文档库 最新最全的文档下载
当前位置:文档库 › 地铁隧道通风系统 精品

地铁隧道通风系统 精品

地铁隧道通风系统 精品
地铁隧道通风系统 精品

?简介:本文结合广州地铁环控系统设计对如何充分发挥设备的设置功能从六个方面进行了讨论,提出了较为简明的隧道通风系统设计新方案,可供新建地铁环控系统设计时使用或参考?关键字:设备功能,隧道通风,系统设计,备用风机,兼用设计

前言

广州地铁1、2号线已经开通运营,3号线即将开通运营,4、5号线正在进行设计。就设计进度和设计水平而言,广州处于国内最前列的位置,对广州地铁进行研究具有更大现实意义。广州地铁1号线环控制式采用开/闭式系统,对其设计问题已在个人所写的《广州地铁1号线环控设计总结》(收入《回顾与思考》一书第九章—环境控制系统)中进行了讨论,文中的一些见解和意见,对其它采用开/闭系统的城市地铁设计有一定的参考价值。广州地铁2、3、4、5号线环控制式采用了屏蔽门系统,对于屏蔽门系统,个人仅参加了一些车站工点的设计或设计咨询工作,对全线系统设计的资料不够全面了解,本文就个人所了解的情况和问题发表一些见解或看法,难免存在不够准确之处,仅供同行们对这些问题进行深入研究或讨论时参考。

一、地铁隧道通风系统设计方案简介

广州地铁隧道通风设备均设于车站的两端,2、3号线车站两端的隧道通风系统设计如图1所示,本文将其称为A型设计方案。4、5号线部分车站采用A型设计方案,部分车站则采用图2所示系统,本文将其称为B型设计方案。深圳地铁1号线等国内多条地铁线路均采用A型方案,已被各方面普遍接受,B型方案是最近几年出现的,虽然一些地铁线已参照采用,但尚还存在一些争议。个人认为,从A型到B型是一个巨大的前进,应当肯定,从充分发挥设备的设置功能讲对A型和B型都有进一步研究改进的空间。

A型方案主要设计特征是每个车站有4个隧道通风亭、4个活塞通风道、4台TVF风机及2台TEF风机。每台TVF风机的设备选型技术参数是:风量QX=60m3/s、风压HX=1000Pa、电机功率NX=90KW、风机直径φ=2.0m、可正反转且正反转风量相等;每台TEF风机的选型参数是:QX=40m3/s、HX=600Pa、NX=45KW、φ=1.6m、只正转排风;

B型方案主要设计特征是每个车站有2个隧道通风亭、2个活塞通风道、2台TVF风机及2台TV/EF风机及2台变频器。TV/EF风机即为TVF风机兼作TEF风机使用,平时通过变频器按照TEF风量运转,事故时则按TVF风量运转,因此TV/EF选型参数同TVF。

显然A型方案比B型工程设备数量多,设计规模大,工程投资高。

二、设备功能充分发挥问题的讨论

地铁工程投资巨大,运营费用高昂,这是许多城市修建地铁的最大障碍,环控设备在地铁设计中占用建筑面积最大,环控设备在地铁运营中耗电最多,因此对“占地大户”和“用电大户”的环控专业进行优化研究,对降低地铁工程造价具有较大意义。为减少工程投资,降低运营成本,广州地铁建设者已经作出了艰巨的努力,将A 型方案修改为B型方案,这一改进其工程的经济意义巨大,使每个车站:(1)少设2台TEF风机;(2)减少了2条活塞通风道(土建规模约4m(宽)×4m(高)×30m(长)×2(条)),(3)少建2个地面风亭。遗憾的是这一设计进步没有得到充分肯定而加以全线推广采用,本人所参与的5号线工点设计咨询范围不少车站仍然采用了A型方案。个人认为对于A、B型就充分发挥设备的设置功能而言均还有进一步研究改进的空间。设备功能如何充分发挥个人认为目前可以从以下六方面进行研究,即为:设备设置的必要性、设备功能的使用性、设备设计的兼用性、设备运转的能效性、设备容量的小型化及设备控制的简明化。从这六个方面进行讨论可能有助于我们对设计中的问题进行深入研究。

