确定平面”是将空间图形问题转化为平面图形问题来解决的重要条件,这种转化最基本的就是三个公理。 ②空间中平行关系之间的转化:直线与直线平行 直线与平面平行 平面与平面平行。 ③空间中垂直关系之间的转化:直线与直线垂直 直线与平面垂直 平面与平面垂直。 2.思想方法小结 在本章中需要用到的数学思想方法有:观察法,数形结合思想,化归与转化思想等。主要是立体几何问题转化为平面几何问题,平行与垂直的相互转化等。 3.综合例题分析 例1:如图,P 是?ABC 所在平面外一点,A ',B ',C '分别是PBC ?,PCA ?,PAB ?的重心。 (1) 求证:平面A B C '''P 平面ABC ; P (2) 求A B C S '''V :ABC S V . 证明:(1) 连结PA ',PB ',PC ',设PA BC D '?=, PB AC E '?=,PC AB F '?=,则D,E,F 分 别是BC,AC,AB 的中点,且 B ' C ' A ' C 23 PA PB PC PD PE PF '''=== A B 所以, A B DE ''P A C DF ''P A B ABC ''?平面,A C ABC ''?平面 且DE ABC ?平面,DF ABC ?平面, 所以 A B ABC ''P 平面,A C ABC ''P 平面 从而, 平面A B C '''P 平面ABC. (2) 由平面几何知识有, 14DEF ABC S S =V V , 49A B C DEF S S '''=V 所以, 19 A B C ABC S S '''=V . 点评: (1)由线线平行 线面平行 面面平行,是证明平行问题的常用方法. (2)灵活运用平面几何知识是解决本题的关键。 例2:试证:正四面体内任意一点到各面距离之和等于这个正四面体的高。 分析:如图,设P 为正四面体ABCD 内任一点,AO 为正四面体 A 的高,点P 到各面的距离分别为 1234,,,d d d d 则 P B D

立体几何复习知识点汇总(全)

立体几何知识点汇总(全) 1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段) ⑦b a,是夹在两平行平面间的线段,若 a,的位置关系为相交或平行或异面. a=,则b b ⑧异面直线判定定理:过平面外一点与平 面内一点的直线和平面内不经过该点的直线是

异面直线.(不在任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (直线与直线所成角]90,0[??∈θ)(向量与向量所成角])180,0[οο∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能 叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直. (1). 空间直线与平面位置分三种:相交、平行、在平面内. (2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) (3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线

(完整版)立体几何初步知识点(很详细的)

立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与 高的比的平方。 (3)棱台: 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽 度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变; ②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S 直棱柱侧面积rh S 2圆柱侧'21ch S 正棱锥侧面积rl S 圆锥侧面积')(21 21h c c S 正棱台侧面积l R r S )(圆台侧面积l r r S 2圆柱表l r r S 圆锥表2 2R Rl rl r S 圆台表(3)柱体、锥体、台体的体积公式 V Sh 柱2V Sh r h 圆柱13V Sh 锥h r V 2 31圆锥''1 ()3V S S S S h 台''2 211()()33V S S S S h r rR R h 圆台(4)球体的表面积和体积公式:V 球=3 43R ;S 球面=2 4R 4、空间点、直线、平面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 应用:判断直线是否在平面内 用符号语言表示公理1:,,,A l B l A B l 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面α和β相交,交线是a ,记作α∩β=a 。 符号语言:,P A B A B l P l I I 公理2的作用: ①它是判定两个平面相交的方法。 ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

高中数学立体几何知识点整理

三、立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到 截面距离与高的比的平方。 (3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图 是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变; ②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积rh S π2=圆柱侧'2 1ch S =正棱锥侧面积rl S π=圆锥侧面积 ')(2 121h c c S +=正棱台侧面积l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式 V Sh =柱2V Sh r h π==圆柱13V Sh =锥h r V 231π=圆锥 '1()3 V S S h =台'2211()()33V S S h r rR R h π==++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=24R π 4、空间点、直线、平面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 应用: 判断直线是否在平面内 用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈?? 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

必修二立体几何初步知识点整理.

