文档库 最新最全的文档下载
当前位置:文档库 › 热负荷及散热量计算..

热负荷及散热量计算..

热负荷及散热量计算..
热负荷及散热量计算..

热负荷及散热量计算

所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。所谓得

热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。

系统热负荷应根据房间得、失热量的平衡进行计算,即

房间热负荷=房间失热量总和-房间得热量总和

房间的失热量包括:

1)围护结构传热量Q1;

2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2;

3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量

Q3;

4)加热由外部运入的冷物料和运输工具的耗热量

Q4;5)水分蒸发的耗热量Q5;

6)加热由于通风进入室内冷空气的耗热量Q6;

7)通过其他途径散失的热量Q7;

房间的得热量包括:1)太阳辐射进入房间的热量Q8;

2)非供暖系统的管道和其他热表面的散热量Q9;

3)热物料的散热量Q10;

4)生产车间最小负荷班的工艺设备散热量Q11;5)通过其他途径获得的散热量

Q12;1.1围护结构的基本耗热量a

t t KF q

w n )(''式中

'q —围护结构的基本耗热量,W ; K —围护结构的传热系数,

w/(㎡.℃);

F —围护结构的面积,㎡;w t '

—供暖室外计算温度,℃;n t —冬季室内计算温度,℃;

a —围护结构的温差修正系数。

整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和:

)(Q '

''1

w n t t KF q 1.2围护结构的附加耗热量在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要

对基本耗热量加以修正,

这些修正耗热量称为围护结构附加耗热量。附加耗热量主要有朝向修正,风力附加和高度附加耗热量。

1.2.1朝向修正耗热量

朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。

表1-1朝向修正率

朝向

修正率朝向修正率北

0 西-5% 东

-5% 南20% 1.2.2风力附加耗热量

《暖通规范》规定:在一般情况下不必考虑风力附加。

1.2.3高度附加耗热量

《暖通规范》规定:民用建筑和工业辅助建筑(除楼梯间外)

的高度附加率,当房高超过四米时,每增加一米,为附加围护基本耗热量和其他修正量总和的

2%,但总附加率不超过总附加率的

15%。所以,建筑物的总耗热量等于围护结构基本耗热量和

朝向修正,风力附加和高度附加耗热量的总和,则)

1()'(1Q '1f ch w n g x x t t aKF x )(式中ch x —朝向修正率,%;

f x —风力附加率,%;

g x —高度附加率,%;

1.3冷风渗透耗热量

在室内外风压和热压压差作用下,

室外的冷空气通过门窗的缝隙渗入室内,被加热后又溢出室外。把冷空气加热到室内温度所消耗的热量称为冷风渗透耗热量。本设计采用百分数法计算冷风渗透耗热量。

根据建筑结构特点,本设计渗透热量占围护结构的总耗热量的

30%。1.4冷风侵入耗热量

冬季在风压和热压的共同作用下,当外门开启时,会有大量的冷空气进入室内,把将这部分冷空气加热到室温时所消耗的热量称为冷风侵入耗热量。采用外门附加的方法计算,

冷风侵入耗热量=外门基本耗热量×外门附加率

公共建筑工业产房中,其外门附加率为

500%。1.5工作工况下围护结构耗热量及其修正

以电炉变压室为例

1)围护结构基本耗热量计算

取定n t =12℃,耗热量包括基本耗热量和附加耗热量,计算全部列于附表

1-1中,所得电炉变压室、电气间围护结构传热耗热量

'

1Q =3209.30(W )

2)冷风渗透耗热量按百分数法计算,根据建筑物特点,查得百分率为30%。

'1'2%30Q Q 962.79(W )

3)冷风侵入耗热量

按短时间开启的外门计算,取外门基本耗热量的

60%。

冷风侵入耗热量=1150.50×0.6=690.30(W )

1.6工艺设备耗热量

1)熔炼工段工频感应电炉的散热量

cos )1(N 860Q

e 式中

Ne —感应电炉额定功率,KW ;η—感应电炉的总效率,%,根据工艺资料采取; cos

φ—补偿后的功率因数,一般为0.9-0.95。当工频感应电炉装有排烟罩时,散入室内的热量为其总散热量的30% 根据公式

Q=860

×125×(1-80%)×0.9×0.3=6449.2(KW )2)浇注工段的散热量

浇注金属与落砂在同一房间进行时,金属至浇注温度至冷却至室温的全部热量,一部分热量由水分蒸发时吸收,其余全部散落车间内,每浇注一吨金属的散热量为:

1000

)](175.0)(605[-Q -Q Q 2121n t t g d d g )(式中

Q1—浇注金属在熔化时的含热量,KW/吨; Q2

—铸件落砂在离开本工段时的含热量,KW/吨; g —每浇注一吨金属所需的型砂重量,公斤;

1d —浇筑前型砂的含湿量,公斤

/公斤;2d —落砂后型砂含湿量,公斤

/公斤;

t —落砂时型砂温度,℃;n t —室内温度,℃;

根据公式得,

Q=(263200-187600)-[605×4.5(0.055-0.02)-0.175

×4.5(43-12)]×1000

=4725(KW)

(3)电动设备散热量

清理工段,砂处理的工段有抛丸机,

破碎机,所有的工艺设备都在室内,电动设备散热量公式为:N 1000Q

321式中

Q —电动设备发热量,

W ; N —电动设备安装功率(额定功率)

,KW ;η—电动机效率1—电机容量利用系数,是电动机最大实效功率原装功率之比,一般取0.7-0.9;

2—电动机负荷系数,电动机每小时平均时耗功率与机器设计时最大时耗功率之

比一般取0.5-0.8;

3—同时使用系数,电动机同时使用的安装功率与总安装功率之比,一般取0.5-1.0;以清理工段的橡胶履带抛丸清理机为例计算电动设备散热量

由设备参数知,橡胶履带抛丸清理机电动设备安装功率N=,电动机效率η=,η1=0.7,η2=0.6,η3=0.8

则每台橡胶履带抛丸清理机电动设备散热量为:

N

Q3

1000

1

2

=1000×0.7×0.6×0.8×24.3÷0.8

=10206(W)

(4)照明设备耗热量

Q=n1n2n3N

式中Q—散热量,W;

N—灯具安装功率,KW;

n1—同时使用系数;

n2—整流器散热系数,装在室内取 1.2,装在棚顶取 1.0;

n3—安装系数,明装时取 1.0,暗装灯罩上部穿有小孔时,取0.5-0.6,灯罩上无孔时取0.6-0.8;

则根据公式得, Q=1000×1.0×1.2×1.0×100=120(KW)

(5)人员散热量

Q=φnq

式中 Q—人体散热量,KJ/h;

φ—考虑不同的工作场所性质,取φ=1.0;

n—人数,个;

q—每个人的平均散热量,KJ/h,取q=1348KJ/h;

则根据公式得, Q=1.0×16×1348=21568(KJ/h)

数据汇总:

表1-3车间电动设备的散热量汇总

设备名称台数散热量(W/台)总散热量W

橡胶履带抛丸清理机

3 10206 30618

金属履带抛丸机 1 3150 3150 颚式破碎机 2 6300 12600 混砂机 1 12600 12600

射芯机12 5833.33 69999.96

造型机12 756 9072

2局部排风系统设计

2.1排风量确定

此车间为铸造车间,在型砂配制、制型、落砂、清砂等过程,都可使粉尘飞扬,特别是用

喷砂工艺修整铸件时,粉尘浓度很高,所用的石英危害较大。

在机械加工过程中,对金属零件的磨光与抛光过程可产生金属和矿物性粉尘。

所以各工部采用局部排风,在需要排风部位加局部排风罩即可。

局部排风罩的一般形式有:密闭罩,柜式排风罩,外部吸气罩,接受式排风罩,吹吸式排风罩。

局部排风罩的设计原则:

