文档库 最新最全的文档下载
当前位置:文档库 › 离散型随机变量的期望

离散型随机变量的期望

离散型随机变量的期望
离散型随机变量的期望

离散型随机变量的期望说案

高中数学第三册(选修)Ⅱ第一章第2节第一课时

福建师大附中数学组:李沪君

一、教材分析

教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应

用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

五、教学的基本流程设计

七、评价分析

1、评价学生学习过程

本节课在情境创设,例题设置中注重与实际生活联系,让学生体会数学的应用价值,在教学中注意观察学生是否置身于数学学习活动中,是否精神饱满、兴趣浓厚、探究积极,并愿意与老师、同伴交流自己的想法。

2、评价学生的基础知识、基本技能和发现问题、解决问题的能力

教学中通过学生回答问题,学生举例,归纳总结等方面反馈学生对知识的理解、运用,教师根据反馈信息适时点拨,同时从新课标评价理念出发,鼓励学生发表自己的观点、充分质疑,并抓住学生在语言、思想等方面的的亮点给予表扬,树立自信心,帮助他们积极向上。

教学设计“说明”

本节的教学有如下特点:

(1)、注重情境创设,联系生活实际,关注身边数学。

(2)、期望概念的教学是本节课的重点,本节突出概念的建构,通过实例,引导学生分析,并归纳出定义;通过练习,层层递进,加深学生对概念的理解,帮助学生把握概念的本质特征,使学生的思维活起来;通过例题分析,让学生体会学习期望的意义。本节课以现实问题引入,以生活中的实例结束,让学生认识到数学源于生活,又应用于生活,生活中处处有数学。

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

离散型随机变量的期望

离散型随机变量的 苴日也 教学要求: 使学生了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望.

对于离散型随机变量,确定了它的分布列,就掌握了随机变量取值的统计规律。 在实际问题中,我们还常常希望通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差。 引例: 某射手射击所得环数E的分布列如下: 根据这个射手射击所得环数E的分布列,在n次射击中,预计有大约 0.02n次的4环.. 类似地,对任一射手,若已知其射击所得环数E的分布列,即已知各个P (^i)(i=O,1,2,3,...10),则可预计他任意n次射击的平均环数是

Eg二XP ( §二0) + 1 XP ( 5=1)+.. + XP ( ^=10) 称Eg为此射手射击所得环数g的期望,它刻划了随机变量g所取的平均值,从一个方面反映了射手的射击水平。 1、期望 若离散型随机变量E的概率分布为 则称Eg二XP+X2P尹…+XnPn+…为§的数学期望或平均数、均值,又称期望。 问:若E为上述离散型随机变量,贝怕二ag+b的分布列怎样?Er]呢? 因为P ( r]=a Xj+b) =P ( g二片),i=1, 2, 3... 所以,n的分布图为

于是E r|= (ax〔+b)Pi+ (a x2+b)p2+...+ (a x n+b)p n+ ... =a ( x1 p1+ x2p2+ ---+ x n p n+ ...) +b(P1+P2+…+p门+…) =a E g+b 2、例题 例1篮球运动员在比赛中每次罚球命中得1分,罚不中得0

分。已知某运动员罚球命中的概率为0.7,求他罚球1次的得分g的期望。 例2随机抛掷一个骰子,求所得骰子的点数§的期望。

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

离散型随机变量的期望与方差

开锁次数的数学期望和方差 例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差. 分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般. 解:ξ的可能取值为1,2,3,…,n . Λ;12112121)111()11()3(;111111)11()2(,1)1(n n n n n n n n n P n n n n n n P n P =-?--?-=-?--?-===-?-=-?-====ξξξ n k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-?+-+---?--?-=+-?+----?--?-==ΛΛξ;所以ξ的分布列为: 2 31211=?++?+?+?=n n n n n E Λξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222?+-++?+-++?+-+?+-+?+- =ΛΛξ ?? ?????+++++++-++++=n n n n n n 22222)21()321)(1()321(1ΛΛ 1214)1(2)1()12)(1(611222-=?? ????+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键. 次品个数的期望