1、设备设置的必要性讨论

地下空间十分宝贵,可设可不设的设备应尽可能不设,A型方案车站两端所设4台TVF风机属于这一问题探讨范围。设置屏蔽门后,区间隧道机械通风条件较开/闭式系统有了很大改善,计算结果及各条线的隧道通风工艺设计均表明,当列车阻塞或列车发生火灾而停在单线区间隧道内对其进行通风或排烟时,前后两个车站的TVF 风机一般只需要运转2台,而不象开/闭式系统需要运转4台,多出的2台只能起备用作用。因此本问题的核心是区间隧道通风排烟在屏蔽门系统时是否必须设置备用风机的问题。个人观点是可以不设,理由是:(1)车站站厅或站台火灾时的排烟风机没有考虑备用,为何区间隧道排烟通风时需要考虑备用呢?两者的设计标准不统一;(2)采用开/闭式系统的广州1号线、南京1、2号线、上海2号线等均对TVF风机没有考虑备用,为何采用屏蔽门系统后要有备用风机,两者的设计标准不统一;(3)《地铁设计规范》(GB50157-2003)(以下简称

为“地铁规范”)没有明确对区间隧道事故通风必须设置备用风机;(4)国外地铁对事故风机设置备用的也极为少见(本人掌握资料不多,希望见多识广者提供这方面的资料支持)(5)发生火灾概率较高的公路隧道在其《公路隧道通风照明设计规范》(以下简称为“公路规范”)中不仅没有规定火灾排烟风机需要有备用,而且对火灾排烟设备的设计规模与其经济性有所规定和说明,下面引用其中两例文字可能有助于我们的讨论。

例1:对于大于1Km的长大隧道发生车辆阻塞时,可能会出现全隧道车辆阻塞情况,但公路规范规定“阻滞段的计算长度不宜大于1Km”,并说明“通风设计应考虑交通监控系统的功能,不必考虑1Km以上的交通阻滞,否则过量通风设施必定长期(甚至永远)闲置,显然是浪费,PIARC(1995)报告中亦指出了这点”;

例2:对于火灾设计规模及排烟设计要求,公路规范规定“火灾排烟风速可按2m/s~3m/s取值”,并说明该值“是按一般隧道火灾产生20MW的热量控制的排烟风速取值;对汽油车相撞产生500MW以上的热量排烟风速要求5m/s以上,如以此设计很不经济”。

可能会有人说,A型设计方案可以对两条平行隧道同时进行机械通风。个人认为对于火灾隧道进行机械排烟是十分必要的,但没有必要同时对平行的另一侧未发生火灾的隧道进行机械通风,地铁规范也没有这样的要求。当然对于地铁区间隧道列车火灾排烟问题是需要我们认真对待的,但采用设置备用风机来加大其安全度的做法是值得我们深入研究的,此项措施工程代价太大,设计中的经济问题不能不加以考虑。

2、设备功能的使用性和设备设计的兼用性讨论

设备功能的使用性是指设置的设备应当经常运转使用,不能长期闲置不用;设备设计的兼用性是指一个设备应尽可能一机多用,充分发挥设备的使用功能。前者是针对地铁火灾专用通风设备长期闲置而提出来的,后者则是研究将这些长期闲置设备兼作其它设备平时加以利用,以节省其它设备的设置,这就是本文所说的设备兼用性设计问题,设备的使用性和兼用性密切相关,故联系在一起进行讨论。