(1)局部排风罩应尽可能包围或靠近有害物,使有害物源局限于较小的局部空间。应尽可

能减小吸气范围,便于捕集与控制。

(2)排风罩的吸气气流方向应尽可能与污染气流运动方向一致。

(3)已被污染的吸入气流不允许进入人的呼吸区。

(4)排风罩力求结构简单,造价低,便于安装和维护。

(5)局部排风罩的配置应与生产工艺协调一致,力求不影响工艺操作。

(6)要尽可能避免干扰气流和过堂风,送风气流等对吸气气流的影响。

熔炼工段主要产生大量的烟尘和热,在炉口热源上部设置接受式排风罩。清理工段主要产

生扬尘,橡胶履带抛丸机和履带抛丸清理机采用伞型排风罩;

破碎机采用局部密闭罩;混砂机采用整体密闭罩。浇注工段主要产生大量的热,采用移动式排风罩。热源上部接受式排风罩排风量的计算

接受罩罩口尺寸按下式计算:

低悬圆形罩 D=d+0.5H

低悬矩形罩 A=a+0.5H

B=b+0.5H

式中 D —罩口直径(m );

A,B

—罩口的长和宽(m ); d

—热源水平投影直径(m ); a,b

—热源水平投影长和宽(m ); 高悬罩

H

d g 8.0D 低悬罩排风量按下式计算''0v

v F q q v 式中0v q —热源上部热射流起始流量(s m /3);

V'—罩口扩大面积上空气的气流速度(m/s ),通常取0.5-0.75m/s ;

F

'—罩口扩大面积,即罩口面积减去热射流的断面面积(㎡)

;高悬罩排风量按下式计算'',v

v F q q z v 式中z q ,v 罩口所在断面上的热射流流量(s m /3);

热源上部热射流起始流量,计算式为

3120

)(381.0p v QhA q 式中0v q —热射流流量s m /3

;Q —对流散热量(KJ/s );

h —热源定性尺寸(m ),对垂直热表面是指高度,对水平则是指该投影的短边尺

寸;

Ap —在热源顶部热射流的横断面积(㎡)

;热射流流量z q ,v (

s m /3)31

47.13,1026.7Q z q z

v 式中Q —热源对流散热量(KJ/s );

z -假想点热源距离计算断面的有效距离(

m ),由下式计算

Z=H+2B 式中H -热源距计算面的距离(m );

B -热源水平投影直径或长边尺寸(

m ); 对流散热量Q

Q=αF Δt

式中F -热源的对流换热面积(㎡)

;Δt -热源表面与周围空气的温度差(℃);α-表面传热系数(

KJ /㎡.s.℃);

表面传热系数α

3

1A t 式中A 系数,对于水平散热面,A=1.7×10^(-3);对于垂直散热面,A=1.13×10^(-3)。

根据接受罩安装的H 的不同可以分为两类,p A 5.1H 为低悬罩,p A 1.5H 为高悬罩。

密闭罩排风量计算,本设计采用截面风速法

Av q v

3600式中v q -所需排风量(s m /3);

A -密闭罩截面积(㎡);

v -垂直于密闭罩的平均风速(m/s)。

排风罩排风量计算,控制风速法

F v q v

0式中v q -吸气口排风量(

s m /3);F -吸气口面积(㎡);

V0-罩口平均风速(m/s )。

2.1.1熔炼工部排风量计算

本工段的主要任务是提供浇铸用的铁水,

熔炼过程中产生大量的烟尘和热,工频感应电炉主要产生的危害物油蒸汽,金属氧化物,

粉尘及蒸汽。所以给其炉口设置接受式排风罩,选

用圆形排风罩。

在炉上方0.5米处安装接受罩,m m p

53.0])4.04(5.1[A 5.1212因安装高度p A 5.1H ,该接受罩属低悬罩。

确定热源的对流换热量

)

/(75.10]4.0)121200(107.1[10

7.1F Q 2

34334

3s KJ F t t 热源顶部的热射流起始流量

)

/(16.0]4.0)4.04(

75.10[381.0)(381.033

1223

1

2

0s m h QA q p v 确定罩口直径D=d+0.5H=0.4+0.5×0.5=0.65m

取v'=0.75m/s

排风罩排风量

)/(79.1])4.0(4)65.0(4[

75.032.0{Q 32

2'

''0v s m F v q v 此处共有3台工频感应电炉,则总通风量为

19332(m3/h )

2.1.2清理工段排风量计算查得Q3210A 橡胶履带抛丸清理机的除尘风量为

3500h m /3,清理工段共有3台Q3210A 橡胶履带抛丸清理机,则总排风量为

10500h m /3。2.1.3砂处理工段排量计算

Q326金属履带抛丸清理机的除尘风量为2200h m /3

。PEF-250×400型号的颚式破碎机,根据工艺资料,破碎机的加料方式为滑槽给料。此

时加料口的粉尘较大,设置局部密封排风罩。颚式破碎机下部排料至受料设备的卸料点也会

产生粉尘,而排料至输送带的物料落差<1m ,直接给料。这时,颚式破碎机的加料口产生的粉尘不大,可只做密闭罩,不设排风装置。查《铸造车间通风除尘技术》可得颚式破碎机下部排风量为1200h m /3。

混砂机在受料时,产生粉尘很多,同时一般的混砂工艺是加料后先干混数分钟,

再加水湿混。在干混过程中,由于辗轮的辗混,

搅拌也会产生大量的粉尘,所以给混砂机设置整体密闭罩加排风。

根据公式得,

混砂机所需的排风量=3600×0.25×3.26=2934(m3/h )

2.1.4制芯、浇注和造型工段排风量计算

制芯采用普通的射芯机,芯砂中含有一定的水分,所以产生粉尘不多,产生有害气体也

不多,故不设置排风。铸件浇注和冷却过程有

CO 产生和大量的热产生,在浇注生产线的浇

注段设置移动式排风罩。

根据公式得,

)

/(2500)

/(69.05

.0)432

.006.110()10(33222h m s m V F x q x v 表2-1各工部局部机械排风量汇总表

工段名称设备名称个数每个设备排

风量

(h m /3)

排风罩个数排风罩形式

熔炼工段

工频感应电炉 3 6840 4 接受式排风罩清理工段橡胶履带抛

丸清理机

3 3500

4 伞型排风罩金属履带抛

丸机

1 2200 1 伞型排风罩砂处理工段

颚式破碎机 3 1200 6 局部密闭罩混砂机 1 2934 1 整体密闭罩浇注工段浇注输送器2500 14 移动式排风

2.2排风系统的划分

在本设计中,熔炼工段产生大量的烟尘,热量,所以单独设置除尘系统。清理工段和砂

处理工段的设备产生的大多是粉尘,

所以合并为一个除尘系统。电炉变压器室,电气间主要产生的是余热,划分为一个排风系统。浇注工段产生CO 和大量的热,单独设置排风系统。则总共划分为四个排风系统。

2.3除尘器选择及计算

除尘器的选择依据:

(1)处理的气体量。

(2)气体的性质:包括气体的成分、温度、湿度、密度、黏度、露点、毒性、腐蚀性、爆

炸性、气体量和其波动范围等物理化学性质。

(3)粉尘的性质:含有成分、密度、浓度、粒径分布、比电阻、腐蚀性、湿润性、爆炸性、黏附性、纤维性、吸水性等物理、化学性质。

(4)净化要求:净化效率,压力损失,废气排放标准和环境质量标准等。

(5)装置的经济性:设备占用空间,投资和运行费用,维护操作方便和回收综合利用的情况等。

在工程中,通常以净化效率为主选择装置。

87.5%

%10020025-200%100C C -1/25,/200C //C %

100C C -1N

033i 33N 0N

0)(净化效率:以熔炼工段为例:)度,(净化装置进口的含尘浓)

