文档库 最新最全的文档下载
当前位置:文档库 › 一泊松分布函数表

一泊松分布函数表

一泊松分布函数表
一泊松分布函数表

附表一泊松分布函数表

0()!i k

i F k e i λλ-=??= ???

二项分布概念及图表和查表方法

目录 1定义 ?统计学定义 ?医学定义 2概念 3性质 4图形特点 5应用条件 6应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。 医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为 的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数(binomial coefficient)。 所以的含义为:含量为n的样本中,恰好有X例阳性数的概率。 概念 二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果。 二项分布公式 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。 那么就说这个属于二项分布。其中P称为成功概率。记作ξ~B(n,p) 期望:Eξ=np; 方差:Dξ=npq; 其中q=1-p 证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。 设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n). 因X(k)相互独立,所以期望:

怎样理解分布函数

怎样理解分布函数 概率论中一个非常重要的函数就是分布函数,知道了随机变量的 分布函数,就知道了它的概率分布,也就可以计算概率了。 一、理解好分布函数的定义: F(x)=P(X≤x), 所以分布函数在任意一点x的值,表示随机变量落在x点左边(X≤x)的概率。它的定义域是(-∞,+∞),值域是[0,1]. 二、掌握好分布函数的性质: (1)0≤F(x)≤1; (2)F(+∞)=1,F(-∞)=0; 可以利用这条性质确定分布函数中的参数,例如: 设随机变量X的分布函数为:F(x)=A+Barctanx,求常数A与B. 就应利用本性质计算出A=1/2,B=1/π. (3)单调不减; (4)右连续性。 三、会利用分布函数求概率 在利用分布函数求概率时,以下公式经常利用。

(1)P(a

卡方分布表

WORD格式 x 2 分布临界值表(卡方分布) P n' 0.995 0.99 0.975 0.95 0.9 0.75 0.5 0.25 0.1 0.05 0.025 0.01 0.005 1 ????0.0 2 0.1 0.45 1.32 2.71 3.84 5.02 6.6 3 7.88 2 0.01 0.02 0.02 0.1 0.21 0.58 1.39 2.77 4.61 5.99 7.38 9.21 10.6 3 0.07 0.11 0.22 0.35 0.58 1.21 2.37 4.11 6.25 7.81 9.35 11.3 4 12.84 4 0.21 0.3 0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86 5 0.41 0.55 0.83 1.15 1.61 2.67 4.35 6.63 9.24 11.07 12.83 15.09 16.75 6 0.68 0.8 7 1.24 1.64 2.2 3.45 5.35 7.84 10.64 12.59 14.45 16.81 18.55 7 0.99 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.02 14.07 16.01 18.48 20.28 8 1.34 1.65 2.18 2.73 3.4 5.07 7.34 10.22 13.36 15.51 17.53 20.09 21.96 9 1.73 2.09 2.7 3.33 4.17 5.9 8.34 11.39 14.68 16.92 19.02 21.67 23.59 10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.55 15.99 18.31 20.48 23.21 25.19 11 2.6 3.05 3.82 4.57 5.58 7.58 10.34 13.7 17.28 19.68 21.92 24.72 26.76 12 3.07 3.57 4.4 5.23 6.3 8.44 11.34 