文档库 最新最全的文档下载
当前位置:文档库 › 轧辊失效分析

轧辊失效分析

轧辊失效分析
轧辊失效分析

轧辊失效分析

轧辊失效分析

欧州轧辊制造商协会撰写

目录

第一章剥落

1.1 马鞍形剥落 6

1.2 挤压裂纹和带状疲劳剥落 7

1.3 外层/芯部结合层处剥落 9

1.4 外层/芯部接合层工作层厚度不够 10

1.5 辊肩脱落 11

第二章热裂纹

2.1 带状热裂纹 12

2.2 梯状热裂纹 13

2.3 局部热裂纹 13

第三章机械事故损伤

3.1 冲击过载造成轴承部位断裂 14

3.2 弯矩引起的轴承部位断裂 15

3.3 传动端扭矩引起辊颈折断 16

3.4 辊承磨损及烧死引起的辊颈折断 17

3.5 热(应力)折断 18

第四章表面及次表面(皮下)缺陷

4.1 针孔和气孔 19

4.2 夹杂 20

4.3 硬点和软点 20

第五章轧制过程中辊面状态

5.1 表皮剥落 21

5.2 大块带状剥落 22

5.3 粘钢 23

5.4 带边边缘磨损 24

5.5 划伤/机械碰伤印痕 25

前言

1.目前,对任何成熟的轧制过程、轧制工艺,都可有不同的轧辊材质选择。这些轧辊在正常的轧制条件下,可以顺利得用到报废直径。然而,为了得到这一结果,正确的轧辊管理是非常必要的,这当中包括轧制周期长短的确定,良好的磨辊程序及无损检测手段。除此之外,轧辊磨损轮廓的测量记录,工作硬化层的检测对轧辊

服役期的增加也会是有益的。

2. 在确定宽带钢工作辊材质时,轧辊制造厂家需要知道相关的轧制条件,其中包括精轧段机(架)的数量,轧辊服役的架次,带宽单位宽度上的轧制力,轧辊工作部位的最大预弯度,这些要素决定了复合轧辊芯部和外层材质的选择。

3. 尽管轧辊制造商和用户都谨慎行事,还会发生轧辊失效,导致轧辊部分或全部损失,甚至损坏到轧机设备。这些轧辊失效的原因都是与制造或使用相关的。

4. 轧辊断裂的形貌往往用于鉴定断裂的原因。一般来说,断裂可以是由负荷超载还是疲劳所引发的。疲劳断裂初始从裂纹开始,逐渐延展,形成典型的断裂面。这种断裂面相对平滑,呈现多条抑制线,一旦疲劳裂面达到临界大小,剩余的截面便突发破裂。疲劳断裂的典型例子有支撑辊剥落、支撑辊颈折断,还有二辊式轧机的工作辊从内圆角区域处的断裂(应力腐蚀也会是引发原因之一)。

5. 工作辊辊颈由于弯曲或扭矩过大引起的折断往往是自发性的。这主要发生在负荷超载时所引发的辊颈折断。这种折断也会发生在工作辊的辊身中部,尤其是四辊

轧机的工作辊。

6. 工作辊传动端因扭矩过大而折断往往是由于机械负荷超载所引发的。机械负荷超载可能是轧辊间隙设置不当所致,也有可能来自外来物渗入轧辊间隙。该种情况会在没有扭矩过载的保护装置的轧线上发生,或保护装置失控的情况下发生。在机械负荷超载的情况下辊颈的折断可以有效地防止轧机及其部件的损坏,如主轴、齿轮箱及主电机。由扭矩过大引起的辊颈失效可看出断裂面与轴向或45 。为了减少轧机的损坏,工作辊的传动端就材质而言,针对最大的扭矩负荷,设计成相

对弱的部位。

7. 事故的发生,如粘接、卡带或辊缝间隙设计不当不一定都会引发轧辊的损坏,事故之后对轧辊正确处理非常重要。将损伤的轧辊适当修磨消除缺陷是最安全的办法。有许多有用的技巧处理事故后的轧辊。因此,钢厂人员有必要注重这方面的相

关措施。

8.整支轧辊的成本包括购买价和修磨费用,总是同轧机的运行成本联系起来一同考虑。一支新辊的价值一般低于一个热轧厂运行一小时的价值,然而复杂的轧辊事故可以导致轧机长时停机,有的长达15小时甚至更久,而且很难排除。另外,轧辊事故对支撑辊或轧机的损害也是不可排除的。有些损坏常常需要一段时间才能

体现出来。

9. 这本轧辊失效的册子将有助于将来解释和防止类似情况发生。

10. 尽管本手册提供的一系列轧辊在服役期中所存在的问题及现象,但仍不排除有没包括的问题。我们可以承诺此手册概括90%的轧辊使用过程中所出现的现象,

对轧机操作人员提供有力的帮助。

11. 欢迎用户对本手册给予有益的建议,补充和预防措施以便使此手册能成为轧

辊用户和制造厂家的活用的工具。

第一章剥落

1.1马鞍形剥落

1.1描述

这种马鞍形状的疲劳剥落是起源于结合层下部芯部材质,从而引发了大块的掉肉。从断裂表面上我们可以看到许多疲劳截面的传播途径。这种剥落往往发生在片状石墨芯部的离心工作辊(4辊轧机),而且发生的部位往往是辊身中部。

1.1.2起源

这种剥落往往是由于在轧制薄而硬的带钢时,压下比大,轧辊在偱环承受高负荷而引发剥落。轧辊芯部材质交错地受正负应力的作用,在超过疲劳极限时,会引发微裂纹的产生。随着微裂纹的增加,则会导致芯部材质的弱化。下一个阶段,这些裂纹通过传播,逐渐由芯部延伸到辊身表面,进而产生“马鞍形”掉肉。在轧辊自身残余应力还在的情况下,越容易导致这种现象的发生。其实这种现象通常可用超声波手段及时地检测出来。超声的回波的减弱会给我们这方面的提示。也就是说这种

轧辊材质不能承受此类轧机的负荷。

轧辊制造商责任

1.1.3预防措施

对轧辊制造厂家来说,客户能够提供必要的前期轧辊失效原因, 以及相关的轧制过程参数,如轧制负荷(t/m带钢宽度)是很重要的.对负荷大的轧机,应采用高强度的球墨芯部材质避免低强度的片状石墨材质。

1.2挤压裂纹和带状疲劳剥落

(猫舌状剥落)

1.2.1 描述

在初级阶段,在局部挤压过大的区域,在轧辊表面会形成一条或几条裂纹,这样的裂纹往往会在平行于辊轴的方向形成,然后逐渐沿径向传播;在下一个阶段,疲劳会逐渐向圆周方向漫延,呈现出平行于辊身表面的猫舌状断裂带。断裂面的漫延方向同轧辊旋转方向相反。这种断裂首先是在工作层中产生的,进而逐渐往辊身方向变深变宽,最终导致辊身大面积的剥落。

s

1.2.2起源

过大的局部超负荷超过轧辊外层的抗剪切强度时则会引发裂纹。在持续的轧制过程中疲劳则会继续引发裂纹的产生,进而导致辊身局部大面积掉肉。对服役期较长的工作辊和支承辊,常常磨损的表面会时常产生局部的超负荷,对不正确的CVC轮廓

来说也是同样。对持续使用弯辊技术,没有合理的辊端倒角轮廓(以均衡支承辊端部应力)的支承辊,轧机事故以及轧制外来物都会引发此类裂纹。

用户责任。

1.2.3预防措施

轧辊每次服役后应对其缺陷进行检测。在发生严重轧机事故后,轧辊应进行100%裂纹检测,除此之外,还应采取一系列附加的措施,如服役期的长短的控制,修磨时能否完全去除裂纹、正确的轧辊凸度控制等等,从而有效地控制由于负荷过载所

导致的轧辊失效。

用户可通过良好的轧辊检测纪律及正常的轧机运行避免此类失效的发生。

1.3表皮/芯部结合层处脱落

1.3.1描述

大区域表层金属由于结合层不良与芯部材质脱落,遂后脱落层沿着这一弱结合面进

一步扩沿,最终导致工作层局部剥落。

1.3.2起源

此类轧辊的要求之一是达到表皮材质同芯部材质完全的冶金结合。表皮同芯部的分离是由于以下结合层强度的减弱所造成的,其主要原因是:

?表层和芯部间残留的氧化层

?结合层中残留的玻璃渣和杂质。

?结合层中过多的碳化物,气孔,片状石墨或非金属残留物如硫化物等。

其它造成表面同芯部脱落的因素有:

?由于轧制事故,可能造成局部负荷过载,引发外部与芯部材质的脱落,进而这一分隔面沿着结合层逐步扩展,直到达到临界尺寸,瞬间产生二次脱落。这种损坏形式在结合层没有任何缺陷的情况下也可发生。

?由于不正常的过热现象(冷却系统问题,粘钢等)结合层径向张力过大,也会导

致结合层剥落。

一般情况下,如果结合层有可以看出的缺陷,就是轧辊铸造质量问题。

1.3.3预防措施

超声波检测可检测和量化表皮与芯部结合程度,并可预测轧辊在使用过程中此结合层脱落的传播面。具有破坏性后果的剥落,一般通过轧辊使用前的超声波检测是可以避免的。这样的轧辊,其结合层局部分离尺寸已接近危险尺寸的,不能上机使用。