度,(净化装置出口的含尘浓式中)(iN on

n iN

iN m mg C m mg m g C m g 本设计选用LMF-系列脉冲袋式除尘器,

它占地面积小,处理风量大,并能有效的进行组合。表2-2除尘设备规格表

型号

过滤面积袋数处理风量(m3/h )耗气量(m3/h )设备阻力(mmHg )LMF-4A-320

140 140 ≤300000.75-1.5 100-200 LMF-3A-240 230 230 ≤220000.75-1.5 100-200 图2-1 C-1系统图

(1)绘制系统轴测图,对各管段编号。

(2)选定最不利环路,本系统选择1-2-3-4-5-6-7-除尘器-风机为最不利环路。

(3)根据各管段的风量及选定的流速,确定各管段的断面尺寸和单位长度摩擦阻力。当输送含有金属粉尘的气体时,风管内最小风速为:垂直风管

13m/s ,水平风管15m/s 。管段1-2

根据s m v s m q v /15,/340013

21,,求出管径。

mm

v q v 28315

436003400

43600D 2

-1管径取整,令2-1D =280mm ,所以单位摩擦阻力为m Pa m /11R 21,。

(4)计算各管段的摩擦阻力和局部阻力。

1)管段1-2:

Pa

l R m m 1101011P 2121,21,局部阻力

圆形伞罩α=30°,ε=0.04

90°弯头(R/D=1)两个,ε=0.25×2=0.5

直流三通(1-2)

当ɑ=30°,

)

(09.15525.13713.1)

(25.13715222.1213

.153.05.004.014

.053.05

.064003200

5.024

6.0119.0F F 30

F F F 246.0

)56.0(4119.039.04F F 21,21,221221,2-82-1322

83-22-83-22-82-12

22322

2

22-82-1Pa P P Pa v P l l m m F m m d d 管内动压

,查得,,根据)(。

管段1-2的阻力

)

(09.26509

.155110P P 21,21,2-1Pa P m 其他管段与管段1-2计算方法一致,将计算结果汇总在表格内,具体见附表

2。

(5)校核节点各处各支管的阻力平衡

1)节点2:

%10%5347

.21728.10247.217P P 28.102,47.217P 2-128

2-1282

-1P Pa P Pa 为使管段1-2,8-2达到阻力平衡,要修改原设计管径,重新计算管段阻力。根据公式,改变管段1-2的管径

mm

P P 331)28.10247.217(280)(D 225

.0225.02821

'

2-1根据通风管道统一规则,取mm 320D '

2-1。

根据风量和直径查找的实际流速

'2-1V = 12m/s ,管内动压'21,P d =86.35Pa 查表,

'21,R m =5.6Pa 摩擦阻力

21'21,'21,P l R m m =5.6×13=72.8Pa

局部阻力

直流三通(1-2)

当ɑ=30°,13.153

.05.014.014

.053.05.012800

6400L L 5.0246.0119.030F F F 119.0)

39.0(4246.0)56.0(4,158.045.04F 2-82-12-12-83228

3-22-82

-122282232222

-1,查得,,,,根据)(。F F m F m F m 管内动压=86.35Pa

Pa P P Pa P z m d z 1708.7258

.97P 58.9735.8613.1P

'

21,'

21,'

2121,'21,重新校核阻力平衡

'

2-12

-8'2-1P P -P =%391708.102-170>10%

此时,认为节点二未处于平衡状态,继续同此方法校核管段。

对于阻力不平衡的管段还可以

利用平衡阀调节。

(6)计算系统总阻力

风帽除尘器)(-77-66-55-44-33-221P R P P P P P P P P P l z m =2038.45(Pa )

(7)选择风机

v

q f

v p f

q K q PK ,P 式中)系统的总风量()

系统的总阻力(;,气力输送系统除尘系统排风系统风量附加系数,一般的,气力输送系统除尘系统排风系统风压附加系数,一般的)风机的风量(风机的风压h m q K K K K K h m Pa v q q q q

p p p

f

v f

/Pa P 15.115.1-1.1,1.1.1K 20.1-15.1K ,15.11.1K /q )(P 3p 3,由式,风机的风压:

p f PK P =1.2×2038.45=2446.14(Pa )风机的风量:v q f v q K ,q =1.15×24820=28543(m3/h )

选用风机4-72No.8C 。其他系统的水力计算,风机选型同C-1系统算法一致。

表2-3 风机型号及技术参数表系统编号风机型号流量(m3/h )转数

(r/min )全压(Pa )电动机型号

功率(KW )C-1 4-72No.8C 30834 1800 2754

Y200L2-2 37 C-2 4-2×72No.6E 26500 1620 1078

Y160M-4 11 P-1 4-72No.8C 7920 710 372

Y100L1-4 2.2 P-2 4-2×72No.8E 13000 920 411

Y112M6 2.2 P-4 4-68NO.8D 13280 730

470 Y132M-8 3

热负荷及散热量计算

热负荷及散热量计算 所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。所谓得热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。 系统热负荷应根据房间得、失热量的平衡进行计算,即 房间热负荷=房间失热量总和-房间得热量总和 房间的失热量包括: 1)围护结构传热量Q1; 2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2; 3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量Q3; 4)加热由外部运入的冷物料和运输工具的耗热量Q4; 5)水分蒸发的耗热量Q5; 6)加热由于通风进入室内冷空气的耗热量Q6; 7)通过其他途径散失的热量Q7; 房间的得热量包括: 1)太阳辐射进入房间的热量Q8; 2)非供暖系统的管道和其他热表面的散热量Q9; 3)热物料的散热量Q10; 4)生产车间最小负荷班的工艺设备散热量Q11; 5)通过其他途径获得的散热量Q12; 1.1围护结构的基本耗热量 式中 'q —围护结构的基本耗热量,W ; K —围护结构的传热系数,w/(㎡.℃); F —围护结构的面积,㎡; w t '—供暖室外计算温度,℃; n t —冬季室内计算温度,℃; a —围护结构的温差修正系数。 整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和: 1.2围护结构的附加耗热量 在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要对基本耗热量加以修正,这些修正耗热量称为围护结构附加耗热量。附加耗热量主要有朝向修正,风力附加和高度附加耗热量。 朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。 表1-1朝向修正率 《暖通规范》规定:民用建筑和工业辅助建筑(除楼梯间外) 的高度附加率,当房高超过四米时,每增加一米,为附加围护基本耗热量和其他修正量总和的2%,但总附加率不超过总附加率的15%。 所以,建筑物的总耗热量等于围护结构基本耗热量和朝向修正,风力附加和高度附加耗热

采暖热负荷的计算方法

采暖热负荷的计算方法((0 目前绝大多数企业为节省时间,采用的热负荷确定方法均为估算法,即用房间面积乘以每平方米的设计热负荷指标。通常为朝南房间为120W/m2,其它房间为120W/m2-150W/m2不等,全凭设计人员的经验和感觉。为了设计效果,尽可能往大值选取。最终导致一些散热器型号选取过大,大马拉小车的现象在目前供暖设计中屡见不鲜,导致用户的初投资增加,整个供暖系统的花费加大。 站在为客户省钱的角度,尽可能规范选取散热器型号,我们的热负荷选择只需在充分满足房间温度的要求下,上下有轻微浮动即可。 以本公司原本设计的锦苑天元坊15幢的某户家庭暖气系统为例。该设计说明中缺少一些关键的技术参数,如:建筑物所处楼层(是否有屋顶),整个建筑物的维护结构资料(外墙,外窗,地面的材质和传热系数),扬州市的气象参数等,导致估算出来的某些房间热负荷太大。以书房为例,书房面积8.2m2,选取的是雅克菲钢制板式散热器,规格型号22K-600-800,热量1399W,算下来单位设计热负荷高达170W/m2,以北方比较成熟的供暖工艺来说,从节能角度出发,某户用热的单位面积热量超过98W/m2就要罚款,由此可见我们的设备选型不太合理,需要改进。 仍以该住宅的书房为例,采用常规的热负荷计算方法,其中维护结构:层高3m,外墙:双面抹灰24空心砖墙,传热系数为1.47W/m2·K,外窗:金属框 经过计算,在保证房间温度18o C的情况下,最东北角的房间热负荷为957W。单位面积平均负荷为116 W/m2,其他房间由于朝向等因素,该值会相应降低。而本设计选择的散热器其单位设计热负荷高达170W/m2,选择稍大,如选择小一号的散热器22K-600-600,热量1061W即可满足要求。 但是这种计算相对复杂,每个房间的外墙,外窗都要计算,如果是底层或者是顶层还需计算地面和顶层的散热量。工作量很大,对于企业设计不太适用。