14.85 18.55 21.03 23.34 26.22 28.3 13 3.57 4.11 5.01 5.89 7.04 9.3 12.34 15.98 19.81 22.36 24.74 27.69 29.82 14 4.07 4.66 5.63 6.57 7.79 10.17 13.34 17.12 21.06 23.68 26.12 29.14 31.32 15 4.6 5.23 6.27 7.26 8.55 11.04 14.34 18.25 22.31 25 27.49 30.58 32.8 16 5.14 5.81 6.91 7.96 9.31 11.91 15.34 19.37 23.54 26.3 28.85 32 34.27 17 5.7 6.41 7.56 8.67 10.09 12.79 16.34 20.49 24.77 27.59 30.19 33.41 35.72 18 6.26 7.01 8.23 9.39 10.86 13.68 17.34 21.6 25.99 28.87 31.53 34.81 37.16 19 6.84 7.63 8.91 10.12 11.65 14.56 18.34 22.72 27.2 30.14 32.85 36.19 38.58 20 7.43 8.26 9.59 10.85 12.44 15.45 19.34 23.83 28.41 31.41 34.17 37.57 40 21 8.03 8.9 10.28 11.59 13.24 16.34 20.34 24.93 29.62 32.67 35.48 38.93 41.4 22 8.64 9.54 10.98 12.34 14.04 17.24 21.34 26.04 30.81 33.92 36.78 40.29 42.8 23 9.26 10.2 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 44.18 24 9.89 10.86 12.4 13.85 15.66 19.04 23.34 28.24 33.2 36.42 39.36 42.98 45.56 25 10.52 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 46.93 26 11.16 12.2 13.84 15.38 17.29 20.84 25.34 30.43 35.56 38.89 41.92 45.64 48.29 27 11.81 12.88 14.57 16.15 18.11 21.75 26.34 31.53 36.74 40.11 43.19 46.96 49.64 28 12.46 13.56 15.31 16.93 18.94 22.66 27.34 32.62 37.92 41.34 44.46 48.28 50.99 29 13.12 14.26 16.05 17.71 19.77 23.57 28.34 33.71 39.09 42.56 45.72 49.59 52.34 30 13.79 14.95 16.79 18.49 20.6 24.48 29.34 34.8 40.26 43.77 46.98 50.89 53.67 40 20.71 22.16 24.43 26.51 29.05 33.66 39.34 45.62 51.8 55.76 59.34 63.69 66.77 50 27.99 29.71 32.36 34.76 37.69 42.94 49.33 56.33 63.17 67.5 71.42 76.15 79.49 60 35.53 37.48 40.48 43.19 46.46 52.29 59.33 66.98 74.4 79.08 83.3 88.38 91.95 70 43.28 45.44 48.76 51.74 55.33 61.7 69.33 77.58 85.53 90.53 95.02 100.42 104.22 80 51.17 53.54 57.15 60.39 64.28 71.14 79.33 88.13 96.58 101.88 106.63 112.33 116.32 90 59.2 61.75 65.65 69.13 73.29 80.62 89.33 98.64 107.56 113.14 118.14 124.12 128.3 100 67.33 70.06 74.22 77.93 82.36 90.13 99.33 109.14 118.5 124.34 129.56 135.81 140.17 专业资料