1.4 外层/芯部结合层 工作层厚度不够

1.4.1 描述

表皮同芯部完全结合,但是工作层厚度不够,轧辊无法使用到报废直径。芯部材质具有更多石墨,合金量较少,所以比外层金属软许多,颜色呈灰色。由于结合层往往是沿着外层金属的凝固线所形成的,因此在辊身表面所呈现的此类缺陷是不连

续,不规则的。

1.4.2 起源

离心层厚度取决于离心浇铸过程中的许多参数,如:离心层的浇铸铁水量,浇铸温度和停滞时间。当其中一个参数没能达到设计要求值时,离心层厚度就达不到要求。

轧辊制造质量问题

1.4.3预防措施

采用可达到要求厚度的浇铸参数。

1.5 辊肩脱落

1.5.1 描述

工作辊表面或表层裂纹引起的脱落,发生在园周向距辊肩大约100~300 mm处。裂纹一直向辊肩非工作面发展。严重时,裂纹及引发的脱落可发展到辊身辊颈过渡圆弧处。当裂纹延展到一定深度时,就会引发大块剥落。

1.5.2 起源

辊肩压力过大,工作辊正弯曲引发的负荷,支撑辊的倒角设计不当,板型不好,带钢边缘过厚(狗骨头状)或不适当的装配等等都会造成轧辊局部过载,从而造成局部剪切应力超过工作辊辊身自身材质抗剪切强度。外加轧辊辊端长时间磨损过大,易造成辊身端部局部过载,引发裂纹的产生。随着裂纹的进一步延展,扩至辊身非

工作面,造成剥落。

1.5.3预防措施

确保支撑辊的辊身完好,恰当的辊端倒角设计。

避免在工作辊辊端部位应力过于集中。确保弯辊得到很好的控制。

注意工作辊支承辊的之间的配合和轮廓的设计。

第二章热裂纹

2.1带状热裂纹

2.1.1描述

相当于带钢宽度的部位,与工作辊接触的弧面。这些裂纹往往看上去是镶嵌式的,

但裂纹的间隙往往宽于传统热裂纹的宽度。

2.1.2起源

在轧机发生机械事故时,带钢粘在工作辊的表面时间可能会很长。在接触部位的辊身表面温度可能会急剧增加,进而使整个轧辊温度增加,所导致的热应力在有些情况下会超载辊子自身材料的热态屈服强度。当带钢与辊身脱离时,在轧辊起吊过程中,辊面得到冷却,有些表面则会产生收缩,从而引发表面裂纹。产生热裂纹的严重程度取决于粘钢接触过程的长短和冷却速度。

2.1.3预防措施

防止轧机事故坯料粘结。在轧机发生事故时,应快速打开轧辊间隔,关掉冷却水,去掉辊身上卷曲的带钢。为避免对轧辊的损坏,应立即启动轧辊旋转装置,等辊身温度均衡时,打开冷却水使辊身的温度进一步均匀化。对末架轧辊换辊是一必然措施。辊身必须重新修磨,以避免任何裂纹的存在。(采用无损探伤,以避免内部缺

陷)

2.2梯状热裂纹

2.2.1描述

这种裂纹呈现出沿园周向的宽带,裂纹的朝向是轴向的,然而却是向径向扩延的。

2.2.2起源

这种裂纹的起源可能是由于冷却水的不足所导致的,比如说冷却水喷嘴被堵。由于裂纹的产生,辊身的温度也就会越高,这种裂纹往往比热裂纹深。

用户责任

2.2.3预防措施

保证冷却系统的正常运行,充分保证冷却水的量及水压。定期检查喷嘴的位置及功

能。

2.3局部热裂纹

2.3.1描述

辊身局部出现热裂,有时有局部掉肉。

2.3.2起源

这种失效的原因在这些局部可能是由于机械和热应力的双重作用超过了辊子自身的材质的抗屈服强度所导致的,并且在进一步冷却中还会进一步扩展。轧机事故,比如说由于划伤,粘钢,带钢边缘划伤及尾部的卷边所导致的划伤是造成这一失败的主要原因。热裂纹和挤压裂纹的双重结合会使这种现象非常危险。因为这一失效会导致带状疲劳剥落或甚至引发即刻剥落。

用户责任

2.3.3预防措施

改善轧制条件以避免这类轧机事故发生。当出现轧机事故时,应立即把轧辊撤下轧

机,并进行进一步的观察及修磨。

3.1冲击超载造成轴承部位断裂

3.1描述

这种失效往往起源于紧邻辊端底部的圆弧部位。由于裂纹的扩展,导致辊颈截面断裂。裂纹开始时沿着整个截面发展,最后延伸到辊身侧面,切下辊身端面的一部分。

3.1.2起源

在冲击负荷下,最大负荷超过了轧辊芯部材料所能承受的最大抗弯曲负荷,发生截面断裂。断裂一般产生于负荷应力为最大的截面。当轧辊由于不正当的使用或运输、吊装,如:摔落、换辊吊梁使用不当等等,裂纹就会产生,甚至经常发生断裂。如我们看到断裂的辊颈上带有辊身的一部分时,说明轧辊使用不当。这种现象是由

于轧钢厂使用不当造成的。

用户责任

3.1.3预防措施

轧辊间搬动轧辊要轻拿轻放。当轧机上没有自动换辊设备而需要手工换辊时,吊梁一定要摆放正确。轧钢时,避免冲击负荷及过负荷运作。

3.2 弯矩引起的轴承部位断裂

3.2.1 描述

断裂面从轴承部位外部开始延伸到整个截面。典型的是从圆弧部开始,常常会由于

疲劳而产生的裂纹的扩展后引起的。

3.2.2起源

这种断裂是因为高弯矩负荷超过了轧辊轴承部弯矩负荷极限或抗疲劳极限。它常常发生在热轧二辊机架任何材质的工作辊上。

断裂原因可分为以下几种情况:

?高轧制力和过低轧辊强度设计。

?轧制事故引发的高弯曲负荷。

?轧辊在轴承部位有质量缺陷。

?轧辊辊身辊颈部过渡圆弧太小,圆弧表面及刀痕及腐蚀引起的疲劳裂纹等产生的切口效应。问题的责任可能在使用方也可能在制造方。

3.2.3预防措施

避免弯曲负荷超载。选用符合要求的轧辊的设计和轧辊材质。将过渡圆弧部分抛光以减少刀痕所引起的切口效应。保护过渡圆弧,避免其发生锈蚀。安排经常性的轧

辊检验。

3.3传动端扭矩引起辊颈折断

3.3.1描述

断面同辊轴不垂直,经常展示由撕裂引起的像钻头形状的断面。这种断裂发生在传动端强度最低的截面,经常是辊子密封圈安放处,并向辊颈心部和轧辊圆弧顶部扩

展。

3.3.2起源

加在传动端辊颈部位的扭矩超过辊颈材质最大的承受能力。辊颈的强度受到密封圈安放处槽底、径向钻孔等半径尺寸过小所引起的应力集中及切口效应的影响,强度降低。如果负荷从轧机设计和轧制角度看是正常的,那么轧辊的材质就需要更换。当负荷超过了正常轧制水平,扭矩就大于轧辊材质最大的抗扭矩能力,造成断辊。

过载会在下列几种情况下产生:

?轧机由于粘钢引起的停转。

?轧辊事故,如粘钢,不恰当的初始轧辊间隙等等。

?轧辊与传动轴安装问题,原因可能是使用方安装造成的,也可能是厂家加工造成的。这种断裂一般是厂家使用不当引起的。

用户责任

3.3.3预防措施

确保稳定的轧制状况。避免在高负荷截面出现小半径的圆弧及圆孔,如在密封圈安放处,扁方或梅花头处。确保转动处及联接系统的尺寸精度。

3.4轴承磨损及烧死引发的辊颈折断

3.4.1起源

在辊颈安放轴承处有时存在有压痕或深度磨痕,痕迹有沿轴向或沿圆周方向两种。有时轧制中的小块氧化皮或各种其它杂质被压入辊子表面。安放轴承处部位有时由于氧化,磨损也会产生破损。所产生的转动磨痕、热裂的裂纹会从加油孔向外扩展。

3.4.2起源

不恰当的、损坏了的或没安装的密封环造成冷却水、氧化皮和其它杂质侵入轴承与辊颈间隙。轴向深度拉痕是由于轴承与辊颈间存在的一些小金属碎片引起的,当辊子下机修磨时,这些小碎片可能会隐藏在轴承与辊颈之间,造成划伤。

如果润滑油的粘度太低,轴承和辊颈间安装间隙不合适,加上杂质的存在可能导致辊颈表面磨损,甚至可导致辊颈与轴承之间的冷焊和粘合,也会造成润油孔的堵塞,造成磨擦负荷增加,产生过热,热裂,使轴承抱死。如上所述的辊颈过早磨损,润滑油贫乏,加工圆度不够,密封圈安装不当和其它各种密封不当都会导致冷却水进

入轴承,造成腐蚀。

3.4.3预防措施

确保任何时候在轴承内有足够的油和其它润滑剂。加强密封圈的维护以避免冷却水

和氧化皮进入轴承区域。

3.5热(应力)折断

3.5.1描述

轧辊断裂,断面显示从心部或中心附近发出的径向放射状断裂纹。断面垂直于轧辊轴心,断面通常位于辊身中部或近于中部。这样的断裂通常称为热断。

3.5.2起源

这种热断同辊身表面和芯部的最大温度差有关。温差的产生是由于辊子冷却系统不利,甚至冷却系统瘫痪,或辊身都由于轧制初期过钢量过大,导致辊子表面过热。

辊身表面同内部的温差产生热应力,它加在辊身原有的内应力上。例如:辊身表面同内部的70?的温差,会在轧制初期最关键时刻产生轴向110Mpa额外热应力。一旦芯部轴向应力超地芯部材质的最大强度,热断就会突然产生。