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差 一、基本知识概要: 1、 期望的定义: 一般地,若离散型随机变量ξ的分布列为 则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。 它反映了:离散型随机变量取值的平均水平。 若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。 E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P 2、 方差、标准差定义: D ξ=(x 1- E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。 D ξ的算术平方根ξD =δξ叫做随机变量的标准差。 随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。 且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。 若ξ~B(n ,p),则D ξ=npq ,其中q=1-p. 3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。 二、例题: 例1、(1)下面说法中正确的是 ( ) A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。 B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。 C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。 D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。 解:选C 说明:此题考查离散型随机变量ξ的期望、方差的概念。 (2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是 。 解:含红球个数ξ的E ξ=0× 101+1×106+2×10 3=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本 题型和内容为主,突出应用性和实践性及综合性。考生往往会因对题意理解错误,或对概念、公式、性质应用错误等,导致解题错误。 例2、设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ 剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ。 解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以??? ? ???≤≤-≤=+-+11 2101212122 q q q q

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

离散型随机变量的期望

2.3.1离散型随机变量的期望 教学目标: 知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望. 过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟 练地应用它们求相应的离散型随机变量的均值或期望。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。 教学重点:离散型随机变量的均值或期望的概念 教学难点:根据离散型随机变量的分布列求出均值或期望 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若是随机变量,是常数,则也是随机变量并且不改变其属性(离 散型、连续型) 5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…, ξ取每一个值x i(i=1,2,…)的概率为,则称表 ξx1x2…x i… P P1P2…P i… 为随机变量ξ的概率分布,简称ξ的分布列 6. 分布列的两个性质:⑴P i≥0,i=1,2,...;⑵P1+P2+ (1) 7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是 ,(k=0,1,2,…,n,). 于是得到随机变量ξ的概率分布如下: ξ0 1 …k …n

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

离散型随机变量的期望值和方差

12.2
离散型随机变量的期望值和方差
一、知识梳理 1.期望:若离散型随机变量ξ ,当ξ =xi 的概率为 P(ξ =xi)=Pi(i=1,2,…,n,…) , 则称 Eξ =∑xi pi 为ξ 的数学期望,反映了ξ 的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.Eξ 由ξ 的分布列唯一确定. 2.方差:称 Dξ =∑(xi-Eξ )2pi 为随机变量ξ 的均方差,简称方差.
D?
叫标准差,反
映了ξ 的离散程度. 3.性质: (1)E(aξ +b)=aEξ +b,D(aξ +b)=a2Dξ (a、b 为常数). (2)二项分布的期望与方差:若ξ ~B(n,p) ,则 Eξ =np,Dξ =npq(q=1-p). Dξ 表示ξ 对 Eξ 的平均偏离程度,Dξ 越大表示平均偏离程度越大,说明ξ 的取值越分 散. 二、例题剖析 【例 1】 设ξ 是一个离散型随机变量,其分布列如下表,试求 Eξ 、Dξ .
ξ P -1
1 2
0 1-2q
1 q2
拓展提高
既要会由分布列求 Eξ 、Dξ ,也要会由 Eξ 、Dξ 求分布列,进行逆向思维.如:若ξ 是 离散型随机变量,P(ξ =x1)=
3 5 2 5 7 5
,P(ξ =x2)=
,且 x1,Dξ =
6 25
.求ξ
的分布列. 解:依题意ξ 只取 2 个值 x1 与 x2,于是有 Eξ = Dξ =
3 5 3 5
x1+
2 5
x2=
2 5
7 5

6 25
x12+
x22-Eξ 2=
.
从而得方程组 ?
?3 x1 ? 2 x 2 ? 7 , ? ?3 x1 ?
2
? 2x2
2
? 11 .
【例 2】 人寿保险中(某一年龄段) 在一年的保险期内, , 每个被保险人需交纳保费 a 元, 被保险人意外死亡则保险公司赔付 3 万元,出现非意外死亡则赔付 1 万元.经统计此年龄段一 年内意外死亡的概率是 p1,非意外死亡的概率为 p2,则 a 需满足什么条件,保险公司才可能 盈利? 【例 3】 把 4 个球随机地投入 4 个盒子中去,设ξ 表示空盒子的个数,求 Eξ 、Dξ .
特别提示
求投球的方法数时,要把每个球看成不一样的.ξ =2 时,此时有两种情况:①有 2 个空盒 子,每个盒子投 2 个球;②1 个盒子投 3 个球,另 1 个盒子投 1 个球. 【例 4】 若随机变量 A 在一次试验中发生的概率为 p(02D? ? 1 E?
的最大值.
【例 5】 袋中装有一些大小相同的球,其中有号数为 1 的球 1 个,号数为 2 的球 2 个, 号数为 3 的球 3 个,…,号数为 n 的球 n 个.从袋中任取一球,其号数作为随机变量ξ ,求ξ
1