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

二项分布概念及图表和查表方法

二项分布概念及图表 二项分布就是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。 目录 1 定义 ?统计学定义 ?医学定义 2 概念 3 性质 4 图形特点 5 应用条件 6 应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。

医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。 考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 二项分布公式 P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。

二项分布概念及图表和查表方法

目录 1 定义 ?统计学定义 ?医学定义 2 概念 3 性质 4 图形特点 5 应用条件 6 应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。 医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 表示随机试验的结果。 二项分布公式 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。 那么就说这个属于二项分布。其中P称为成功概率。记作ξ~B(n,p) 期望:Eξ=np; 方差:Dξ=npq; 其中q=1-p 证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。 设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n). 因X(k)相互独立,所以期望:

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 中文名泊松分布外文名poisson distribution 分类数学时间1838年 台译卜瓦松分布提出西莫恩·德尼·泊松 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布

当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导

二项分布表

附录2 附表 附表1 二项分布表 0{}(1)x k n k n P X x p p k k ?=?? ≤=????? ∑ p n x 0.001 0.002 0.0030.005 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.30 2 0 0.9980 0.9960 0.99400.9900 0.9801 0.96040.94090.90250.81000.72250.6400 0.5625 0.4900 2 1 1.0000 1.0000 1.00001.0000 0.9999 0.99960.99910.99750.99000.97750.9600 0.9375 0.9100 3 0 0.9970 0.9940 0.99100.9851 0.9703 0.94120.91270.85740.72900.61410.5120 0.4219 0.3430 3 1 1.0000 1.0000 1.00000.9999 0.9997 0.99880.99740.99280.97200.93930.8960 0.8438 0.7840 3 2 1.0000 1.0000 1.00001.00000.99990.99900.99660.9920 0.9844 0.9730 4 0 0.9960 0.9920 0.98810.9801 0.9606 0.92240.88530.81450.65610.52200.4096 0.3164 0.2401 4 1 1.0000 1.0000 0.99990.9999 0.9994 0.99770.99480.98600.94770.89050.8192 0.7383 0.6517 4 2 1.00001.0000 1.0000 1.00000.99990.99950.99630.98800.9728 0.9492 0.9163 4 3 1.00001.00000.99990.99950.9984 0.9961 0.9919 5 0 0.9950 0.9900 0.98510.9752 0.9510 0.90390.85870.77380.59050.44370.3277 0.2373 0.1681 5 1 1.0000 1.0000 0.99990.9998 0.9990 0.99620.99150.97740.91850.83520.7373 0.6328 0.5282 5 2 1.00001.0000 1.0000 0.99990.99970.99880.99140.97340.9421 0.8965 0.8369 5 3 1.00001.00001.00000.99950.99780.9933 0.9844 0.9692 5 4 1.00000.99990.9997 0.9990 0.9976 6 0 0.9940 0.9881 0.98210.9704 0.9415 0.88580.83300.73510.53140.37710.2621 0.1780 0.1176 6 1 1.0000 0.9999 0.99990.9996 0.9985 0.99430.98750.96720.88570.77650.6554 0.5339 0.4202 6 2 1.0000 1.00001.0000 1.0000 0.99980.99950.99780.98420.95270.9011 0.8306 0.7443 6 3 1.00001.00000.99990.99870.99410.9830 0.9624 0.9295 6 4 1.00000.99990.99960.9984 0.9954 0.9891 6 5 1.00001.00000.9999 0.9998 0.9993 7 0 0.9930 0.9861 0.97920.9655 0.9321 0.86810.80800.69830.47830.32060.2097 0.1335 0.0824 7 1 1.0000 0.9999 0.99980.9995 0.9980 0.99210.98290.95560.85030.71660.5767 0.4449 0.3294 7 2 1.0000 1.00001.0000 1.0000 0.99970.99910.99620.97430.92620.8520 0.7564 0.6471 7 3 1.00001.00000.99980.99730.98790.9667 0.9294 0.8740 7 4 1.00000.99980.99880.9953 0.9871 0.9712 7 5 1.00000.99990.9996 0.9987 0.9962 7 6 1.00001.0000 0.9999 0.9998 8 0 0.9920 0.9841 0.97630.9607 0.9227 0.85080.78370.66340.43050.27250.1678 0.1001 0.0576 8 1 1.0000 0.9999 0.99980.9993 0.9973 0.98970.97770.94280.81310.65720.5033 0.3671 0.2553 8 2 1.0000 1.00001.0000 0.9999 0.99960.99870.99420.96190.89480.7969 0.6785 0.5518 8 3 1.0000 1.00000.99990.99960.99500.97860.9437 0.8862 0.8059 - 262 -

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

二项分布临界值表

附表1 二项分布临界值表 在p=q=下,x或n–x(不论何者为大)的临界值 n 单侧检验()双侧检验()0.050.010.050.01 55———66—6—7777—8788—98989 10910910 119101011 1210111011 1310121112 1411121213 1512131213 1612141314 1713141315 1813151415 1914151516 2015161517 2115171617 2216171718 2316181719 2417191819

2518191820 2618201920 2719202021 2819212022 2920222122 3020222123

附表2 正态分布概率表 Z F(Z)Z F(Z)Z F(Z)Z F(Z) 0.000.00000.350.27370.700.5161 1.050.7063 0.010.00800.360.28120.710.5223 1.060.7109 0.020.01600.370.28860.720.5285 1.070.7154 0.030.02390.380.29610.730.5346 1.080.7199 0.040.03190.390.30350.740.5407 1.090.7243 0.050.03990.400.31080.750.5467 1.100.7287 0.060.04780.410.31820.760.5527 1.110.7330 0.070.05580.420.32550.770.5587 1.120.7373 0.080.06380.430.33280.780.5646 1.130.7415 0.090.07170.440.34010.790.5705 1.140.7457 0.100.07970.450.34730.800.5763 1.150.7499 0.110.08760.460.35450.810.5821 1.160.7540 0.120.09550.470.36160.820.5878 1.170.7580 0.130.10340.480.36880.830.5935 1.180.7620 0.140.11130.490.37590.840.5991 1.190.7660 0.150.11920.500.38290.850.6047 1.200.7699 0.160.12710.510.38990.860.6102 1.210.7737 0.170.13500.520.39690.870.6157 1.220.7775 0.180.14280.530.40390.880.6211 1.230.7813 0.190.15070.540.41080.890.6265 1.240.7850