问题可能出在使用方,也可能出在制造方。

3.5.3预防措施

良好的轧辊冷却系统是最好的保障,它确保可能产生的最大的温差不会带来任何问题。如果,举例来说,一次轧制结束时,最大温差不超过65?的话,一般来说,轧辊无论从开始到大轧制量下,都不会由于温差产生热断。如果冷却系统不好,就需

要使用一些安全措施,例如:

?在轧制初期减少轧制量。

?轧制前对工作辊进行预热。

?轧辊温度必须达到同室温一致的温度(20?C),方可上机。

?轧辊芯部使用高强度材质(用球墨铸铁材质代替片状灰口铁材质)。

?轧辊制造时,避免产生过大的内应力,避免内部的铸造缺陷,如:缩孔、偏析、

气孔等等。

第四章表面及皮下缺陷

4.1针孔和气孔

4.1.1描述

这些缺陷可在轧辊表面或次表面可观察到,所观察到的气孔可能是圆的或不规则的,内部的颜色可能是发亮的,也可能是不发亮的,这些孔眼随机地分布在辊身表

面。

4.1.2起源

发亮的内孔常存在在表面底下,针孔由于没有与空气接触,因而无氧化反应产生。

这种气体有可能来源于冷型涂料,也有可能来源于冷型的热裂纹。另一种类似的铸造缺陷,气孔,是由于钢水凝固过程中由于枝晶间的收缩补缩不足所产生的。对静态浇注的铁辊,有些气孔也会被残余的气体所填充,有时我们会看到这样的环状硬点。这种现象会导致轧辊表面质量问题,但很少会导致轧辊灾难性的失效。

制造厂责任。

4.1.3预防措施

轧辊制造厂家应完善其造型,熔炼,浇注过程,任何有铸缺陷的轧辊应拒绝出厂。

4.2夹杂

4.2.1描述

任何非金属夹杂可能具有不同的大小和外形。

4.2.2起源

这些夹杂可能有不同的起源,比如说钢水渣,或是冷型及铸造设备这种夹杂通常会影响带钢的表面质量,但还不至于导致辊子的全面报废。

4.2.3预防措施

轧辊制造厂家应加强对轧辊浇铸过程中钢水及相关设备的清洁度。在一定的尺寸范围内,通过超声波探伤可检测到此类缺陷。

4.3硬点和软点

4.3.1描述

这些表面或皮下缺陷看上去是环状或半环状的,灰白色,往往高于或低于基体的硬度。他们常常会在较大面积上影响轧辊的寿命。

4.3.2起源

这种现象仅局限于离心浇注辊。解释的原因也是多种多样的。硬点往往是偏析的铁的碳化物集中区,而软点则反映出碳化物贫乏区或石墨富集区。一种原因是在铁水

最终凝固前,可能由于离心力的作用,气孔所引发的外层金属的偏析。气体可能来源于冷型涂料粘结剂中的结晶水的突然脱落。其它理论也谈到离心浇注过程中由于辊模旋转速度过大所导致的振动从而达至结合层上的偏析。

制造商责任,对带钢的表面质量会有影响,但不会导致严重的后果。

4.3.3预防措施

轧辊制造厂家在轧辊制造过程中应保证辊模良好的装配,选择良好的涂料配比,避免离心浇注过程中由于转速过大所导致的振动。

第五章轧制过程中轧辊的辊面状态

5.1表皮剥落

5.1.1描述

在轧制过程中,轧辊与带钢接触的表面会形成一层氧化物保护膜,如果部分区域氧化保护膜脱落,我们称这种现象为局部剥落(Peeling)。Peeling发生时,我们会观察到在轧辊母体上,在圆周方间有一圈银色的斑痕,掺插在没被破坏的表面之中。

5.1.2起源

当轧辊离开轧制表面的时间间隔内,轧辊的表面会形成一层氧化物保护膜。此保护膜的量与轧辊辊面温度是相关的。这层保护膜承受轧辊和带钢运转速度不同所导致的交错的剪切应力的影响,一旦达到氧化膜的抗剪切强度,氧化膜的剥落就会产生。“Peeling”仅仅局限于轧辊氧保护膜被破坏,然而辊身的基体材料没有被破坏情况,轧辊自身的材质仍然能够抵抗轧制过程中的剪切应力。这种现象的发生取决于轧制过程中的轧制条件,其中包括带钢的表面温度(这一温度也决定带钢表面氧化磷的性质和硬度),压下比,轧辊的冷却和轧辊的服役期的长短。

这是一常见的轧制现象。

5.1.3预防措施

通过优化轧制温度,机架之间的冷却,表皮冷却和轧辊的冷却来有效地控制带钢表面温度。轧辊服役期应随轧材和轧辊的材质而定。

5.2大块带状剥落(Banding)

5.2.1描述

在轧辊周间形式的银光带在严重的情况下会发展成粗糙的宽光带这一现象叫做“Banding”。“Banding”常常会出现在精轧前几架的工作辊,有时服役期并不长。

当高铬辊在同一架次和位置服役期过长时,“Banding”发生。

5.2.2起源

这种现象主要是由于轧制过程中负荷的交错变化所引发的。当热负荷高于轧辊自身材料的抗剪切应力时,剥落就会发生。位于在轧辊初始裂纹深度区的表面裂纹就会开始延展,进而导致所影响区的剥落。当轧辊表面一旦开始剥落,所引发的剪切力很快就会使得辊身沿整圆周向形成剥落带(Peeling band)。剥落层的厚度往往是

0.1到此0.2mm厚。一般相当于初始裂纹的深度。

5.2.3预防措施

调整轧辊服役期的长短,以避免“Banding”现象的发生重要的因素有:

?轧辊的材质

?机架之间的冷却

?表皮冷却

?润滑

?压下比

?轧辊冷却

?轧制速度

5.3粘钢

5.3.1描述

局部粘钢现象往往会在轧制外常薄的带钢时末机架工作辊会产生粘钢。

5.3.2起源

发生粘钢的最重要的两个特定条件是:高压力、低轧制温度。特别是在轧机出现故障时,比如带钢的弯斜、卷曲、带钢端部的叠折,都会导致轧机出现短时间负荷过大,从而导致带钢粘附到轧辊上。因此,由于带钢在辊身表面形成的刻痕,也导致了轧辊表面的塑性变形,从而导致辊面的剥落,热裂和划伤会在超负荷的表面上产生。由于轧辊材质选择不当可导致辊子的严重粘钢。

这种现象的产生是与轧制条件所决定的。

5.3.3预防措施

轧机操作人员应充分保证理想的轧制温度和轧制的过程控制从而减少轧制事故。尽可能避免对轧辊的每一服役期的磨损是对最终产品的平整度,形状和轮廓的更好的保证。总之,这些因素会帮助我们寻找到一个稳定的间隙,防止任何粘钢的发生。在任何轧机事故之后,轧辊都必须重新修磨,通过无损探伤方式检测,应避免带有

隐患的轧辊回到轧线上来。

5.4带钢边缘磨损

5.4.1描述

在工作辊辊身与带钢边缘接触的部位常常能观察到波浪的槽痕。这种现象的发生取

决于在同一轧辊服役周期内所轧制的带钢宽度是否有变化,非常典型的情况发生在

精轧的前面几架上。

5.4.2起源

这种现象的起源在于精轧的早期架次带钢的压下比相对的大,而带钢变形的阻力也逐渐增加。如果带钢的边缘温度远低于中央部位温度,而且表面氧化磷的硬度也偏高,因而相对的高负荷则会导致这一局部的辊面磨损,这一现象在轧制有高合金含

量不锈钢尤为突出。

这是一个与轧制过程相关的现象。

5.4.3预防措施

补加带钢边缘加热措施,缩短中断,或在精轧机架前安装卷曲箱或隔温罩,一般说来,尽管全冲洗浇注的合金无限冷硬辊抗磨损能力差,对不锈钢带钢轧制来说这种

辊子的表面磨损显得更均匀。

5.5划伤/机械碰伤印痕

5.5.1描述

这些现象主要包括辊身所产生的局部缺陷,以及过热导致的划伤、热裂,和轧制宽

度内两边缘的压力裂纹。

这些现象常常可在热轧带钢末端机架的工作辊上观察到。

5.5.2起源

轧机发生卷钢或带钢温度过低的情况,以及外来夹杂、过厚的表面氧化鳞夹杂通过工作辊之间或工作辊、支撑辊之间。都会引起轧机局部负荷过载。在高的轧制速度下,上述所描述的事故就会引发辊子的变形或产生摩擦热,从而造成上述辊面的大

块剥落。

上述现象主要是在轧机出现故障时,轧机失控所导致的。

5.5.3预防措施

所有措施,包括带钢温度的控制,辊间轮廓的设计,中心凸厚部分形状,和带钢的平整度等等,都会减少轧机的运行事故。轧辊在经历轧机事故后,必须通过完全无

损探伤,确保无缺陷后方可上机

一种解决轧辊磨损失效的方法

金属模具表面超硬化处理—TD覆层技术简介

TD覆层技术能做什么?