暖气散热量计算方法

文档收集于互联网,已重新整理排版.word 版本可编辑,有帮助欢迎下载支持.
首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂 家都可以定制。其次了解暖气片的高度,市面上常见的一般有 670mm、1500mm、1800mm 三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。 暖气片片数需要根据房间面积来计算的。首先选择一款性价比最高的暖气片,记住它每片的 散热量,用这个【散热量】除以 100 就得到【每平米需要的片数】,然后用【房间面积】 除以【每平米需要的片数】,就得到这个房间需要的【总片数】。举个例子:小编客厅面积 为 20 平米,选中鲁本斯塞尚大水道 1800 高的暖气片,每片的散热量是 260W,算法是: 用散热量 260W 除以 100 等于 2.6(每平米需要的片数),(房间面积)20 除以 2.6 等于 7.7,所以 20 平房间需要 8 片一组的暖气片。 最后,建议房屋密封性不好的买家在此算法的基础上多买一到两片,这样能达到更好的采暖 效果。
1)影响散热量的因素可以归结为两个方面:一是散热器本身的特点,如它的材料、形状、壁厚、焊接质量 和表面处理等;二是它的使用条件,也就是外界条件,如流过散热器的热媒种类、温度、流量,进出水的 方式,房间里的空气温度和流速,四周墙面的颜色和温度,散热器的安装方式,组装片数等。因此,不仅 不同的散热器散热性能不同,而且同一片或同一组散热器在不同外界条件下的散热性能也不相同。 散热器的散热量可用下式表示: Qs=KsFs(tp-tn)
式中 Qs——散热器的散热量(W); Ks——散热器的传热系数[W/(m2?℃)]; Fs——散热器的散热面积(m2); tp——散热器内热媒的平均温度(℃); tn——散热器所在室内的空气温度(℃)。 由式中可见,温差 tp-tn 越大,散热量也越大。如果它们成直线关系变化,则 Ks 就应该是常数。但是,事 实上散热量的增大倍数要高于温差的增长倍数。 Ks 值并不能直接测得,即便有了 Qs、tp、tn 的数值之后,Ks 还和散热器的面积 Fs 有关。准确测量 Fs 是 十分困难的,而 Fs 的取值又影响到 Ks 值的大小。同一组散热器,采用的 Fs 越大,Ks 就越小;Fs 越小, Ks 就越大。由于 Ks 值不能单独用来评价散热器的优劣,可见公式 Qs=KsFs(tp-tn)用来表达散热器的热工 特性也不完全适宜。 国际标准规定,在评价散热器时,只给出散热量,而不再给出 Ks 值。 (2)由于采暖系统的热媒和管道布置方式的不同,散热器的计算选择也不相同,我们通过例题来进行分析。 【例】单管系统温降计算及散热器选择: 已知:供水温度为 95℃,回水温度为 70℃,各层热负荷如图 18 59 所示,房间设计温度为 18℃,计算 选择各层散热器。 图 18 59 【解】(1)计算立管的总热负荷
Q=6550kcal/h (2)计算立管的用水量 G=655095-70kg/h=262kg/h (3)计算立管上各段的温度 t1=95℃ t2=(95-1500262)℃=(95-5 73)℃=89 27℃
1 文档来源为:从网络收集整理.word 版本可编辑.

发热量计算公式

发热量计算公式 以煤工业分析结果,创立计算煤炭低位发热量新公式的原理与方法,不再详述。仅就实际应用的计算公式介绍如下: 1.计算烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=35859.9-73.7Vad-395.7Aad-702.0Mad+173.6CRC 焦/克 或用卡制表示的计算式: Qnet.ad=8575.63-17.63Vad-94.64Aad-167.89Mad+41.52CRC卡/克Qnet.ad——分析基低位发热量; Vad——分析基挥发分(%); Aad——分析基灰分(%); Mad——分析基水分(%); CRC——焦渣特征。 2.计算无烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=34813.7-24.7Vad-382.2Aad-563.0Mad焦/克 或者以卡制表示的计算式: Qnet.ad=8325.46-5.92Vad-91.41Aad-134.63Mad卡/克

如果有条件能测定H值,或者从固定用煤矿区取得矿区以往H值的 平均值,用下式计算的无烟煤低位发热量结果精度更高。 以焦耳表示的计算式: Qnet.ad=32346.8-161.5Vad-345.8Aad-360.3Mad+1042.3Had 焦/克 或者用卡制表示的计算式: Qnet.ad=7735.52-38.63Vad-82.70Aad-86.16Mad+249.27Had 卡/克 3.计算褐煤低位发热量新公式 以焦耳表示的计算式: Qnet.ad=31732.9-70.5Vad-321.6Aad-388.4Mad焦/克 或者用卡制表示的计算式: Qnet.ad=7588.69-16.85Vad-76.91Aad-92.88Mad卡/克 4.在水泥生产使用中,计算标准煤耗时,按上述公式计算的分析基低 位发热量(Qnet.ad)用下式换算成应用煤低位发热量(Qnet.ar)后,再 计算标准煤耗。 应用煤低位发热量计算公式 100-Mad100-Mar Qnet.ar=Qnet.ad×──────-23(Mar-Mad×─────) 焦/克 100-Mad100-Mad 煤经挥发分测定后遗留在坩埚内固体残渣的特征。 焦渣特征(CRC)煤炭热分解以后剩余物质的形状。根据不同形状分为8

采暖设计热负荷指标q计算

采暖设计热负荷指标q计算 一、比较准确的计算方法,公式如下: q=Q/A0 式中Q,A0分别为冬季采暖通风系统的热负荷(W)和建筑面积(m2)。 Q=Q1+Q2 1)围护结构的耗热量,包括基本耗热量和附加耗热量,且基本耗热量计算公式为 Q1=A×F×K×(tn-twn) 式中Q1、F、K、a、tn、twn分别表示围护结构的基本耗热量(W)、维护结构的面积(m2)、传热系数[W/(m2·K)]、温差修正系数(采暖通风与空气调节设计规范,表4.1.8-1)是根据围护结构与室外空气接触的状况对室内外温差采取的修正系数、冬季室内计算温度(℃)、采暖室外温度(℃)。 围护结构附加耗热量Q2,包括朝向附加、风力附加、外门附加和高度附加,各项附加应按其占基本耗热量的百分比确定。根据采暖通风与空气调节设计规范4.2.6中规定进行修正。2)加热由门窗缝隙渗入室内的冷空气的耗热量,计算公式为: Q2=0.28×cp×ρwn×L×(tn-twn) 式中Q2表示由门窗缝隙渗入室内的冷空气的耗热量(W)、tn和twn与上同、Cp表示空气的定压比热容[kJ/(kg·K)] ,温度为250K时,空气的定压比热容cp=1.003kJ/(kg·K),300K时,空气的定压比热容cp=1.005kJ/(kg·K),冬天可按250K时的值算。ρwn表示采暖室外计算温度下的空气密度(kg/m3)、L表示渗透空气量(m3/h)、其计算公式如下: L=L0×l×m×b 式中L0表示在基准高度(10m)风压的单独作用下,通过每米门缝进入室内的空气量[m3/(m·h)] 、l表示门窗缝隙的计算长度(m)、m表示冷风渗透压差综合修正系数(采暖通风与空气调节设计规范,附录D),b表示门窗缝渗风指数, b=0.56~0.78。 二、概算的方法: 1)体积热指标法:建筑物的供暖设计热负荷可按下式进行概算。 Qn=qv×V×(tn-twn)式中, Qn——建筑物的供暖设计热负荷,W; V——建筑物的外围体积,m3; tn——供暖室内计算温度,℃; twn——供暖室外计算温度,℃; qv——建筑物的供暖体积热指标(W/m3·℃),它表示各类建筑物,在室内外温差为1℃时,每1 m3建筑物外围体积的供暖热负荷。供暖体积热指标qv的大小主要与建筑物的围护结构及外形有关。建筑物围护结构传热系数越大、采光率越大、外部建筑体积越小等qv值将越大。 2)面积热指标法: 建筑物的供暖设计热负荷可按下式进行概算。 Qn=qf×F 式中, Qn——建筑物的供暖设计热负荷,W; F——建筑物的建筑面积,m2; Qf——建筑物的供暖面积热指标,W/m2,它表示每1 m2建筑面积的供暖设计热负荷。 建筑物的供暖热负荷,主要取决于通过垂直围护结构(墙、门、窗等)向外传递热量,它与建筑物的平面尺寸和层高有关,因而不是直接取决于建筑平面面积。用供暖体积热指标表征建筑物供暖热负荷的大小,物理概念清楚;但采用供暖面积热指标法,比体积热指标更易于概算,对于一般民用住宅层高在3m以下工程上可采用面积热指标法进行概算。