离散型随机变量的数学期望教案

离散型随机变量的数学期望教案 教学目标:1使学生理解和掌握离散型随机变量的数学期望的定义, 2会掌握和应用数学期望的性质。 教学工具:多媒体。 一.复习 1.一般地,设离散型随机变量ξ可能取的值为 x1,x2,……,xi ,…, X 取每一个值xi(i =1,2,…)的概率P(X =xi)=pi ,则称下表 一般地,设离散型随机变量ξ可能取的值为 x1,x2,……,xi ,…, 为随机变量X 的概率分布, 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)pi ≥0,i =1,2,...; (2)p1+p2+ (1) 2、什么叫n 次独立重复试验? 一般地,由n 次试验构成,且每次试验互相独立完成,每次试验的结果仅有两种对立的状态,即A 与 ,每次试验中P(A )=p >0。称这样的试验为n 次独立重复试验,也称伯努利试验。 3、什么叫二项分布? 若X ~B (n ,p) Cnk p k q n-k 二.引例,新课 1.全年级同学的平均身高是产u= n 1(11n x +22n x +….+ m m n x ) P=p(X=i x )= n n i ,i=1,2….n

把全年级的平均身高u 定义成X 的均值,记作E(X) E(X)= (11n x +22n x +….+ m m n x )/n EX=x1p1+x2p2+…+xipi+…+xnpn 2.数学期望的定义 则称: E(X)=x1p1+x2p2+…+xipi+…+xnpn 为随机变量X 的均值或数学期望。 它反映了离散型随机变量取值的平均水平。 3,举例 解:该随机变量X 服从两点分布: P(X=1)=0.7、P(X=0)=0.3 所以:EX=1×P(X=1)+0×P(X=0)=0.7 三、数学期望的性质 得到结论(1) ? 在篮球比赛中,如果某运动员罚球命中的概率为0.7,那么他罚球一次得分设为X ,X 的均值是多少?

1离散型随机变量的均值(数学期望)

离散型随机变量的均值 一、概念: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3. 分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 ξ x 1 x 2 … x i … P P 1 P 2 … P i … 为随机变量的概率分布,简称的分布列 4. 分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 0 1 … k … n P n n q p C 00 1 11-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记 k n k k n q p C -=b (k ;n ,p ). 二、数学期望: 根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下 ξ4 5 6 7 8 9 10 P 在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望 根据射手射击所得环数ξ的分布列, 我们可以估计,在n 次射击中,预计大约有 n n P 02.0)4(=?=ξ 次得4环; n n P 04.0)5(=?=ξ 次得5环; ………… n n P 22.0)10(=?=ξ 次得10环. 故在n 次射击的总环数大约为 +??n 02.04++?? n 04.05n ??22.010