1、能让磨损失效的冷作模具在同等工况下使用寿命平均提高10倍。

2、能让模具(工装)的使用成本降低50%甚至以上。

一、原理

TD模具表面超硬化处理技术采用金属碳化物扩散覆层TD (Thermal Diffusion Coating Process)原理,是在一定的处理温度下将工件置于硼砂熔盐及其特种介质中,通过特种熔盐中的金属原子和工件中的碳、氮原子产生化学反应,扩散在工件表面而形成一层几微米至二十余微米的钒、铌、铬、钛等金属碳化层。经本公司不断地持续改进,目前在解决冷作模具磨损失效的应用其技术、品质、成本和响应速度等综合优势居行业领先地位。

齿轮断裂原因分析

齿轮轴断齿原因分析 概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 C Si Mn S P Cr Mo Al 大0.39 0.31 0.52 0.002 0.06 1.5 0.17 0.85 小0.15 0.25 0.55 0.016 0.013 0.75 0.15 从成份上看,大有材料为38CrMoAl,小的材料为20CrMnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示)

3、金相组织分析 (1)大的金相组织 100X 40X 0.30m m

200X 齿轮表面的渗氮层厚:0.30mm,渗层组织不均匀,渗层硬度801HV1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌 200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。

(2)小的金相组织 200X 40X 渗层深1.5mm 齿轮渗碳层厚1.5mm,有效硬化层厚0.8mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,

往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。 小的渗碳淬火后心部组织为粗大(?)的板条马氏体组织,综合性能比较好,(为热处理过程中温度失控?),渗碳后表面的碳含量很高,在淬火过程中由于应力过大(是有可能)产生裂纹或微裂纹。出现在粗针马氏体针叶上,与马氏体的惯析面成一定的角度,且相互平行。这种淬火后出现的小裂纹在没有及时回火的情况下,就没法弥补,使疲劳强度和使用寿命降低。表面的这些微小的细裂纹的缺陷的存在致使齿轮在使用的过程中受到拉应力的作用而导致断裂。 5、结论 大:预处理组织不合格导致后序的氮化处理过程中组织应力的作用而产生的裂纹是崩齿的主要原因。

轧辊破坏常见原因分析及对策

轧辊破坏常见原因分析及对策 蔡秀丽李伟薛春福 (承钢集团燕山带钢有限公司,河北承德 067002) 摘要:轧辊破坏乃至断裂,会给企业生产造成极大的损失,本文结合我厂实际描述了几种常见的轧辊破坏形式,并给出了相应解决办法。 关键词:轧辊破坏现象描述解决办法 1前言 承钢热带厂1997年建成投产,生产至今已有10余年,在生产初期经常出现轧辊热裂纹、掉肉、局部破坏、外层剥落、甚至轧辊断裂等事故,轧辊发生故障后一般都需要做换辊处理,不仅增加了岗位作业人员的劳动量,而且降低日历作业率,造成废钢,影响成材率,影响轧机产量,同时更造成巨大的经济损失。通过几年的摸索,对轧辊常见破坏形式进行归纳总结,并给出相应的解决办法。 2轧辊常见破环形式及对策 2.1轧辊断裂 2.1.1热应力断裂 2.1.1.1现象描述 此类断裂多发生在粗轧机,一般在粗轧换辊后开轧10块钢以内,寒冷的冬季出现的几率更大一些。轧辊辊身断层呈径向,起源位于或接近轧辊轴线,断裂面与轧辊轴线垂直,一般发生在辊身中部,如图1所示。 图1:热应力断裂断面形状 2.1.1.2轧辊破坏原因 这种热应力断裂与轧辊表面和轴心处的最大温差有关。过高的温差通常是由于轧辊表面温度升高过快造成的,产生的原因有,轧制过程中轧辊冷却水不足甚至中断,或者轧制钢开始时轧制节奏太快,轧制量过大造成的。有资料表明,在辊役刚开始的临界轧制状态下,辊身表面与轴心之间70℃的温差就可沿轴向产生110Mpa的附加热应力。一旦辊芯中总的轴向拉伸应力超过了材质的极限强度,就会导致突然的热应力断裂破坏。以我厂为例,生产初

期,有一次正值寒冬腊月,室外温度-20℃,厂房内温度较低,备辊正处在风口上,轧辊上线前没有预热,仅烫辊4块,在烫辊效果不好的前提下,温度较低的冷却水很快浇凉辊面,在轧制中与红钢接触,轧辊处于冷热交替中,内外表面温差大。断辊后约10分钟,用手摸断辊边缘,触觉为凉辊,带钢轧制部位的轧辊表面微温,轧辊断口内触觉发凉。同时触摸辊道,则发热或微烫手。排除轧辊铸造缺陷、轧制负荷高等因素后,基本判定为热应力断裂。 2.1.1.3对应措施 ●烫辊要充分,特别是在外界温度较低的冬季,轧辊上线前转移到环境温度较高的位置停放,或者对轧辊做小范围的升温处理,延缓烫辊速度,增加烫辊时间和烫辊材数量,减小热应力的影响。凡是返回的板坯,都要运到粗轧进行烫辊,禁止直接返回。 ●在轧制启动阶段减少轧制量。换辊后开轧30分钟内严格控制轧制节奏,给轧辊充足的内外温度均衡时间。 ●加强轧辊冷却水喷射情况的检查,发现堵塞及时处理,避免轧辊冷却不足。 2.1.2冲击载荷断裂 2.1.2.1现象描述 轧制钢温偏低、有异物轧入、或者轧错规格(导致变形量偏大)等原因出现时,轧件所产生的轧制压力瞬间超过了轧辊本身所能承受的轧辊强度极限所造成的轧辊断裂,断口一般出现在最高应力界面区域,断口颜色为灰白色。一次,我厂在4小时停轧检修后,在轧到第46块钢时发生粗轧断辊,分析原因为轧制节奏太快,在66分钟内轧制了28块钢,超出我厂加热炉的能力,板坯在炉时间短,内部没有完全烧透。另外,虽然明细表上标明为热装料,但因为上午换粗轧辊检修,加热炉尾部和滑钢道上的板坯和随后装入的板坯实际上已经晾凉,成为冷料,这部分板坯需要更长的在炉时间(高的加热温度和更长的加热时间),如果仍按照正常的节奏出钢,这部分板坯在加热段停留时间过短,钢坯内外温度不均,势必造成生芯钢,在轧制过程中给粗轧辊造成损害甚至断裂。 2.1.2.2解决方法 ●岗位操作人员加强责任心,加强日常点检,发现异物及时清除。 ●严格按照作业标准操作,严禁轧制低温钢。 ●在长时间停轧后,上料辊道上热料按冷料设置加热制度,控制出钢节奏,以避免轧制生芯钢。 2.1.3疲劳断裂 2.1. 3.1现象描述 疲劳断裂始于初始裂纹并逐渐发展,产生了一个典型的断面,该裂纹相对光滑,并出现一条临界线,一旦疲劳裂纹达到一定尺寸,便会发生其它部分的自发断裂。此类断口为深褐色,在断面能发现旧痕迹。当出现轧制低温钢、轧线废钢事故、叠轧等情况时初始裂纹可能就生成了。 2.1. 3.2解决方法 ●每次换辊后定期检测(超声波法、涡流法、着色法),及时发现危险的裂纹,并对轧辊进行适度的磨削。 ●其他措施对防止可能出现的局部过载也是必要的,这些措施有:严禁轧低温钢,按辊役周期换辊,防止断带缠绕等轧机事故。 2.2轧辊热裂纹 2.2.1大目格裂纹 2.2.1.1现象描述 这种裂纹与带钢宽度及工作辊与带钢的接触弧度有关。这种裂纹以常见的马赛克形状出现,但与常见的细小热裂纹相比目格尺寸较大,如图2 所示。

齿轮断裂原因分析

概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 从成份上看,大有材料为38 Cr Mo Al ,小的材料为20 Cr MnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示) 3、金相组织分析 (1)大的金相组织 100X 40X 200X 齿轮表面的渗氮层厚:0.30mm ,渗层硬度801HV 1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌

200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。 (2)小的金相组织 200X 40X 齿轮渗碳层厚1.5 mm,有效硬化层厚0.8 mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。

冷轧辊的失效分析上课讲义

冷轧辊的失效分析

冷轧辊的失效分析 材料工程1306 封骥 2013153 冷轧辊的失效分析 冷轧辊是冷轧机的大宗消耗备品,其能否安全运行将直接影响着轧机的生产率、成材率以及成本控制。由于冷轧辊从材质、制造工艺、使用、维护及失

效等诸方面与热轧辊有着较大的差异,故对初次进行冷轧生产的单位、轧辊管理者及使用者来说,需要掌握冷轧辊的失效机理及预防措施,通过对冷轧辊失效机理的论述及案例的相关分析,提出降低轧辊消耗的预防措施。 失效:金属装备及其构件在使用过程中,由于压力、时间、温度和环境介质和操作失误等因素的作用,丧失其规定功能的现象。 失效分析:对装备及其构件在使用过程中发生各种形式失效现象的特征及规律进行分析研究,从中找出产生失效的主要原因及防止失效的措施,称为失效分析。 失效分析的一般过程 ①深入装备失效现场、广泛收集、调查失效信息,寻找失效构件及相关实物证据。 ②对失效构件进行全面深入的宏观分析,通过种类认定推理,初步确定失效件的失效类型。 ③对失效件及其相关证物展开必要的微观分析、理化检验,进一步查找失效的原因。 ④通过归纳、演绎、类比、假设、选择性推理,建立整个失效过程及其失效原因之间的联系,进行综合性分析。 ⑤在可能的情况下,对重大的失效事件进行模拟试验,验证因果分析的正确性。