必修二立体几何初步知识点整理 一、基础知识(理解去记) (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共 点叫做顶点。 旋转体——把一个平面图形绕它所在平面的一条定直线旋转形成的封闭几何体。其中,这条定直线 称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①????????→??????? →???? ? 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱直棱柱其他棱柱 底面为矩形 侧棱与底面边长相等 ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 补充知识点 长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】2 22211AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角 分别是αβγ,,, 那么2 2 2 cos cos cos 1αβγ++=,2 2 2 sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则 222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=. 1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.

(完整版)高中立体几何基础知识点全集(图文并茂)

立体几何知识点整理 姓名: 一.直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α 方法二:用面面平行实现。 m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量和向量共线且l、m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 方法三:用平面法向量实现。 若n为平面α的一个法向 量,⊥且α ? l,则 α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 方法二:用线面平行实现。 β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 α α ⊥ ? ? ? ? ? ? ? ? ? = ? ⊥ ⊥ l AB AC A AB AC AB l AC l , m l α

方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量和向量的数量积为0,则m l ⊥。 三.夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 2 22-+= θ (计算结果可能是其补角) 方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): = θcos (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 (2)范围:]90,0[?? 当?=0θ时,α?l 或α//l 当?=90θ时,α⊥l (3)求法: 方法一:定义法。 步骤1:作出线面角,并证明。 步骤2:解三角形,求出线面角。 方法二:向量法(为平面α的一个法向量)。 ><=, cos sin θ = θ c b a

知识点-立体几何知识点常见结论汇总

知识点-立体几何知识点常见结论汇总

————————————————————————————————作者:————————————————————————————————日期: 2

O A B C D E F 垂 立体几何高考知识点和解题思想汇总 补充:三角形内心、外心、重心、垂心知识 四心的概念介绍: (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 若P 为ABC ?所在平面外一点, O 是点P 在 ABC ?内的射影,则: ①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ?的外心; ②若P 到ABC ?的三边的距离相等, 则O 为△ABC 的内心; ③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ?的垂心. 常见空间几何体定义: 1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,这两个面为底面,其他面为侧面。 棱柱具有下列性质: 1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等; 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。 3)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。 棱柱的分类: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。直棱柱的各个侧面都是矩形; 正棱柱:底面是正多边形的直棱柱叫做正棱柱。正棱柱的各个侧面都是全等的矩形。 平行六面体:底面是平行四边形的棱柱。 直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。 长方体:底面是矩形的直棱柱叫做长方体 2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高. (2) 底边长和侧棱长都相等的三棱锥叫做正四面体. A B C O 外 I K H E F D A B C M 内 A B C D E F G 重

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结 1、 多面体(棱柱、棱锥)的结构特征 (1)棱柱: ①定义:有两个面互相平行,其余各面都是 四边形,并且每相邻两个四边形的 公共边都互相平行,由这些面所围 成的几何体叫做棱柱。 棱柱斜棱柱直棱柱正棱柱; 四棱柱平行六面体直平行六面体 长方体正底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是正多边形 侧棱垂直于底面 侧棱不垂直于底面

棱长都相等 四棱柱正方体。 ②性质:Ⅰ、侧面都是平行四边形;Ⅱ、两底面是全等多边形; Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形; Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。 (2)棱锥: ①定义:有一个面是多边形,其余各面是有 一个公共顶点的三角形,由这些面 围成的几何体叫做棱锥; 正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质: Ⅰ、平行于底面的截面和底面相似, 截面的边长和底面的对应边边长的比 等于截得的棱锥的高与原棱锥的高的 比; 它们面积的比等于截得的棱锥的高与 原棱锥的高的平方比;

截得的棱锥的体积与原棱锥的体积的 比等于截得的棱锥的高与原棱锥的高 的立方比; Ⅱ、正棱锥性质:各侧面都是全等的等腰三 角形;通过四个直角三角形POH Rt ?,POB Rt ?, PBH Rt ?,BOH Rt ?实现边,高,斜高间的换算 2、 旋转体(圆柱、圆锥、球)的结构特征 A B C D O H P

(2)性质: ①任意截面是圆面(经过球心的平面,截得 的圆叫大圆,不经 过球心的平面截得 的圆叫 小圆) ②球心和截面圆心的连线垂直于截面,并且 2d 2 =,其中R为球半径,r为截 r- R 面半径,d为球心的到截面的距离。 3、柱体、锥体、球体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。