图解常用离散型随机变量

第 22卷第1期2019年1月 高等数学研究 STUDIES IN COLLEGE MATHEMATICS Vol.22,No. 1Jan. , 2019 doi : 10. 3969/j. issn. 1008-1399. 2019. 01. 033 图解常用离散型随机变量 杨夜茜 (同济大学数学科学学院,上海200092) 摘要在 概 率论的学习中,一个重要章节就是常用的离散型随机变量的学习.离 散 型随机变量包括伯努利分布, 二项分布,泊松分布,几何分布,超几何分布和负二项 分布等等.在本文中,首先借 助时间流的图形表达,从伯努利 试验次数和成功次数角度 区分其中的一些常用变量;其次通过一个流程图的方式柢理这些常用的离散型随 机 变量 的定义.本文的目的在于,基于常规的离散型随机变量的分布律等介绍之余,首次尝试从不同的比较汇总角度,借 助图表方法对常用的离散型 随 机 变量进行梳理和总结 ,起 到 区 分 变 量 的 差 异 ,加 强对常用离散型随机变量概念 的 理 解 . 关键词 常 用 离 散 型 随 机 变 量 ;伯 努 利 试 验 次 数 ;成 功 次 数 ;时 间 流 ;流 程 图 中图分类号 0211 文献标识码 A 文章编号 1008-1399(2019)01 -0118-03 Explanation of Discrete Random Variable by Diagrams Y A N G Xiaohan (School of Mathematics Science, Tongji University, Shanghai 200092, China) Abstract This paper uses time flows and flow charts to describe discrete random variables , such as Ber - n o u lli , Binom ial , Poisson , Geometric , and Negative Binomial variables , based on two key points : number of tria ls , and number of successes . Keywords discrete random variable,num ber of tria ls , number of successes,time flo w , flo w chart i 引言 关于常用的离散型随机变量,它们的定义、分 布律、概率、期望和方差等,在教科书或者是文献 中,已经有非常明确的定义[1_3].在笔者多年的教学 中发现,学生在学习这些随机变量的时候,通常会 出现计算题准确率很高,但涉及定义的问题回答模 糊.因此在本文中,不重复介绍离散型随机变量的 分布律等,尝试从不同的比较和汇总的角度借助图 表方法对这些常用的离散型随机变量进行梳理.在 文献[4]中,George C asella 给出了随机变量间的关 系图,描述了大部分的离散型和连续型随机变量两 两变量之间的联系.与他的关系图侧重点不同,在 本文中,首次设计了两种图形表述方式:时间流和 收稿日期: 2017-12-19 修改日期=2018 -03 -13 作者简介:杨筱菡(1977 —),女,江苏,博士,副教授,概率统计, Email :xiaohyang @tongji . edu . cn 流程图.时间流的图形很具象,简单明了切中随机 变量定义的关键点.而在自上而下的流程图中,通 过回答每一个是与否的简单问题而找到变量的归 属.这两种图形方式,能快速理清每个常用的离散 型随机变量的定义,区分不同变量概念上的差异, 加强对概念的理解. 注这里要特别说明的是,本文中提及的常用的 随机变量仅是在本科公共基础课程“概率论与数理 统计”中提及的常用离散型随机变量,它们只是常 用离散型随机变量中的一部分,并非全部,例如二 项分布的推广一多项分布等就不在此文讨论的范 围内. 2时间流区分法 通常常用的离散型随机变量总是从讲述伯努 利试验开始,伯努利试验是一类可重复、独立的试 验,且一次试验的样本空间只有两个样本点,6卩{成 功,失败},有时把样本点“成功”描述为“事件A 发

常见离散型随机变量的分布列

4.常见离散型随机变量的分布列 (1>两点分布像 这样的分布列叫做两点分布列. 如果随机变量X的分布列为两点分布列,就称X服从分布,而称p=P(X=1> 为成功概率. (2>超几何分布列 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为 P(X=k>=错误!,k=0,1,2,…,m, 其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布. 1设离散型随机变量X 求:(1>2X+1的分布列; (2>|X-1|的分布列. 【思路启迪】利用p i≥0,且所有概率之和为1,求m;求2X+1的值及其分布列;求|X-1|的值及其分布列. 【解】由分布列的性质知: 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 首先列表为: 4 9 3 则常数c=________,P(X=1>=________.X的所有可能取值x i(i=1,2,…,>; (2>求出取各值x i的概率P(X=x i>;(3>列表,求出分布列后要注意应用性质检验所求的结果是否准确.常用类型有:(1>由统计数据求离散型随机变量的分布列,关键是由统计数据利用事件发生的频率近似表示该事件的概率,由统计数据得到的分布列可以帮助我们更好地理解分布列的作用和意义.(2>由古典概型来求随机变量的分布列,这时需利用排列、组合求概率.(3>由相互独立事件同时发生的概率求分布列无