机房散热量计算

所有的电子设备在工作过程中都要产生热量,这些热量必须排出到设备外部,否则热量的积累将会导致故障。选择适合的通风或冷却系统,首先需要知道设备的产热量和散热空间。 热是一种能量,其度量单位是焦耳,BTU(British thermal unit,英制单位)和卡。通用的计量标准是BTU/小时或焦耳/秒(焦耳/秒等同于瓦特),在实际应用中这两个单位会需要换算,计算公式如下: 3.41 BTU/小时 = 1 瓦特 在计算机或其他处理信息的仪器中真正用于处理数据的电源能量是很少的,可以忽略不记。因此,交流电源的能量几乎全转化成热量了,也就是说,从设备的电源消耗就可推算出热量的产生量。 制冷量取决于全部系统 一个系统总的发热量是由所有产热设备相加得出。产生的热量通常用表示为 BTU/小时,也可以用其他单位表示,这个数据可以从设备的手册中得到。将每个设备的发热量相加就得出整个系统总的值。UPS作为一个特殊的例子在下面详细介绍。 很多IT设备的交流功率消耗(瓦特)可以在APC的UPS选择方案中找到,或者从设备的产品数据中也可查到。若设备的耗电量由VA或电压-电流值的形式来表示,那么设备的伏安数也可以代替瓦来衡量热量的输出。要是设备的功耗用安或安培表示,则用电流值乘以交流供电电压得出伏安值。由于有功率因数存在,用伏安值来估算设备的发热量,其准确程度是比不上用瓦特来表示的,依据不同的设备会有0到35%的误差。但是,这些估算方法都可以给出一个比较保守的,不会低估的设备发热量。 对于UPS散热量的确定

由于UPS将功率从输入端送到输出端,因此在计算UPS的散热量时与其他IT设备时是有区别的。UPS工作在不同的模式下,其产生的热量也是不同的。在UPS的绝大多数运行时间内,是工作在普通状态下的,即把AC电源提供给被保护设备,这时UPS运行效率可以达到80%到98% 。因此,UPS的无用功(或称功率损失)会在2%到20%之间,这部分交流输入功率会转化成热量。 不同类型的UPS产生的无用功是由其设计电路结构决定的,可由下表估算出: UPS热量的产出由此公式计算得出: 产热量(BTU/小时) = 负载功率(瓦特)x 无用功比例(由表1查出)x 3.41 (BTU转换常数) 注意:当UPS工作在电池放电模式或正在给电池充电时,它的产热量会增加,但这是很正常的。UPS输出的这些能量并不需要特别注意,无须计算在通风冷却系统的设计容量中。 综述 一个电子系统总的热量输出是其中每个设备热量输出的总和。热量的输出(BTU/小时)是设备自身的一个指标;但在技术手册中不一定能查到,也可以用设备的电源功率消耗来估算。UPS的产热量可由技术手册中查到,或通过负载量和产生无用功比例计算得出。在设计通风冷却系统时,应将容量考虑的大一些,以适应将来设备的增加而带来的额外热量。 工艺设备的散热量计算公式 工艺设备的散热量计算公式为:

人体散热量计算

网络日记空调房间人体的散热及散湿量计算 文章引用自: [引用] 2007-04-25 | 发表者: 五洲韩威 空调房间人体的散热及散湿量计算 人体的散热量可分为显热和潜热。显热是由人的体温与周围空气温度之间的温差而产生的;潜热是体表排汗或肺呼吸而带入空气的热量。 精密空调 第一章机房专用精密空调特点 能够充分满足机房环境条件要求的机房专用精密空调机(也称恒温恒湿空调)是在近30年中逐渐发展起来的一个新机种。早期的机房使用舒适性空调机时,常常出现由于环境温湿度参数控制不当而造成机房设备运行不稳定,数据传输受干扰,出现静电等问题。 精密空调机,通常具有如下一些性能特点:

大风量、小焓差 与相同制冷量的舒适性空调机相比,机房专用精密空调机的循环风量约大一倍,相应的焓差只有一半,机房专用精密空调机运行时通常不需要除湿,循环风量较大将使得机组在空气露点以上运行,不必要像舒适性空调机那样为应付湿负荷而不得不使空气冷却到露点以下,故机组可以通过提高制冷剂的蒸发温度提高机组运行的热效率,从而提高运行的经济性。根据经验,显热比为的机组的单位制冷量的能耗仅是显热比为的机组的60%左右。同样,机房要求温湿度指标相对稳定,较大的循环风量将有利于稳定机房的温湿度指标,显然,在制冷量一定的情况下,风量的增大将导致焓差的减少,因而通常机组只能在显热比相当高的工况下运行,这恰恰与机房的负荷特点相适应。 通常舒适性空调冷负荷中有30%是为了消除潜热负荷,有70%是为了消除显热负荷。对机房来讲,其情况却大不相同,机房主要是设备散出的显热,室内工作人员散出的热负荷及夏季进入房间的新鲜空气的热湿负荷(仅占总负荷的5%)。并且冬季是需要加湿而不是减湿,即使在冬季机房仍需要消除热负荷,特别是程控机房更是如此。鉴于以上特点,如将一般舒适性空调机组用于机房,则会造成能量浪费。例如一个热负荷为 7056kcal/h的机房,若使用机房专用空调机组,则总耗电量为,而舒适性空调机组则需耗电,即多耗电两倍。同样制冷量的空调机其风量各异,舒适性空调机的风量与冷量比为1:5,而恒温恒湿机风量与冷量比为1:,机房专用精密空调机具有大风量、小焓差、高显热比的特点,通常焓差为2kcal/kg左右。也就是说,机房的热负荷90%~95%是显热负荷,同样的热负荷显热比越高要求送风量越大。这就要求机房的空调系统能够提供较大的送风量,所以一般机房送风量要比通常舒适性空调房间所需的送风量大~2倍。 机房的热负荷变化幅度较大 通常要在10%~20%之间变动,这是由于主机设备所处的工作状态不同,消耗的功耗不同所造成的。因此,机房精密空调系统必须能够适应这种负荷的变化,以使电子元器件工作在所要求的环境条件之中,保证电路性能的可靠性。 送回风方式多样 由于要与电子通信设备的冷却方式相适应,机房的空调系统的送风回风方式是多种多样的:有上送风、下送风,有上回风、下回风、侧回风等,生产企业一般是利用标准化手段开发一系列机型,以满足用户的不同需要。 机房专用精密空调机送风形式多为上送下回和下送上回式。机房中铺设防静电活动地板,机房专用精密空调采用下送上回式送风,使冷气直接进入活动地板下,这样使地板下形成静压箱,然后通过地板送风口,把冷气均匀地送入机房内,送入设备机柜内。为此,机房专用精密空调应有足够的风量把机房中的热量带走。采用这种送风形式可大大提高空调效率,同时还可以大幅度节省过去习惯的管道送风的工程费用,降低工程造价,使室内布局美观。这是机房理想的送风方式。当然,机房送风形式要与设备散热形式一致。 过滤