一、冷轧辊失效机理 冷轧辊特性:目前冷轧厂常用的冷轧辊材质有高碳铬铝系及高碳铬铝钒系,一般生产工艺过程为电渣重熔或钢包精炼——铸锭——锻造——球化退火——粗加-——探伤——调质——精加工——探伤——工频感应淬火——低温回火——精加工成品。为确保优良的使用性能,其表层组织要求为细针马氏体、隐针马氏体+少量残余奥氏体+粒状碳化物。冷轧工作辊工作时要承受高的轧制压力、冲击载荷、疲劳及磨损,需要有足够的强度抵抗大的弯深而均匀的表面硬化层及耐磨层,以获得良好的耐磨性;三是要有优良的表层抗裂性及抗剥落性能。 冷轧辊的失效形式:冷轧工作辊工作时处于复杂的应力状态。受残余应力、接触应力、弯曲应力、扭转应力以及因温度分布不均引起的热应力等的影响,失效形式有早期磨损、粗糙化、略坑、勒痕、裂纹、剥落以及断裂,但工作层剥落是冷轧辊的主要失效形式,占到工作辊正常失效的50%以上,轧辊剥落往往造成轧辊彻底报废。其剥落按断口可分为疲劳剥落和脆性剥落:按剥落块形状分为贝壳状剥落、带状剥落、区域点状剥落、热冲击剥落:按剥落深浅分为表层剥落及次表层剥落等。 裂纹来源: (1)热裂纹。断带、重叠、卡钢及打滑时,轧辊局部剧烈受热温度可高达相变点以上直至800C,在辊身以接触点为中心会产生从外至内一定温差,从而在不同深度组织有所变化,当温升和组织变化引起的热膨胀和来自周围的压应力超过屈服极限时产生塑变,并伴有残余压应力释放和应力重新分布,并出现拉应力,随着拉应力的出现就产生微裂纹。

热轧带钢轧辊破坏原因分析

热轧带钢轧辊破坏原因分析 轧辊包括工作辊和支承辊,是轧机的关键零件之一,装在轧机牌坊窗口当中。在热轧带钢生产中,轧辊的消耗量很大,尤其是工作辊,它始终与红热钢坯直接接触。因此,找出轧辊的损坏原因并做出相应的解决措施,提高轧辊寿命,降低辊耗,是轧机制造商和用户都十分关注的问题。在实际生产过程中,轧辊的破坏形式主要有轧辊磨损、轧辊裂纹、轧辊剥落及轧辊断裂等。 轧辊磨损 轧辊磨损与其他磨损在形成机理上相同。从摩擦学角度来讲,可理解为轧辊宏观和微观尺寸的变化。一般讨论的轧辊磨损,包括宏观磨损和微观磨损,具体表现为轧辊直径的缩小。然而,轧辊磨损在几何和物理条件上与一般磨损又有差别,如轧辊上的某点与轧件周期性接触;轧件上的氧化铁皮作为磨粒进入辊缝;冷却液和润滑液的作用以及热的影响等。因此,在实际工作条件下轧辊磨损的因素很复杂,根据其产生的原因可分为以下几种: (1)机械磨损或摩擦磨损。工作辊与轧件及支撑辊表面相互作用引起的摩擦形成的磨损。 (2)化学磨损。辊面与周围其他介质相互作用,造成表面膜的形成与破坏的结果。 (3)热磨损。在工作状态下,轧辊因高温作用其表面层温度剧烈变化引起的磨损。 1 工作辊磨损 工作辊磨损主要是由工作辊与轧件及工作辊与支撑辊之间的相互摩擦引起的,这种摩擦包括滑动摩擦和滚动摩擦,其磨损主要发生在与轧件相接触的部位。 在生产过程中,由于带钢在轧机间形成活套,以致增大了带钢对上辊的包角,增加了接触面积的压力;带钢上表面再生氧化铁皮的滞留也增加了上辊的磨损,因此,上辊比下辊的磨损量大。由于传动端与电机连接,因振动之故,传动侧的磨损量比换辊侧的大。 2 支承辊磨损 支撑辊磨损主要是与工作辊的相对滑动和滚动造成的。工作辊表面的炭化物颗粒将支撑辊表面的金属微粒磨削下来,使支撑辊产生磨损。其磨损量的大小与轧辊的材质、表面硬度及光洁度、辊间压力横向分布、相对滑动量和滚动距离等因素有关。 实践证明,由于夹带大量氧化铁皮的冷却水作用在辊面,致使下支撑辊工况条件差,从而加速了轧辊的磨损。另外,支承辊的磨损也与上、下支撑辊的辊面硬度有关。 轧辊裂纹 由于多次温度循环产生的热应力造成轧辊逐渐破裂,即裂纹,它是发生在轧辊表面薄层的一种微表面现象。轧制时,轧辊受冷热交替变化剧烈,从而在轧辊表面产生严重应变,逐

冷热轧辊

轧辊热处理 轧辊按工作状态可分为热轧辊和冷轧辊,按所起的作用可分为工作辊、中间辊、支承辊,按材质可分为锻辊和铸辊(冷硬铸铁)。通常轧辊的服役条件极其苛刻,工作过程中承受高的交变应力、弯曲应力、接触应力、剪切应力和摩擦力。容易产生磨损和剥落等多种失效形式。不同的用途、不同类型的轧辊处在各自特定的工况条件,其大致的性能要求如下: 轧辊类型主要性能要求辊身硬度工作温度℃ 热轧工作辊抗热疲劳裂纹性能,抗表面粗糙性能 HB:196~302 室温~850 冷轧工作辊高硬度,耐磨性,抗疲劳剥落性能HS:90~105 室温~180 对热轧辊来说,辊面不允许出现裂纹,表面裂纹缺陷容易造成应力集中,加速扩展而使轧辊失效。热疲劳裂纹主要起因于周期性交变热应力,严重情况下,裂纹扩展可能造成辊面剥落,甚至断辊。 冷轧辊主要失效形式包括划伤、粘辊和剥落等。冷轧辊辊身表面应有高而均匀的硬度,其优劣表现在辊身工作层的耐磨性,即耐粗糙性。 大型热轧锻钢工作辊用钢的化学成分、临界点以及工艺参数如下。 热轧锻钢工作辊用钢化学成分(%) 钢号 C Si Mn P S Cr Ni Mo V Cu 55Cr 0.50~0.60 0.17~0.37 0.35~0.65 ≤0.025≤0.025 1.00~1.30 ≤0.30 - - ≤0.25 50CrMnMo 0.45~0.55 0.20~0.60 1.30~1.70 1.40~1.80 - 0.20~0.60 - 60CrMnMo 0.55~0.65 0.25~0.40 0.70~1.00 0.80~1.20 - 0.20~0.30 - 50CrNiMo 0.45~0.55 0.20~0.60 0.50~0.80 1.40~1.80 - 0.20~0.60 - 60CrNiMo 0.55~0.65 0.20~0.40 0.60~1.00 0.70~1.00 1.50~2.00 0.10~0.30 - 60SiMnMo 0.55~0.65 0.70~1.10 1.10~1.50 - - 0.30~0.40 - 60CrMo 0.55~0.65 0.17~0.30 0.50~0.80 0.50~0.80 ≤0.25 0.30~0.40 60CrMoV 0.55~0.65 0.17~0.37 0.50~0.80 0.90~1.20 - 0.30`0.40 0.15~0.35 70Cr3Mo 0.60~0.80 0.40~0.70 0.50~0.90 2.00~3.00 0.40~0.60 0.25~0.60 - 常用热轧锻钢工作辊的临界点及工艺参数 钢号临界点热处理 Ac1 Ac3 Ar1 Ms 正火温度(℃)淬火温度(℃)回火温度(℃) 55Cr 735 755 - - 840~850 820~840 590~630 60CrMo 676 805 685 - 840~860 860~870 600~660 60CrMoV 765 798 - 265 890~910 860~880 600~680