论是何种类型,都需要深刻理解随机变量的含义及概率分布.3.(2018年福建>受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下: (1>从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; (2>若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3>该厂预计今后这两种品牌轿车销量相当,因为资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.【解】(1>设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P (A >=错误!=错误!.(2>依题意得,X 1的分布列为 X 2的分布列为 (3>由(2>得,E (X 1>=1×错误!+2× 错误!+3×错误!=2.86(万元>, E (X 2>=1.8×错误!+2.9×错误!=2.79(万元>.因为E (X 1>>E (X 2>,所以应生产甲品牌轿车. 4.(2018年湖南>某商店试销某种商品20天,获得如下数据: 试销结束后(2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1>求当天商店不进货的概率; (2>记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望. 解:(1>P (“当天商店不进货”>=P (“当天商品销售量为0件”>+P (“当天商品销售量为1件”> =错误!+错误!=错误!. (2>由题意知,X 的可能取值为2,3. P (X =2>=P (“当天商品销售量为1件”>=错误!=错误!;P (X =3>=P (“当天商品销售量为0件”>+P (“当天商品销售量为2件”>+P (“当天商品销售量为3件”>=错误!+错误!+错误!=错误!.故X 的分布列为

离散型随机变量的期望和方差(参考答案)

离散型随机变量的期望和方差(参考答案) 想一想①: 1.解:ξ的所有可能取值为1,2,3,4,5,6.对应的概率均为6 1.易得Eξ=3.5. 2.解:E(2ξ+3)=2Eξ+3=3 7. 想一想②:证: D(X +Y)=E[(X +Y)2]?[E(X +Y)]2 =E[X 2+Y 2+2XY]?[E(x)+E(Y)]2 =E(X 2)+E(Y 2)+2E(X)E(Y)?[E(X)]2 ?[E(Y)]2?2E(X)E(Y) ={E(X 2)?[E (X )]2}+{E(Y 2)?[E (Y )]2}=D(X)+D(Y). 想一想③: 1.解:Eξ=np=7,Dξ=np(1-p)=6,所以p=17 . 2.解:Dξ=npq≤n(p+q 2)2=n 4,等号在 p=q=1 2时成立,此时,Dξ=25,σξ=5. 答案:1 2 ; 5. 想一想④: 解:要使保险公司能盈利,需盈利数ξ的期望值大于0,故需求Eξ. 设ξ为盈利数,其概率分布为 且Eξ=a(1-p 121212要盈利,至少需使ξ的数学期望大于零,故a >30000p 1+10000p 2. 想一想⑤: 1.解:直接考虑得分的话,情况较复杂,可以考虑取出的4只球颜色的分布情况: 4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分, 故P(ξ=5)=C 41C 33C 7 4=4 35 ,P(ξ=6)= C 42C 32C 7 4=1835 ,P(ξ=70)= C 43C 31C 7 4, P(ξ=8)= C 44C 30C 7 4,Eξ=54 35. 2.解:分析,可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行. 设来领奖的人数ξ=k,(k =0,1,2,?,3000),所以 P(ξ=k)=C 3000k (0.04)k ?(1?0.04)30000?k ,可见ξ~B (30000,0.04),所以, Eξ=3000×0.04=120(人)100>(人). 答:不能,寻呼台至少应准备120份礼品. 想一想⑥: 解:设X~B(n,p), 则X 表示n 重贝努里试验中的“成功” 次数. 若设X i ={ 1 如第i 次试验成功 0 如第i 次试验失败 i =1,2,…,n

常见离散型随机变量分布列示例

常见随机事件的概率与分布列示例 1、耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 2、独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论.

60.离散型随机变量的期望和方差(答案)

数学导学案 【2014年高考会这样考】 1.考查有限个值的离散型随机变量均值、方差的概念. 2.利用离散型随机变量的均值、方差解决一些实际问题. 【复习指导】 均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题. 基础梳理 1.离散型随机变量的期望与方差 若离散型随机变量X (1)均值 称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). 两个防范 在记忆D (aX +b )=a 2D (X )时要注意:D (aX +b )≠aD (X )+b ,D (aX +b )≠aD (X ). 三种分布 (1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ); (2)X ~B (n ,p ),则 E (X )=np ,D (X )=np (1-p ); (3)若X 服从超几何分布, 则E (X )=n M N . 六条性质 (1)E (C )=C (C 为常数) (2)E (aX +b )=aE (X )+b (a 、b 为常数) (3)E (X 1+X 2)=EX 1+EX 2 (4)如果X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)E (X 2) (5)D (X )=E (X )-(E (X ))(6)D (aX +b )=a 2·D (X ) 考点自测 1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). 班 级: 姓 名:

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 一、离散型随机变量: (1)概念:设X 是一个随机变量,如果X 的取值是有限个或者无穷可列个,则称X 为离散型随机变量。 其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布列,表格表示形式如下: (2)性质:?0i p ≥ ?1 1n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- 二、连续型随机变量: (1)概念:如果对于随机变量的分布函数()F x ,存在非负的函数()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞ = ? 则称X 为连续型随机变量,()f x 称为概率密度函数或者密度函数。 (2)连续型随机变量的密度函数的性质:?()0f x ≥ ? ()1f x dx +∞ -∞ =? ?{}()()()P a X b F b F a f x dx +∞ -∞ <≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= 三、连续型随机变量和离散型随机变量的区别: (1)由连续型随机变量的定义,连续型随机变量的定义域是(),-∞+∞,对于任何x ,000{}()()0P X x F x F x ==--=; 而对于离散型随机变量的分布函数有有限个或可列个间断点,其图形呈阶梯形。 (2)概率密度()f x 一定非负,但是可以大于1,而离散型随机变量的概率分布i p 不仅非负,而且一定不大于1. (3)连续型随机变量的分布函数是连续函数,因此X 取任何给定值的概率都为0. (4)对任意两个实数a b <,连续型随机变量X 在a 与b 之间取值的概率与区间端点无关,即: {}{}{}{}()() ()b a P a X b P a X b P a X b P a X b F b F a f x dx <<=≤≤=<≤=≤<=-= ? 即:{}{}()P X b P X b F x <=≤= 四、常用的离散型随机变量的分布函数: (1)0-1分布:如果离散型随机变量X 的概率分布为:

常见离散型随机变量的分布 (1)

新乡医学院教案首页单位:计算机教研室 课程名称医药数理统计方法 授课题目 2.1 常见离散型随机变量的分布授课对象05级药学专业 时间分配超几何分布15分钟二项分布35分钟泊松分布30分钟 课时目标理解掌握常见离散型随机变量的分布函数 掌握两点分布、二项分布、泊松分布之间的联系与区别授课重点伯努利试验、二项分布、泊松分布 授课难点两点分布、二项分布、泊松分布之间的联系与区别 授课形式小班理论课 授课方法启发讲解 参考文献医药数理统计方法刘定远主编人民卫生出版社概率论与数理统计刘卫江主编清华大学出版社北京交通大学出版社 高等数学(第五版)同济大学编高等教育出版社 思考题二项分布和超几何分布有何联系? 教研室主任及课程负责人签字教研室主任(签字)课程负责人(签字)年月日年月日

基 本 内 容 备 注 常见离散型随机变量的分布 一、超几何分布 例1 带活动门的小盒子里有采自同一巢的20只工蜂和10只雄蜂,现随机地放出5只作实验,表示X 放出的蜂中工蜂的只数,求X 的分布列。 解 X 1 2 3 4 5 P 052010530C C C 142010530C C C 232010530C C C 322010530C C C 412010530C C C 502010 5 30 C C C 定义 1 若随机变量X 的概率函数为 {} 0,1,2,,k n k M N M n N C C P X k k l C --?=== 其中N≥M>0,n≤N -M,l=min(M,n),则称X 服从参数为N,M,n 的超几何分布,记作X~H(N,M,n). 超几何分布的分布函数为()k n k M N M n k x N C C F x C --≤?=∑ 二、二项分布 1. Bernoulli 试验 只有两个可能结果的试验称为Bernoulli 试验。 例2 已知某药有效率为0.7,今用该药试治某病3例,X 表示治疗无效的人数,求X 的分布列。 解:X 可取0,1,2,3。 用A i 表示事件“第i 例治疗无效”,i=1,2,3.则()0.7i P A p == P{X=0}=33 123123()()()()(1)0.343P A A A P A P A P A p q ==-== P{X=1}=231312123()P A A A A A A A A A ++ 2231312123()()()30.441P A A A P A A A P A A A pq =++== P{X=2}=321121323()P A A A A A A A A A ++ 2321121323()()()30.189P A A A P A A A P A A A p q =++==

相关文档
相关文档 最新文档