广州地铁2、3、4、5号线在车站通风空调系统中对站厅和站台层火灾事故设计了专用的排烟风机,即SEF 风机;对于区间隧道内的列车阻塞或列车火灾事故设计了TVF风机。SEF风机和TVF风机在正常运营时是不运转的,发生事故时才进行运转,这些风机是“长期(甚至永远)闲置”着的,为保证这些设备在事故时能正常运转,还需要经常对其进行保养性运转,这些显然都是一种浪费,需要对其进行研究改进。改进途径之一,就是使其设计具有兼用性。2、3号线各个车站是按照图1所示的A型方案进行设计的,即对区间隧道设置了有TVF风机的通风系统,对站内隧道设置了有TEF风机的排热系统,两个系统分别设置,相互相对独立。4、5号线部分车站对此进行了改进,出现了图2所示的B型方案。B型方案不同于A型方案的地方是区间隧道通风系统与站内隧道排热系统两个系统相互结合了在一起,并可以互为备用。这是兼用性设计的一个很好实例,即车站每端用1台TVF风机兼做TEF风机使用,平时正常运营时作为TEF风机使用,发生事故时作为事故风机使用,两种风机的风量匹配是通过变频器实现的(本文为了区别和表述方便起见,将TVF风机兼作TEF风机时称为TV/EF风机)。对这一设计进步,作者给予高度评价,并认为全线各车站均可以采用,尤其是风亭设置较为困难的车站更应采用,在5号线工点设计咨询工作中已明白的表明了个人这一设计观点。至于SEF风机个人认为可以兼做大系统的回/排风机,两者风量的差异匹配可以通过变频器或双速电机来实现,此设计比较简单,设计事例也较多,本文不多作文字说明。

3、设备容量小型化的讨论

通风设备容量(主要指风量和风压)小的风机总是比容量大的风机运转功率低、投资省、设备布置难度小,在一定的条件下还可以获得土建工程规模减小的效果。地铁设备系统繁多,空间十分宝贵,通风设计工作中应当

尽可能将其设备小型化,以获得地下空间的最佳利用。车站大系统中的SEF风机和B型方案中的TV/EF风机属于这一讨论内容。

广州2~5号线中对车站大系统设置了专用的排烟风机SEF,它与回/排风机RAF并列设置,前者比后着容量大,个人认为可将SEF小型化按照RAF设计,平时2台RAF互为备用单台运行,火灾时2台RAF并联运行加大风量以满足排烟需要,广州1号线就是按照这一原则进行设计的。B型方案中的TVF和TV/EF风机其装机容量相同,是环控专业最大容量的设备,设备购置费较高。TV/EF在正常运行时通过变频器按TEF技术参数运行,似为“大材小用”,如果按照2台TEF设计,正常运行时2台TEF互为备用单台运行满足站内隧道排热通风需要,火灾时2台TEF并联运行满足隧道通风或排烟要求,当然它应具备正反转功能,为了区别本文将其称为TE/VF风机。可见TV/EF是一个大容量风机兼作小容量风机使用的设计问题,而TE/VF是一个小容量风机兼作大容量风机使用的设计问题,后者的优势是设备小型化和不设置变频器。变频器可以多工况使用,而TVF配置的变频器仅为单工况使用,似没有充分使用其设备功能。对于1号线2台回/排风机并联兼作排烟风机使用的设计,业内一些人士有不同看法,为此下面借用本文前面所列出的技术参数进行具体计算分析说明,以表明个人的技术观点。

图2所示的B型设计方案在正常运营时由TV/EF风机通过变频器按照TEF的计算风量QY=36.4m3/s和计算风压HY=546Pa进行运转(计算技术参数是按照TEF风机选型技术参数风量和风压均考虑选型1.1的安全系数计算,即QY=QX/1.1=36.4m3/s,HY=HX/1.1=546Pa,以下各种风机的计算技术参数(风量和风压)均按选型技术参数除以1.1考虑,同时将计算风量和风压视为风机运行的风量和风压),发生事故时TV/EF风机则按照TVF的计算风量QY=60/1.1=54.6m3/s和计算风压HY=1000/1.1=910Pa进行运转。将1台TV/EF改为2台TE/VF后,2台TE/VF 风机并联运行的特性曲线如图3所示,其系统阻力关系式可用H2=R2*Q2表示,图中A2点是2台风机并联运行的计算工况点,A1点是2台风机并联运行时每台风机的运行的计算工况点,A点则是单台TE/VF风机运行的计算工况点,其风量Q(A)>Q(A1)=54.6/2=27.3m3/s,H2(A)<H2(A1)=910Pa,当然单台TE/VF风机的运行时不能针对隧道通风系统管路,而应是针对站内隧道排热系统管路,后者的系统阻力关系式应当不同于前者,若用H 1=R1*Q2表示排热系统阻力关系,则工作点为B点,其风量Q(B)可能>Q(A)或=Q(A)或<Q(A),三种情况均应是Q(B)>Q(A1)。按照前面所述的风机选型技术参数可以反算出R2=0.305<R1=0.412,因此图示是Q