锅炉热负荷的定义及供暖热负荷的计算方式

锅炉热负荷的定义及供暖热负荷的计算方式 锅炉的热负荷,也就是单位时间内锅炉能产生的热量的大小,相当于一台锅炉的功率。在选购锅炉的时候,得先确定好所需要的锅炉热负荷的大小,再进行锅炉的选购。锅炉热负荷的单位一般有以下几种:千卡(大卡)/小时、吨/小时、千瓦/小时。 几种主要的热量单位 首页我们得了解一下几种热量单位。常用的几种热量单位主要有以下三种: 1、大卡(Kcal):大卡也称为千卡,1千卡的热量等于将1公斤的水温度升高1℃所需要的热量。 2、瓦(W):瓦是瓦特的简称,是国际单位制的功率单位。瓦特的定义是1焦耳/秒(1J/s),即每秒钟转换,使用或耗散的(以焦耳为量度的)能量的速率。通常我们用千瓦来作单位。1瓦=1焦耳(1W=1J/S) 3、1吨:在锅炉热负荷中称的吨,是工程上所用的吨,又指1吨的蒸发量。工程上是指在1小时内产生1吨蒸汽所需要的热量 热量单位的换算方法 这几种热量单拉的换算方法如下所示: 1万大卡/小时≈11.63千瓦 1千瓦=0.086万大卡/小时 1吨蒸发量≈60万大卡/小时1万大卡/小时≈0.0166吨蒸发量 1吨蒸发量≈700千瓦 1千瓦≈0.0014吨蒸发量 1吨蒸发量≈0.7MW 1MW≈1000千瓦 怎么计算取暖热负荷 知道了怎么热量计算单位,那么我们又如何对计算自己的需要多大的供暖热负荷呢? 用这个公式就能计算出所需要的供暖热负荷的大小: Q=q(单位面积热负荷指标)×S供暖面积 其中Q表示供暖热负荷的大小,q代表单位面积热负荷指标,s代表供0暖面积。单位面积热负荷指标:对北京地区居民取暖q一般取60大卡/平方米小时,对新建经济房甚至可以取到45大卡/平方米小时;对办公大楼、商场、宾馆等可以取65~70大卡/平方米小时。 以上是锅炉热负荷的定义及供暖热负荷的计算方式,

散热器的散热量计算

冀州市冀暖北方暖气片厂 本标准参照采用国际标准ISO3147—1975(E)《热交换器—供水或蒸汽主环路的热平衡实验原理和试验方法》、ISO3148—1975《用空气冷却闭式小室确定辐射散热器、对流散热器和类似设备散热量的试验方法》、ISO3149—1975《用液体冷却闭式小室确定辐射散热器、对流散热器和类似设备散热量的试验方法》、ISO3150—1975(E)《辐射散热器、对流散热器和类似设备—散热量计算和结果的表达式》。 1、主题内容与适用范围本标准规定了在闭式小室内测试采暖散热器(简称散热器,暖气片)单位时间散热量(简称散热量)的原理、装置、方法、要求和数据的整理。本标准适用于以热水或蒸汽为热媒的采暖散热器。 2、术语 2.1辐射散热器在采暖散热器中,部分靠辐射放热的称辐射散热器。 2.2对流散热器在采暖散热器中,几乎完全靠自然对流放热的称对流散热器。 3、测试原理 3.1散热器的散热量散热器的散热量应由下式求得:Q=Gp(h1—h2) 式中:Q——散热器的散热量,W;Gp——热媒的平均流量,Kg/s;h1——散热器进口处热媒的焓,J/Kg;h2——散热器出口处热媒的焓,J/Kg。注:h1、h2 的数值系根据被测散热器进出口热媒的温度和压力,由中国建筑工业出版社1987年第一版《供暖通风设计手册》中查得。 3.2热媒参数的测量3.2.1热媒为热水时,当热水温度低于大气压力下水的沸点温度时,应测量散热器进口和出口处的水温,或测量其中一处水温及散热器进出口的热水温差;当热水温度高于大气压力下水的沸点温度时,则应测量散热器进口和出口处的水温和压力,或测量其中一处水温及散热器进出口的热水温差和压力差。3.2.2热媒为蒸汽时,应测量散热器进出口处蒸汽的压力和温度,散热器进口处的蒸汽应有2~5℃的过热度,测试时被测散热器流出的应仅为凝结水,凝结水温度与散热器进口处蒸汽压力下饱和温度之差不得超过1℃。3.2.3热媒温度系指散热器进出口处的温度。如不可能在该处测量时,则测温点与散热器进(出)口之间的距离不得大于0.3m。应对这段管道严格保温,并在计算散热量时减去这部分散热量。保温层应延伸到测温点之外0.3m以上。3.2.4热媒参数测量的准确度应符合以下要求:流量:±0.5% 温度:±0.1℃压力(绝对):±1%压差:当压差大于1KPa时±5% 当压差小于1KPa时±0.05%KPa 4、测试装置和要求 4.1测试装置测试装置应包括:a、安装被测散热器的闭式小室;b、小室六个壁面外的循环空气或水夹层;c、冷却夹层内循环空气或水的设备d、供给被测散热器能量的热媒循环系统。此系统应符合本标准的要求;e、检测和控制的仪表及设备。 4.2闭式小室的要求4.2.1小室内部的净尺寸应为:地面:(4±0.2m)×(4±0.2m) 高度:2.8±0.2m 4.2.2小室在任何情况下应为气密的。4.2.3小室的内表面应涂不含金属涂料的油漆。4.2.4小室采用空气冷却时,其构造应符合下列要求:4.2.4.1小室周围应设夹层,夹层内应维持稳定的温度环境。4.2.4.2小室的四壁、门、窗(若采用)、屋顶和地面的热阻偏差应在20%以内。4.2.4.3小室门应直接对着夹层外门。夹层外门必须气密,并宜具有和夹层墙相同的热阻。4.2.4.4夹层外围护层的墙、屋顶和地面总热阻应大于或等于1.73m3.K/W。4.2.4.5夹层内由可控温的送回风系统形成的循环空气,使小室的六个面得到均匀冷却。夹层的宽度宜为0.5m(不得小于0.3m);夹层内冷却空气的平均速度宜为0.1~0.5m/s。4.2.5采用水冷却时,小室的构造应符合下列要求:4.2. 5.1冷却水的循环方式应使小室表面温度均匀。4.2.5.2安装被测散热器的墙壁内表面,应在整个宽度离地面1.25m的高度内贴以保温板,保温板的厚度宜为6mm,其热阻应为0.05±0.05m2.K/W。板的外表面若刷油漆,应采用不含金属涂料的油漆。4.2.5.3冷却水的总流量应不小于6000Kg/h,每面墙的水流量应可分别控制。 5、闭式小室内各参数的测试及准确度 5.1小室内的空气温度小室内的空气温度应采用屏蔽的敏感元件在下列各点进行测量。5.1.1在内部空间的中心垂直轴线上a.基准点离地面0.75m高,准确到±0.1℃;b.离地面0.05、0.50、1.50m;距屋顶0.05m的四点,准确到±0.2℃。 5.1.2在每条距两面相邻墙1.0m处的垂直线上,离地面0.75、1.50m高的两点(共八点),准确到±0.2℃。} 5.2小室内表面温度小室的内表面温度应在下列各点进行测量:a.六个内表面的中心点,准确到±0.2℃;b.安装被测散热器的墙壁内表面的垂直中心线上,距地面0.30m的点,准确到±0.2℃。 5.3其他参数的测量除5.1和5.2所规定的各点外,还应测量下列参数;a.小室内空气的相对湿度;b.采用空气冷却时夹层内的空气温度,准确到±0.5℃; c.采用水冷却时,冷却系统入口处的水温准确到±0.2℃; d.大气压力,准确到±0.1KPa。