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) .............................................................................. 2 5. Gamma 分布 .............................................................................................. 3 6. 倒Gamma 分布 ......................................................................................... 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ..................... 5 8. Pareto 分布 ................................................................................................. 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) (7) 10. 2χ分布(卡方分布) (7) 11. t 分布 ......................................................................................................... 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) .............................................................. 10 15. 对数正态分布 ....................................................................................... 11 1. 均匀分布 均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。 1 ()f x b a =-

概率论与数理统计附表1 泊松分布表

附表1 泊松分布表 ()! m P X m e m λλ-==

390.0000070.000056 附录 附录A A1 正态分布函数表 2 2 ()e d(0) 2π t x x t x Φ -∞ =-≥ ? x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 0.5000 0.5398 0.5793 0.6179 0.6554 0.6915 0.7257 0.7580 0.7881 0.8159 0.8413 0.8643 0.8849 0.90320 0.91924 0.93319 0.94520 0.95543 0.96407 0.97128 0.97725 0.98214 0.98610 0.98928 0.99180 0.99379 0.99534 0.99653 0.99745 0.99813 0.5040 0.5438 0.5832 0.6217 0.6591 0.6950 0.7291 0.7611 0.7910 0.8186 0.8438 0.8665 0.8869 0.90490 0.92073 0.93448 0.94630 0.95637 0.96485 0.97193 0.9778 0.98257 0.98645 0.98956 0.99202 0.99396 0.99547 0.99664 0.99752 0.99819 0.5080 0.5478 0.5871 0.6255 0.6628 0.6985 0.7324 0.7642 0.7939 0.8212 0.8461 0.8686 0.8888 0.90658 0.92220 0.93574 0.94738 0.95728 0.96562 0.97257 0.97831 0.98300 0.98679 0.98983 0.99224 0.99413 0.99560 0.99674 0.99760 0.99825 0.5120 0.5517 0.5910 0.6293 0.6664 0.7019 0.7357 0.7673 0.7967 0.8238 0.8485 0.8708 0.8907 0.90824 0.92364 0.93699 0.94845 0.95818 0.96638 0.97320 0.97882 0.98341 0.98713 0.99010 0.99245 0.99430 0.99573 0.99683 0.99767 0.99831 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7703 0.7995 0.8264 0.8508 0.8729 0.8925 0.90988 0.92507 0.93822 0.94950 0.95907 0.96712 0.97381 0.97932 0.98382 0.98745 0.99036 0.99266 0.99446 0.99586 0.99693 0.99774 0.99836 0.5199 0.5596 0.5987 0.6368 0.6736 0.7088 0.7422 0.7734 0.8023 0.8289 0.8531 0.8749 0.8944 0.91140 0.92647 0.93943 0.95053 0.95994 0.96784 0.97441 0.97982 0.98422 0.98778 0.99061 0.99286 0.99461 0.99598 0.99702 0.99781 0.99841 0.5239 0.5636 0.6026 0.6406 0.6772 0.7123 0.7454 0.7764 0.8051 0.8315 0.8554 0.8770 0.8962 0.91309 0.92785 0.94062 0.95154 0.96080 0.96856 0.97500 0.98030 0.98461 0.98809 0.99086 0.99305 0.99477 0.99609 0.99711 0.99788 0.99846 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.91466 0.92922 0.94179 0.95254 0.96164 0.96926 0.97558 0.98077 0.98500 0.98840 0.99111 0.99324 0.99492 0.99621 0.99720 0.99795 0.99851 0.5319 0.5714 0.6103 0.6480 0.6844 0.7190 0.7517 0.7823 0.8106 0.8365 0.8599 0.8810 0.8997 0.91621 0.93056 0.94295 0.95352 0.96246 0.96995 0.97615 0.98124 0.98537 0.98870 0.99134 0.99343 0.99506 0.99632 0.99728 0.99801 0.99856 0.5359 0.5753 0.6141 0.6517 0.6879 0.7224 0.7549 0.7852 0.8133 0.8389 0.8621 0.8830 0.90147 0.91774 0.93189 0.94408 0.95449 0.96327 0.97062 0.97670 0.98169 0.98574 0.98899 0.99158 0.99361 0.99520 0.99643 0.99737 0.99807 0.99861 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

相关文档