锻钢冷轧辊在铝行业的应用与发展

有色设备 2011(1) 锻钢冷轧辊在铝行业的应用与发展 张 青,葛浩彬 (宝钢集团常州轧辊制造公司技术中心,江苏常州213019) [摘 要]根据冷轧行业的不断发展和需求变化要求,介绍了锻钢冷轧辊的材料、质量要求、制造技术等的变化进步历程,以及对轧铝工作辊的质量要求和制造技术的应用与发展。[关键词]锻钢冷轧辊;轧铝;材质;毛坯质量;热处理 [中图分类号]TG 333 17 [文献标识码]A [文章编号]1003-8884(2011)01-0042-03 D evel op ment and Application of Forged Steel Col d R oll in A l u m i nu m Industry Z HANG Q i n g ,GE H ao b i n (Techn i c al Cen ter ,Changzhou Baostee lRo l,l Changzhou 213019,Ch i n a) Abst ract :A ccor d i n g to the requ ire m ents for con ti n uously developm ent and variab le de m and in co l d roll i n g industry ,th i s paper intr oduces t h e changed progress process aboutm ateria,l qua lity requ ire m en,t m an u facturing technology o f forged steel co l d ro l,l and presents the quality de m and for a l u m i n u m r o lli n g w ork i n g ro ll and the applicati o n and deve l o p m ent ofm anufact u ring technology of for ged stee l cold ro l.l K ey w ords :for ged stee l cold ro l;l alu m i n um ro lling ;m ateria;l b lank quality ;heat treat m ent [收稿日期]2010-09-29 [作者简介]张 青(1978-),江苏丹阳人,工程师,硕士,从事新材料开发与技术服务工作,现任技术中心副主任。 葛浩彬(1966-),江苏溧阳人,研究员级高级工程师,大学本科,从事新材料开发与市场开拓工作,现任宝钢集团常州轧辊制造公司副总经理。 冷轧锻钢轧辊作为轧机的重要工具和消耗件,伴随着冷、热轧技术的进步和轧制装备的不断更新换代而发展。近年来,我国钢铁和有色金属冷轧业发展迅速,产量已经连续多年排名世界第一。全球金融危机以后,在需求多样化的拉动下,冷轧产品向多品种、高强度、薄规格、宽板幅、高表面质量方向发展;为了更好地调控板形和板断面形状,适应各类材料的轧制,轧机的类型越来越多,机型也愈来愈复杂。这些来自轧机和轧制产品的需求变化,促使我国的轧辊制造企业一直在密切关注和深入了解轧制行业的发展趋势和实际需求,不断开发新型冷轧辊制造和使用维护技术,为自身的发展和技术进步,不断调整和确定产品发展和服务方向。 铝冷轧工作辊作为冷轧辊的重要一支,其产品技术质量要求受到铝冷轧行业发展的重要影响。与钢铁冷轧工作辊相比,铝冷轧工作辊有如下特点: (1)高的表面硬度; (2)淬硬层硬度下降慢;(3)硬度均匀性要求高; (4)近乎苛刻的机械加工精度;(5)高的耐磨性;(6)载荷相对较轻。 冷轧行业的发展离不开轧辊工业的支撑。冷轧辊材质和制造技术的发展动力来自轧制现场对轧辊质量需求的扩展,更深、更耐磨、更均匀、更抗事故是轧机作业对轧辊质量要求持续的主题。同样,对于轧铝工作辊,特别是铝箔工作辊而言,轧辊的表面质量、硬度和尺寸精度要求随着产品档次的提高变化已近似苛刻,辊身表面的冶金质量要求高。 1 冷轧辊材质的发展与应用 轧辊材质的发展是冷轧辊技术发展的代表。目前,国内常用冷轧辊材质有2%C r 、3%C r 、5%C r 和S H SS(半高速钢)等4个主要系列。以前大体上冷轧辊材质的设计和制造工艺改进以钢铁行业为主要对象,首先考虑的是淬透性、抗事故性等问题,但随着钢铁冷轧行业的发展和细分,其在均匀性、高硬度及尺寸加工的高精度方面与铝冷轧辊的一些特征有了更多的相似性。 2%C r 材质目前在钢铁大型连轧机上已经淘 42

钢丝断裂原因分析

钢丝断裂原因分析

一、夹杂物引起断裂 线材中非金属夹杂物的存在,破坏了组织的连续性,起到了一个显微裂纹的作用。当受到外力作用时,在夹杂物的顶端首先产生附加的应力集中。尤其在原奥氏体晶粒交界处出现的大块状、条状或片状碳化物,这些异常碳化物在材料冷变形时,严重地阻塞了位错的移动,致使该处产生应力集中。当应力集中达到一定大小时便会使碳化物开裂,或在碳化物与基体交界处产生裂纹。当裂纹达到失稳状态尺寸,地瞬时产生断裂。 非金属夹杂物的多少是衡量帘线钢质量高低的一个重要因素。在用SEM对断口进行分析的过程中,经常发现非金属夹杂物。在典型的杯锥状断口上有时候就能发现夹杂物,SEM表明大多为三氧化二铝夹杂或其它高熔点脆性夹杂物。其避免主要是通过精炼,使夹杂物变为塑性低熔点夹杂物。 脆性夹杂物是引起钢丝断裂的重要原因之一,而夹杂物引起断裂分为以下几种形势: 1、夹杂物与钢基体之间界面脱开 拉伸过程中,在夹杂物周围的局部加剧了应力集中;裂纹优先在与拉应力垂直的夹杂物与基体的界面产生并沿着夹杂物与钢基体界面扩展,致使夹杂物与基体界面脱开。 2、夹杂物本身开裂

由于脆性较矮杂物本身具有缺陷,在拉伸过程中,在缺陷处产生严重的应力集中,由于局部应力升高而导致夹杂物本身开裂。; 3、混合开裂 钢中非金属夹杂物的形状、分布是没有规律的,因此夹杂物在钢中引起裂纹也是随机性的,取决于夹杂物的性质、尺寸、形状及分布,对于同类型的夹杂物,由于形状、分布和受力方向不同,往往产生断裂的情况也不尽相同,有时两种断裂方式同时存在,有时两种断裂方式交替进行。4、沿两种不同类型夹杂物的相界开裂 钢中经常出现几种夹杂物相共生在一起的复合夹杂物,由于各类夹杂物之间的力学性能和物理性质不同,相界结合力较弱,在拉应力作用下容易从相界开裂。 二、偏析引起的钢丝断裂 在一定程度上,中心偏析对钢丝拉断的危害必脆性夹杂物。因为偏析在更大程度上影响了钢丝的延伸性,从而使塑性变形不能在存在偏析的地方产生。在钢丝最初的拉拔过程中偏析导致小的裂纹的出现,等进入了最终拉拔时就导致了人字形断口(chevroncracks) 在连铸过程中减少中心偏析的途径有以下几个: 1、中心偏析随着中包过热度的降低而降低,因此中包的钢液温度应该尽可能的低;

轧辊失效方式及其原因分析

轧辊失效方式及其原因分析 轧机在轧制生产过程中,轧辊处于复杂的应力状态。热轧机轧辊的工作环境更为恶劣:轧辊与轧件接触加热、轧辊水冷引起的周期性热应力,轧制负荷引起的接触应力、剪切应力以及残余应力等。如轧辊的选材、设计、制作工艺等不合理,或轧制时卡钢等造成局部发热引起热冲击等,都易使轧辊失效。 轧辊失效主要有剥落、断裂、裂纹等形式。任何一种失效形式都会直接导致轧辊使用寿命缩短。因此有必要结合轧辊的失效形式,探究其产生的原因,找出延长轧辊使用寿命的有效途径。 1 、轧辊剥落(掉肉) 轧辊剥落为首要的损坏形式,现场调查亦表明,剥落是轧辊损坏,甚至早期报废的主要原因。轧制中局部过载和升温,使带钢焊合在轧辊表面,产生于次表层的裂纹沿径向扩展进入硬化层并多方向分枝扩展,该裂纹在逆向轧制条件下即造成剥落。 1.1 支撑辊辊面剥落 支撑辊剥落大多位于轧辊两端,沿圆周方向扩展,在宽度上呈块状或大块片状剥落,剥落坑表面较平整。支撑辊和工作辊接触可看作两平行圆柱体的接触,在纯滚动情况下,接触处的接触应力为三向压应力。在离接触表面深度为 0.786b 处 ( b 为接触面宽度之半 ) 剪切应力最大,随着表层摩擦力的增大而移向表层。 疲劳裂纹并不是发生在剪应力最大处,而是更接近于表面,即在 Z 为 0.5b 的交变剪应力层处。该处剪应力平行于轧辊表面,据剪应力互等定理,与表面垂直的方向同样存在大小相等的剪应力。此力随轧辊的转动而发生大小和方向的改变,是造成接触疲劳的根源。周期交变的剪切应力是轧辊损坏最常见的致因。在交变剪切应力作用下,反复变形使材料局部弱化,达到疲劳极限时,出现裂纹。另外,轧辊制造工艺造成的材质不均匀和微型缺陷的存在,亦有助于裂纹的产生。若表面冷硬层厚度不均,芯部强度过低,过渡区组织性能变化太大,在接触应力的作用下,疲劳裂纹就可能在硬化过渡层起源并沿表面向平行方向扩展,而形成表层压碎剥落。 支撑辊剥落只是位于辊身边部两端,而非沿辊身全长,这是由支撑辊的磨损型式决定的。由于服役周期较长,支撑辊中间磨损量大、两端磨损量小而呈 U 型,使得辊身两端产生了局部的接触压力尖峰、两端交变剪应力的增大,加快了疲劳破坏。辊身中部的交变剪应力点,在轧辊磨损的推动作用下,逐渐往辊身内部移动至少 0.5mm ,不易形成疲劳裂纹;而轧辊边部磨损较少,最大交变剪应力点基本不动。在其反复作用下,局部材料弱化,出现裂纹。 轧制过程中,辊面下由接触疲劳引起的裂纹源,由于尖端存在应力集中现象,从而自尖端以与辊面垂直方向向辊面扩展,或与辊面成小角度以致呈平行的方向扩展。两者相互作用,随着裂纹扩展,最终造成剥落。支撑辊剥落主要出现在上游机架,为小块剥落,在轧辊表面产生麻坑或椭球状凹坑,分布于与轧件接触的辊身范围内。有时,在卡钢等情况下,则出现沿辊身中部轴向长达数百毫米的大块剥落。 1.2 工作辊辊面剥落 工作辊剥落同样存在裂纹产生和发展的过程,生产中出现的工作辊剥落,