采暖热负荷详细计算表采暖计算公式

采暖负荷计算书 一、工程信息 项目名称0采暖形式传统形式 地理位置0建筑层数5建筑高度 18 二、基本计算公式 计算原理参照《实用供热空调设计手册》陆耀庆,中国建筑工业出版社1.通过围护结构的基本耗热量计算公式 —基本耗热量 K —传热系数 F —传热面积 —室内空气计算温度—室外供暖计算温度α —温差修正系数 2.附加耗热量计算公式 —考虑各项附加后,某围护的耗热量—某围护的基本耗热量—朝向修正—风力修正 —两面外墙修正—窗墙面积比过大 —房高附加—间歇附加 α )(w n j t t KF Q -=j Q n t w t ) 1)(1)(1(.1j g f m li f ch j Q Q ββββββ++++++=1Q j Q ch βf βli βm βfg βj β

2若C<=-1或m<=0,可不计算冷空气渗透耗热量 3对于大于六层的高层建筑,计算中,若h<10m 时,h=10m , 当无以上及门窗构造相关数据时,可采用换气次数法计算门窗隙缝的冷风渗透耗热量房间类型一面外墙有窗房间 二面外墙有窗房间 三面外墙有窗房间 门厅换气次数k 0.5 0.5-1.0 1.0-1.5 2 门窗隙缝的冷风渗透耗热量:Q 2=0.28*1*1.4*(t n-t w)*k*V 4.外门开启冲入冷风耗热量计算公式 —通过外门冷风侵入耗热量—某围护的基本耗热量 —外门开启外门开启冲入冷风耗热量附加率,参见[2]p128表4.1-12 三、气象参数 室外采暖计算温度℃-22风力附加系数0热压系数0.25风压系数 0.25东/西[朝向修正] 0北/东北/西北[朝向修正]0.1南[朝向修正] -0.23东南/西南[朝向修正] -0.13 kq j Q Q β?=33Q j Q kq β

人体散热量计算

2007.04.25 网络日记空调房间人体的散热及散湿量计算 文章引用自: [引用] 2007-04-25 | 发表者: 五洲韩威 空调房间人体的散热及散湿量计算 人体的散热量可分为显热和潜热。显热是由人的体温与周围空气温度之间的温差而产生的;潜热是体表排汗或肺呼吸而带入空气的热量。 精密空调 第一章机房专用精密空调特点 能够充分满足机房环境条件要求的机房专用精密空调机(也称恒温恒湿空调)是在近30年中逐渐发展起来的一个新机种。早期的机房使用舒适性空调机时,常常出现由于环境温湿度参数控制不当而造成机房设备运行不稳定,数据传输受干扰,出现静电等问题。 精密空调机,通常具有如下一些性能特点: 1.1 大风量、小焓差

与相同制冷量的舒适性空调机相比,机房专用精密空调机的循环风量约大一倍,相应的焓差只有一半,机房专用精密空调机运行时通常不需要除湿,循环风量较大将使得机组在空气露点以上运行,不必要像舒适性空调机那样为应付湿负荷而不得不使空气冷却到露点以下,故机组可以通过提高制冷剂的蒸发温度提高机组运行的热效率,从而提高运行的经济性。根据经验,显热比为1.0的机组的单位制冷量的能耗仅是显热比为0.6的机组的60%左右。同样,机房要求温湿度指标相对稳定,较大的循环风量将有利于稳定机房的温湿度指标,显然,在制冷量一定的情况下,风量的增大将导致焓差的减少,因而通常机组只能在显热比相当高的工况下运行,这恰恰与机房的负荷特点相适应。 通常舒适性空调冷负荷中有30%是为了消除潜热负荷,有70%是为了消除显热 负荷。对机房来讲,其情况却大不相同,机房主要是设备散出的显热,室内工作人员散出的热负荷及夏季进入房间的新鲜空气的热湿负荷(仅占总负荷的5%)。并且冬 季是需要加湿而不是减湿,即使在冬季机房仍需要消除热负荷,特别是程控机房更是如此。鉴于以上特点,如将一般舒适性空调机组用于机房,则会造成能量浪费。例如一个热负荷为7056kcal/h的机房,若使用机房专用空调机组,则总耗电量为2.7kw,而舒适性空调机组则需耗电8.1kw,即多耗电两倍。同样制冷量的空调机其风量各异,舒适性空调机的风量与冷量比为1:5,而恒温恒湿机风量与冷量比为1:3.5,机房专用精密空调机具有大风量、小焓差、高显热比的特点,通常焓差为2kcal/kg左右。也就是说,机房的热负荷90%~95%是显热负荷,同样的热负荷显热比越高要求送风量越大。这就要求机房的空调系统能够提供较大的送风量,所以一般机房送风量要比通常舒适性空调房间所需的送风量大1.6~2倍。 1.2 机房的热负荷变化幅度较大 通常要在10%~20%之间变动,这是由于主机设备所处的工作状态不同,消耗的功耗不同所造成的。因此,机房精密空调系统必须能够适应这种负荷的变化,以使电子元器件工作在所要求的环境条件之中,保证电路性能的可靠性。 1.3 送回风方式多样 由于要与电子通信设备的冷却方式相适应,机房的空调系统的送风回风方式是多种多样的:有上送风、下送风,有上回风、下回风、侧回风等,生产企业一般是利用标准化手段开发一系列机型,以满足用户的不同需要。 机房专用精密空调机送风形式多为上送下回和下送上回式。机房中铺设防静电活动地板,机房专用精密空调采用下送上回式送风,使冷气直接进入活动地板下,这样使地板下形成静压箱,然后通过地板送风口,把冷气均匀地送入机房内,送入设备机柜内。为此,机房专用精密空调应有足够的风量把机房中的热量带走。采用这种送风形式可大大提高空调效率,同时还可以大幅度节省过去习惯的管道送风的工程费用,降低工程造价,使室内布局美观。这是机房理想的送风方式。当然,机房送风形式要与设备散热形式一致。 1.4 过滤

散热量计算公式

一、标准散热量 标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。 那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。 二、工程上采用的散热量与标准散热量的区别 标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。因此,在对工程热工计算中必须按照工程上的散热量来进行计算。 在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,

所对应的计算温差△T=50摄氏度。欧洲标准散热量是在温差△T=50摄氏度的散热量。 那么怎么计算散热器在不同温差下的散热量呢? 散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。△T=(进水温度+出水温度)/2-室内温度。 现在我就介绍几种简单的计算方法 (一)根据散热器热工检测报告中,散热器与计算温差的关系式来计算。 Q=m×△T的N次方 例如74×60检测报告中的热工计算公式(10柱): Q=5.8259×△T1.2829 (1)当进水温度95摄氏度,出口温度70摄氏度,室内温度18摄氏度时: △T=(95摄氏度+70摄氏度)/2-18摄氏度=64.5摄氏度 Q=5.8259×64.51.2829=1221.4W(10柱) 每柱的散热量为122.1W/柱 (2)当进水温度为80摄氏度,出口温度60摄氏度,室内温度20摄氏度时: △T=(80摄氏度+60摄氏度)/2-20摄氏度=50摄氏度 Q=5.8259×501.2829=814.6W(10柱) 每柱的散热量为81.5W/柱 (3)当进水温度为70摄氏度,出口温度50摄氏度,室内温度18摄氏度时:

精确总热负荷的计算

精确总热负荷的计算 按照空调设计中负荷计算的要求,精确空调负荷的确定方法如下: 1:机房主要热量的来源 2设备负荷(计算机及机柜热负荷); 2机房照明负荷; 2建筑维护结构负荷; 2补充的新风负荷; 2人员的散热负荷等。 2其他 热负荷分析: (1)计算机设备热负荷: Q1=860xPxη1η2η 3 Kcal/h Q:计算机设备热负荷 P:机房内各种设备总功耗 η1:同时使用系数 η2:利用系数 η3:负荷工作均匀系数 通常,η1η2η3取0.6—0.8之间, 本设计考虑容量变化要求较小,取值为0.7。 (2)照明设备热负荷: Q2=CxP Kcal/h P:照明设备标定输出功率 C:每输出1W放热量Kcal/hw(白炽灯0.86口光灯1)根据国家标准《计算站场地技术要求》要求,机房照度应 大于2001x,其功耗大约为20W/M2以后的计算中,照明 功耗将以20 W/M2为依据计算。 (3)人体热负荷 Q3=PxN Kcal/h N:机房常有人员数量 P:人体发热量,轻体力工作人员热负荷显热与潜热之和,在室温为21℃和24℃时均为102Kcal。 (4)围护结构传导热 Q4=KxFx(t1-t2) Kcal/h K:转护结构导热系统普通混凝土为1.4—1.5

F:转护结构面积 t1:机房内内温度℃ t2:机房外的计算温度℃ 在以后的计算中,t1-t2定为10℃计算。 屋顶与地板根据修正系数0.4计算。 (5)新风热负荷计算较为复杂,在此方案中,我们以空调本身的设备余量来平衡,不另外计算。 (6)其他热负荷 除上述热负荷外,在工作中使用的示波器、电烙铁、吸尘 器等也将成为热负荷,由于这些设备功耗小,只粗略根据 其输入功率与热功当量之积计算。Q5=860xP 机房精密空调工程总热负荷的计算 本机房主要的热负荷来源于设备的发热量及维护结构的热负荷。因此,我们要了解主设备的数量及用电情况以确定精密空调的容量及配置。根据以往经验,除主要的设备热负荷之外的其他负荷,如机房照明负荷、建筑维护结构负荷、补充的新风负荷、人员的散热负荷等,如不具备精确计算的条件,也可根据机房的面积按经验进行测算。 专业机房精密空调的设备选型 1、机房空调制冷负荷的计算方法 精确计算法" 综合考虑计算以下因素产生的负荷,使用这种计算方式对空调负荷选择而言相对比较准确:根据机房所在地区的气候条件,考虑一年中的最大负荷工况。 围护结构的外围负荷(包含墙体传热以及太阳直射所造成的空调负荷) 机房内设备发热量 机房内新风负荷 机房气流组织以及消除局部温差所需要的循环风量。 机房的扩容以及备用需求。 根据机房面积估算法" υ 按照机房内面积空间进行相应估算,在一般小型集中机房中,我们一般按照300W/m2~550W/m2来估算机房内的空调负荷,而每平方米的空调负荷量要根据机房内设备的发热及密集程度确定,一般常规小型机房选取400 W/m2就可以。 设备特别密集的机房需要单独估算机房负荷及气流方式,选取600 W/m2~1000 W/m2。υ " 根据机房设备供电量估算法 υ 按照机房内总配电功率乘以相应系数进行估算,系数大小根据机房设备的种类以及使用频率确定,一般选取0.5~0.9。 2、机房空调的风量计算方法

建筑物耗热量指标和采暖设计热负荷

热负荷是只室内18C,室外-9C(北京)的条件下,供暖需求量,用这个值去配置供暖设备,相当于在最大条件下的出力,也就是汽车最高时速200公里的能力极限;北京通常每平米50瓦左右。 指标是在整个冬季不断变化的气候环境下,冬季实际总耗能除以时间得出的平均功率,相当于汽车的平均时速,在北京能开到40公里就很不错了。北京冬天室外平均-1.6,室内保证16,这时的规定平米指标20.6瓦 很多人不清楚的是,指标与设备配置??即热负荷没有太大的关系,例如我设备给的很大,像日本鬼子那样不问功能一平米给配200瓦的量,但是温控做的好,实际输出不大,最后指标依然正好。 再往深了说,指标就是约束墙体保温的,只要保温达到要求,指标就能达到,系统浪费它不管,就算室温高了,也折合到标准温度下了,没有影响。 采暖设计热负荷指标(g)indexOfdesignloadforheatingOfbuilding在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由锅炉房或其他供热设施供给的热量,单位:W/m。 2.1设计规范采暖设计热负荷指标计算方法采暖设计热负荷指标q(W/m2)。采暖设计热负荷指标是指在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由锅炉房向其它供热设施供给的热量。采暖设计热负荷指标q计算公式如下:q=Q/Ao(1) 式中Q,Ao分别为冬季采暖通风系统的热负荷(W)和建筑面积(m2),且Q值应根据建筑物下列散失的获得的热量确定:1)围护结构的耗热量,包括基本耗热量和附加耗热量,且基本大批量计算公式为Q1=Afk(tn-twn)(2)式中Q1、F、K、a、tn、twn 分别表示围护结构的基本耗热量(W)、面积(m2)、传热系数[W/(m2?K)]、温差修正系数及冬季室内计算温度(℃)、采暖室外(℃)。围护结构附加耗热量,包括朝向附加、风力附加、外门附加和高度附加,各项附加应按其占基本耗热量的百分比确定。2)加热由门窗隙渗入室内的冷空气的耗热量旧设计规范中的计算公式为:Q2=acpρwnLlm(tn-twn) (3)式中Q2表示由门窗缝隙渗入室内的冷空气的耗热量(W)、a表示单位换算系数、cp表示空气的定压比热容[kJ/(kg?K)]、L 表示在基准高度(10m)风压的单独作用一,通过每米门缝进入室内的空气量[m3/(m?h)]、l 表示门窗缝隙的计算长度(m)、tn和twn与上同、ρwn表示采暖室外计算温度下的空气温度(kg/m3)、m表示综合修正系数。新设计规范中的计算公式为:Q2=0.28cpρwnL(tn-twn) (4)式中tn和twn、ρwn与上同,L 表示渗透空气量(m3/h)、其计算公式如下:L=L0lmb (5)式中L0表示在基准高度(10m)风压的单独作用下,通过每米门缝进入室内的空气量[m3/(m?h)] 、l表示门窗缝隙的计算长度(m)、m表示冷风渗透压差综合修正系数,b表示门窗缝渗风指数,b=0.56~0.78。由式(4)和式(5)可知,新设计规范对公式的形式及有关参数的确定上都进行了较大的修订,加热由门窗缝隙渗入室内的冷空气的耗热量的计算将更加合理和精确。3)加热由门、孔沿及相邻房间浸入的冷空气的耗热量;4)建筑内部设备得热;5)通过其他途径散失或获得的热量;2.2节能标准

散热器散热量计算

散热器散热量计算 散热器散热量计算;散热量是散热器的一项重要技术参数,每一种散热器出;现介绍几种简单的计算方法:;(一)根据散热器热工检验报告中,散热量与计算温差;铜铝复合74×60的热工计算公式(十柱)是:;Q=5.8259×△T(十柱);1.标准散热热量:当进水温度95℃,出水温度70;十柱散热量:;Q=5.8259×64.5=1221.4W;每柱散热量;1224.4W÷ 散热器散热量计算 散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。 现介绍几种简单的计算方法: (一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是: Q=5.8259×△T (十柱) 1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃

十柱散热量: Q=5.8259×64.5 =1221.4W 每柱散热量 1224.4 W÷10柱=122 W/柱 2.当进水温度80℃,出水温度60℃,室内温度18℃时: △T =(80℃+60℃)/2-18℃=52℃ 十柱散热量: Q=5.8259×52 =926W 每柱散热量 926 W÷10柱=92.6W/柱 3.当进水温度70℃,出水温度50℃,室内温度18℃时: △T =(70℃+50℃)/2-18℃=42℃ 十柱散热量: Q=5.8259×42 =704.4W 每柱散热量 704.4W ÷10柱=70.4W/柱 (二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量: 我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。 (三)利用传热系数Q=K·F·△T

相关文档