高考立体几何知识点总结(详细)。

高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的 面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类 棱柱 四棱柱 平行六面体 直平行 六面体长方体正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱

面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 对棱间的距离为 a 2 2 (正方体的边长) 正四面体的高 a 6(正方体体对角线l 3 2 =) 正四面体的体积为 32a (正方体小三棱锥正方体V V V 3 1 4=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2 1 61= ) 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 A B C D P O H

高中立体几何基础知识

高中立体几何基础知识 1. 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 2. 平面的画法及其表示方法: ①常用平行四边形表示平面通常把平行四边形的锐角画成45,横边 画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画 ②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对 角顶点的字母来表示如平面AC. 3. 空间图形是由点、线、面组成的 点、线、面的基本位置关系如下表所示: α a ?

a α α//a 直线a 与平面α平行 a A α a A α= 直线a 与平面α交于 点A l α β= 平面α、β相交于直 线l 注意:直线与平面平行(α//a )和直线与平面相交(a A α=)两种情 形,统称为直线在平面外,记为α?a . 4. 平面的基本性质 (1)公理1:如果一条直线的两点在一个平面内,那么这条直线上的 符号表示: ααα??∈∈a B A ,. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是 否是平面. 公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平 面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法. (2)公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且 所有这些公共点的集合是一条过这个公共点的直线 B A α

符号表示: A l A ααββ∈? ?=?∈? 且A l ∈且l 唯一 如图示: 应用:①确定两相交平面的交线位置;② 判定点在 直线上 公理2揭示了两个平面相交的主要特征,是判定两平面相交的依 据,提供了确定两个平面交线的方法. (3)公理3: 经过不在同一条直线上的三点,有且只有一个平面 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈ 应用:①确定平面;②证明两个平面重合 注意:“有且只有一个”的含义分两部分理解,“有”说明图形存在, 但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. (4)推论1 :经过一条直线和直线外的一点有且只有 一个平面 推理模式:A a ??存在唯一的平面α,使得A α∈,α?l (5)推论2: 经过两条相交直线有且只有一个 平面

高考立体几何知识点总结(详细)

收集整理:宋氏资料 2016-1-1 2016高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的 面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类 棱柱 四棱柱平行六面体 直平行 六面体长方体 正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c·h+ 2S 底 V 棱柱 = S 底 ·h? 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱

所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 对棱间的距离为 a 2 (正方体的边长) 正四面体的高 a 6(正方体体对角线l 3 2 =) 正四面体的体积为 32a (正方体小三棱锥正方体V V V 3 1 4=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2 1 61= ) 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 A B C D P O H

必修立体几何复习知识点习题

一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就 和交线平行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平 面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直 2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 90角 1、定义:成 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线 垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影 垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法

高中文科数学立体几何知识点总结

γm βα l l α β立体几何知识点整理(文科) 一. 直线和平面的三种位置关 系: 1. 线面平行 α l 符号表示: 2. 线面相交 α A l 符号表示: 3. 线在面内 α l 符号表示: 二. 平行关系: 1. 线线平行: 方法一:用线面平行实 现。 m l m l l ////??? ? ??=??βαβ α 方法二:用面面平行实现。 m l m l ////??? ? ?? =?=?βγαγβα 方法三:用线面垂直实现。 若αα⊥⊥m l ,,则m l //。 方法四:用向量方法: 若向量l 和向量m 共线且l 、m 不重合,则 m l //。 2. 线面平行: 方法一:用线线平行实现。 ααα////l l m m l ??? ? ?? ?? 方 法二:用面面平行实现。 αββα////l l ?? ?? ? 方法三:用平面法向量实现。 若n 为平面α的一个法向量, l n ⊥且α?l ,则α//l 。 3. 面面平行: 方法一:用线线平行实现。 β ααβ//',',' //'//????? ??? ??且相交且相交m l m l m m l l 方法二:用线面平行实现。 βαβαα //,////??? ? ?? ?且相交m l m l m l α n α l m'l'l α βm m β α l l m β α

三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则m l ⊥。 三. 夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 2 22-+=θ (计算结果可能是其补角) 方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): AC AB AC AB ??= θcos (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 A B C αl l β α m l β α m α l θ c b a A B C θn A O θ P αl A O P α

相关文档
相关文档 最新文档