提高冷轧辊的使用率

提高冷轧辊的使用效率 摘要:本文介绍了冷轧薄板厂使轧辊的主要失效形式,分析了轧辊的断裂和裂纹产生原因,提出了具体改进措施。 关键词:轧辊失效硬度 1 前言 随着市场的发展,客户对冷轧薄板的质量要求不断提高,生产厂家必须适应市场的需求,生产更高质量的产品以满足用户的需要。在轧机所有备件中,轧辊是非常重要的备件。轧辊在工作中要承受高的轧制力、冲击载荷、疲劳和磨损等,因此冷轧辊的消耗非常大。统计资料表明,在冷轧生产过程中冷轧辊的消耗在生产成本中所占的比例达25%左右。冷轧薄板厂要想取得更好的经济效益, 一方面要生产适销对路的高附加值产品,另一方面要降低生产成本。因此,提高轧辊的使用效率是取得良好经济效益的重要手段之一,也是本文阐述的主要内容。 2 轧辊磨削设备及轧制产品 2.1 磨削设备 鄂钢采用MK8463/5000-H数控轧辊磨床用于加工冷轧板带生产线中的工作辊、支承辊修磨加工。机床可磨削圆柱形、具有中凸(凹)要求的任意曲线的辊面以及圆锥形的辊面等。可磨削正弦及抛物面曲线辊面、辊面端部倒角。机床总体布局如图1: 图 1 2.1.1 机床主要技术规格参数见表1

表1 最大磨削直径Ф630 mm 最小磨削直径(在最大砂轮情况下)Ф100 mm 顶尖距5000 mm 工件最大重量6000kg 中凸(凹)量(半径方向) 1.5 mm 中心架支承直径范围根据工件要求定 头架顶尖移动量150 mm 尾架顶尖移动量500 mm Z轴—拖板纵向移动速度10~5000 mm/min X轴—砂轮架横向进给速度1~2000 mm/min X1轴—测量臂调整速度0~1000 mm/min 数控最小分辨率(U轴)0.00001mm 数控最小分辨率(U1轴)0.0001mm 数控最小分辨率(X1轴)0.0001mm 数控最小分辨率(X轴)0.0001mm 数控最小分辨率(Z轴)0.0005mm 工件转速(无级) 8~80 r/min 砂轮规格Ф750×100×Ф305 mm 砂轮最大线速度(恒线速) 50m/s 冷却液箱流量300L/min 电机总功率约120kW 头架电机(西门子)22kW 砂轮架电机(西门子)30kW 机床总重量55t 2.1.2机床工作精度标准 1.圆柱面磨削见表2 表2 圆度≤0.002mm 辊形误差≤0.002mm 表面粗糙度≤Ra0.32μm 圆度≤0.002mm 纵截面上直径一致性≤0.002/1000 mm 表面粗糙度≤Ra0.2μm 2.中凸(凹)面磨削(半径上的中凸(凹)量为0.1mm。磨削技术要求见表3。 表3

轧辊失效方式及其原因分析

轧辊失效方式及其原因分析 摘要:介绍了轧辊存在剥落、断裂、裂纹等几种失效方式,并重点分析了轧辊剥落和断裂产生的机理,为分析生产实践中轧辊失效原因和采取相应改进措施以提高轧辊使用寿命提供了依据。 关键词:轧辊;失效原因;剥落;断裂;裂纹 1 前言 轧机在轧制生产过程中,轧辊处于复杂的应力状态。热轧机轧辊的工作环境更为恶劣:轧辊与轧件接触加热、轧辊水冷引起的周期性热应力,轧制负荷引起的接触应力、剪切应力以及残余应力等。如轧辊的选材、设计、制作工艺等不合理,或轧制时卡钢等造成局部发热引起热冲击等,都易使轧辊失效。 轧辊失效主要有剥落、断裂、裂纹等形式。任何一种失效形式都会直接导致轧辊使用寿命缩短。因此有必要结合轧辊的失效形式,探究其产生的原因,找出延长轧辊使用寿命的有效途径。 2 轧辊的失效形式 2.1 轧辊剥落 轧辊剥落为首要的损坏形式,现场调查亦表明,剥落是轧辊损坏,甚至早期报废的主要原因。轧制中局部过载和升温,使带钢焊合在轧辊表面,产生于次表层的裂纹沿径向扩展进入硬化层并多方向分枝扩展,该裂纹在逆向轧制条件下即造成剥落。 2.1.1支撑辊辊面剥落支撑辊剥落大多位于轧辊两端,沿圆周方向扩展,在宽

度上呈块状或大块片状剥落,剥落坑表面较平整。支撑辊和工作辊接触可看作两平行圆柱体的接触,在纯滚动情况下,接触处的接触应力为三向压应力,如图1所示。在离接触表面深度(Z)为0.786b处(b为接触面宽度之半)剪切应力最大,随着表层摩擦力的增大而移向表层。 图1 滚动接触疲劳破坏应力状态 疲劳裂纹并不是发生在剪应力最大处,而是更接近于表面,即在Z为0.5b的交变剪应力层处。该处剪应力平行于轧辊表面,据剪应力互等定理,与表面垂直的方向同样存在大小相等的剪应力。此力随轧辊的转动而发生大小和方向的改变,是造成接触疲劳的根源。周期交变的剪切应力是轧辊损坏最常见的致因。在交变剪切应力作用下,反复变形使材料局部弱化,达到疲劳极限时,出现裂纹。另外,轧辊制造工艺造成的材质不均匀和微型缺陷的存在,亦有助于裂纹的产生。若表面冷硬层厚度不均,芯部强度过低,过渡区组织性能变化太大,在接触应力的作用下,疲劳裂纹就可能在硬化过渡层起源并沿表面向平行方向扩展,而形成表层压碎剥落。 支撑辊剥落只是位于辊身边部两端,而非沿辊身全长,这是由支撑辊的磨损型式决定的。由于服役周期较长,支撑辊中间磨损量大、两端磨损量小而呈U 型,使得辊身两端产生了局部的接触压力尖峰、两端交变剪应力的增大,加快了疲劳破坏。辊身中部的交变剪应力点,在轧辊磨损的推动作用下,逐渐往辊身内

断裂分析报告

M10-45H 内六角紧定螺钉 断裂分析 据客户反映,由本公司供应的M10-45H 紧定螺钉,安装过程中发生故障。 现状:M10-45H 内六角紧定螺钉,在密封锁紧螺母安装过程中发生断裂; 安装过程:在部件上指定部位使用43~48N.m 扭矩旋入紧定螺钉(作为限位螺钉使用),然后,在紧定螺钉露出端使用43~48N.m 的终拧扭矩旋入密封锁紧螺母并拧紧,防止螺钉与基体之间的间隙造成介质渗漏。 一,失效件检测分析: 1,断口形貌宏观观察: 断面基本与轴线垂直,颜色灰色,颗粒细小均匀;放大10倍进行观测,未见目测可见原始裂纹。 2,机械性能检测: 3,金相检测分析: 沿轴线使用线切割方式制样,检测了纵向剖面的金相组织。如下图图1和图2。 图1 芯部金相x500 芯部金相组织:回火马氏体+回火屈氏体 图2 螺纹金相x200 螺纹部位金相:无脱碳层或渗碳层 4,化学成分分析: 合金钢SCM435: 0.35%C, 0.21%Si, 0.70%Mn, 0.013%P, 0.007%S, 1.04%Cr, 0.185%Mo 符合GB3098.3对45H 级螺钉的材质要求。 失效件检测分析表明,该产品机械性能和使用材料完全符合GB3098.3标准要求 二,断裂原因分析: 对失效件的机械性能检测、金相组织检测、化学成分检测结果表明,产品完全符合标准规范。 对照标准GB/T 3098.3-2000,在标准条文内第一章,标准范围,对该产品的描述,第一段有明确:本标 准 规 定了由碳钢或合金钢制造的、在环境温度为10-35℃条件下进行试验时,螺纹公称直径为1.6- 24m m 的紧定螺钉及类似的不受拉应力的紧固件机械性能。如下截图:

螺栓断裂原因分析

螺栓断裂原因的分析 一般情况下,我们对于螺栓断裂从以下四个方面来分析: 第一、螺栓的质量 第二、螺栓的预紧力矩 第三、螺栓的强度 第四、螺栓的疲劳强度 实际上,螺栓断裂绝大多数情况都是因为松动而断裂的,是由于松动而被打坏的。因为螺栓松动打断的情况和疲劳断裂的情况大体相同,最后,我们总能从疲劳强度上找到原因,实际上,疲劳强度大得我们无法想象,螺栓在使用过程中根本用不到疲劳强度。 一、螺栓断裂不是由于螺栓的抗拉强度: 以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固20公斤的部件,也只使用它最大能力的千分之一。即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺纹紧固件的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。 二、螺栓的断裂不是由于螺栓的疲劳强度: 螺纹紧固件在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次。换句话说,螺纹紧固件在使用其疲劳强度的万分之一时即松动了,我们只使用了它大能力的万分之一,所以说螺纹紧固件的松动也不是因为螺栓疲劳强度。 三、螺纹紧固件损坏的真正原因是松动: 螺纹紧固件松动后,产生巨大的动能mv2,这种巨大的动能直接作用于紧固件及设备,致使紧固件损坏,紧固件损坏后,设备无法在正常的状态下工作,进一步导致设备损坏。 受轴向力作用的紧固件,螺纹被破坏,螺栓被拉断。 受径向力作用的紧固件,螺栓被剪断,螺栓孔被打成橢圆。 四、选用防松效果优异的螺纹防松方式是解决问题的根本所在: 以液压锤为例。GT80液压锤的重量是1.663吨,其侧板螺栓为7套10.9级M42螺栓,每根螺栓的抗拉力为110吨,预紧力取抗拉力一半计算,预紧力高达三、四百吨。但是螺栓一样会断,现在准备改成M48的螺栓,根本原因是螺栓防松解决不了。 螺栓断裂,人们最容易得出的结论是强度不够,因而大都采用加大螺栓直径强度等级的办法。这种办法可以增加螺栓的预紧力,其摩擦力也得到了增加,当然防松效果也可以得到改善,但这种办法其实是一种非专业的办法,它的投入太大,收益太小。 总之,螺栓是:“不松不断,一松就断。”

轧辊失效分析

轧辊失效分析 轧辊失效分析 欧州轧辊制造商协会撰写 目录 第一章剥落 1.1 马鞍形剥落 6 1.2 挤压裂纹和带状疲劳剥落7 1.3 外层/芯部结合层处剥落9 1.4 外层/芯部接合层工作层厚度不够10 1.5 辊肩脱落11 第二章热裂纹 2.1 带状热裂纹 12 2.2 梯状热裂纹 13 2.3 局部热裂纹 13 第三章机械事故损伤 3.1 冲击过载造成轴承部位断裂14 3.2 弯矩引起的轴承部位断裂15 3.3 传动端扭矩引起辊颈折断16 3.4 辊承磨损及烧死引起的辊颈折断17 3.5 热(应力)折断18 第四章表面及次表面(皮下)缺陷 4.1 针孔和气孔 19 4.2 夹杂 20 4.3 硬点和软点 20 第五章轧制过程中辊面状态 5.1 表皮剥落 21 5.2 大块带状剥落22 5.3 粘钢 23 5.4 带边边缘磨损24 5.5 划伤/机械碰伤印痕25 前言 1.目前,对任何成熟的轧制过程、轧制工艺,都可有不同的轧辊材质选择。这些轧辊在正常的轧制条件下,可以顺利得用到报废直径。然而,为了得到这一结果,正确的轧辊管理是非常必要的,这当中包括轧制周期长短的确定,良好的磨辊程序及无损检测手段。除此之外,轧辊磨损轮廓的测量记录,工作硬化层的检测对轧辊服役期的增加也会是有益的。 2. 在确定宽带钢工作辊材质时,轧辊制造厂家需要知道相关的轧制条件,其中包括精轧

段机(架)的数量,轧辊服役的架次,带宽单位宽度上的轧制力,轧辊工作部位的最大预弯度,这些要素决定了复合轧辊芯部和外层材质的选择。 3. 尽管轧辊制造商和用户都谨慎行事,还会发生轧辊失效,导致轧辊部分或全部损失,甚至损坏到轧机设备。这些轧辊失效的原因都是与制造或使用相关的。 4. 轧辊断裂的形貌往往用于鉴定断裂的原因。一般来说,断裂可以是由负荷超载还是疲劳所引发的。疲劳断裂初始从裂纹开始,逐渐延展,形成典型的断裂面。这种断裂面相对平滑,呈现多条抑制线,一旦疲劳裂面达到临界大小,剩余的截面便突发破裂。疲劳断裂的典型例子有支撑辊剥落、支撑辊颈折断,还有二辊式轧机的工作辊从内圆角区域处的断裂(应力腐蚀也会是引发原因之一)。 5. 工作辊辊颈由于弯曲或扭矩过大引起的折断往往是自发性的。这主要发生在负荷超载时所引发的辊颈折断。这种折断也会发生在工作辊的辊身中部,尤其是四辊轧机的工作辊。 6. 工作辊传动端因扭矩过大而折断往往是由于机械负荷超载所引发的。机械负荷超载可能是轧辊间隙设置不当所致,也有可能来自外来物渗入轧辊间隙。该种情况会在没有扭矩过载的保护装置的轧线上发生,或保护装置失控的情况下发生。 在机械负荷超载的情况下辊颈的折断可以有效地防止轧机及其部件的损坏,如主轴、齿轮箱及主电机。由扭矩过大引起的辊颈失效可看出断裂面与轴向或45 。为了减少轧机的损坏,工作辊的传动端就材质而言,针对最大的扭矩负荷,设计成相对弱的部位。 7. 事故的发生,如粘接、卡带或辊缝间隙设计不当不一定都会引发轧辊的损坏,事故之后对轧辊正确处理非常重要。将损伤的轧辊适当修磨消除缺陷是最安全的办法。有许多有用的技巧处理事故后的轧辊。因此,钢厂人员有必要注重这方面的相关措施。 8.整支轧辊的成本包括购买价和修磨费用,总是同轧机的运行成本联系起来一同考虑。一支新辊的价值一般低于一个热轧厂运行一小时的价值,然而复杂的轧辊事故可以导致轧机长时停机,有的长达15小时甚至更久,而且很难排除。另外,轧辊事故对支撑辊或轧机的损害也是不可排除的。有些损坏常常需要一段时间才能体现出来。 9. 这本轧辊失效的册子将有助于将来解释和防止类似情况发生。 10. 尽管本手册提供的一系列轧辊在服役期中所存在的问题及现象,但仍不排除有没包括的问题。我们可以承诺此手册概括90%的轧辊使用过程中所出现的现象,对轧机操作人员提供有力的帮助。 11. 欢迎用户对本手册给予有益的建议,补充和预防措施以便使此手册能成为轧辊用户和制造厂家的活用的工具。 第一章剥落 1.1马鞍形剥落 1.1描述 这种马鞍形状的疲劳剥落是起源于结合层下部芯部材质,从而引发了大块的掉肉。从断裂表面上我们可以看到许多疲劳截面的传播途径。这种剥落往往发生在片状石墨芯部的离心工作辊(4辊轧机),而且发生的部位往往是辊身中部。 1.1.2起源 这种剥落往往是由于在轧制薄而硬的带钢时,压下比大,轧辊在偱环承受高负荷而引发剥落。轧辊芯部材质交错地受正负应力的作用,在超过疲劳极限时,会引发微裂纹的产生。随着微裂纹的增加,则会导致芯部材质的弱化。下一个阶段,这些裂纹通过传播,逐渐由芯部延伸到辊身表面,进而产生“马鞍形”掉肉。在轧辊自身残余应力还在的情况下,越容易导致这种现象的发生。其实这种现象通常可用超声波手段及时地检测出来。超声的回波的减弱会给我们这方面的提示。也就是说这种轧辊材质不能承受此类轧机的负荷。 轧辊制造商责任

铸铁轧辊断裂

瑞浦科技轧钢部断辊分析报告 事故经过 2015年1月24日丙班轧制规格为Φ5.5,钢种为304B,在早晨7:15左右,发现13#轧机下辊开裂严重,上辊有细小裂纹,且裂纹都为外径环形裂纹。如图所示: 13H-6下辊 13H-6上辊 轧辊断裂面 轧辊信息 实际过钢量:360吨(钢种为200Cu、304HC和304B吨,要求单槽过钢量为1000吨)厂家:北京首钢京顺轧辊有限公司 辊型:Φ550*700*1865 材质:NiCrMo无冷球(Ⅱ)(铸铁轧辊)

报废直径:470mm 使用外径:487.8mm,一次直径车削量为7mm 厂家提供硬度:61-62HS 实际测量硬度:63HS(使用便携式硬度仪)。 裂纹情况 裂纹主要分布为沿外圆直径环绕轧辊一周,少量分布沿断口处沿轴向分布。无明显的因缩孔产生的凹坑和掉块等铸造缺陷,裂口为撕裂的断口,无明显的收缩塑性变形,断裂面有发亮区域,且表面光滑。轧槽表面无明显的热裂纹,周围无烧伤裂纹。 轧制信息 13#轧机在轧制断辊时的电流曲线: 如图,12#、13#、14#轧机电机的电流波动较大,在6:58左右13#轧辊断裂

可能原因分析 1.开轧温度偏低 换槽后的轧制钢种为200Cu、304HC和304B,要求开轧温度为:1220±20℃,调阅加热炉均热段的温度曲线,如下所示: 均热段温度曲线 如图,加热炉均热段温度均保持在1220℃左右,符合加热工艺的要求温度,且轧制过程中钢坯无长时间停顿,所以可以排除开轧温度低的原因。 2.轧辊含夹渣物或气泡等铸造缺陷 观察轧辊断口可以排除因轧辊可能含有的夹渣物、缩孔等铸造缺陷造成断辊的可能性。 3.坯料尺寸与压下量 在304HC换钢种到304B时中轧区域有一次调料,在2#飞剪处取样检验12#出口的料形尺寸为48.4*48,符合生产要求,即13#轧机入口的料形尺寸符合要求,无巨大变化。13#轧辊断裂下线时的辊缝为3.54mm,轧制表的标准辊缝为5.5mm, 因304B钢种宽展系数较大,所以辊缝会有所减小,且加上辊缝对轧槽磨损的弥 补,所以该辊缝是合适的,坯料尺寸过大和压下量过大造成断辊的可能性可以排

相关文档