(B)<Q(A)。显然,TE/VF风机设备选型技术参数应按照2台并联运行的工况点进行设计。即为QX=30m3/s、HX=1000Pa,NX=55KW、φ=1.6m、正反转风量相等;这种TE/VF风机的装机容量比单独设置的TEF风机大,但比T VF风机小,当然TE/VF风机,单台运行时要满足站内隧道排热系统风量QY=36.4m3/s要求,2台风机并联运行时又要满足区间隧道通风系统风量QY=54.6m3/s要求,设计上存在一些难度,但只要风机特性曲线选择恰当,系统管网设计合理,两者都得到满足在设计上还是可以作到的,因为管网系统阻力系数R1、R2仅与系统断面尺寸、长度、摩擦阻力和局部阻力等因素有关。

4、设备运转的能效性讨论

通风机的能效性在设计中需要对三个方面进行关注或把关,首先是通风管网的阻力计算必须比较准确,其次是对各个厂家产品或不同系列风机进行对比分析准确选择效率较高者,第三是将风机的运行工况点设计在风机特性曲线高效率曲线范围内,只有把握住这些才能实现高能效的节能运行,在此前提下,B型方案则存在TV/EF效率低于TEF的问题,因为同样风量风压条件下,具有正反转功能的风机效率总是低于单向运转的风机,因此B型方案的运行费用高于A型方案,这是B型方案美中不足之处。但是B型比A型方案所节省土建工程投资和设备购置费用远远大于其运营电费的增加值,作者估算节省的初期投资可以静态的让增加的运营电费使用100年以上。因此,B型方案尽管存在不足之处,作者仍然认为应当给予肯定,当然对其不足的地方需要加以研究改进。对于上述2台RAF和2台TE/VF风机,存在平时单台运行和火灾双台并列运行2个运行工况点的设计问题,要使2个工况点均处于高效率曲线范围内一般来说较为困难,只能将单台运行工况点设于风机特性曲线高效率范围内,火灾时2台并联运行的能效较差多耗电力则是不可避免的,是其不足之处,但多耗电费次数有限,因此个人认为它仍然是有价值的可以选择的设计方案。

5、设备控制的简明化讨论

个人认为环控专业的各个系统(包括隧道通风系统、大系统、小系统和水系统)设计均应尽可能的作到简洁明了控制简单才好,尤其是火灾事故时的控制模式。所谓简洁明了就是在满足设计标准的前提条件下,使系统功能尽可能的简单,使运转的风机和电动控制的风阀都尽可能的少设,作到设备少而精,控制简单明确一目了然。A型方案尽管设备较多及土建工程巨大,但因其系统分工明确控制相对简单而受到各方面普遍接受,相反B型方案因其需要功能转换(由正转到反转)和控制风阀较多而受到各方面的质疑,冲淡了取消2个进站端活塞通风道及其风亭的工程意义。

三、地铁隧道通风系统设计改进建议方案介绍

通过以上讨论本文提出图4所示的隧道通风系统设计建议方案(简称建议方案1),其基本特点是:

(1)与B型方案一样取消了2个进站端活塞通风道及其风亭(为何赞同取消,作者将在第二篇地铁风亭数量问题讨论文章中进行分析和说明)。

(2)与A型方案一样TVF与TEF两个系统分开设计,两个系统相对独立。区间隧道内发生事故时由前后车站两端的2台TVF运行对其进行送风或排风,站内隧道排风由车站两端的2台TEF风机分别完成。

(3)对TVF风机不考虑备用量,也不在TVF和TEF之间考虑备用关系,考虑平时加强设备管理和维修,以确保事故时能正常投入运转和使用。

(4)对TEF系统的车顶排风道和站台下排风道对左线与右线分别采用单端排出设计,一方面减少电动风阀的设置数量,一方面简化事故通风时的控制模式。

隧道通风专项方案

目录 一、编制依据和原则............................................................... 1... 1 、通风设计依据 ............................................................ 1... 2 、编制原则................................................................ 1... 二、工程概况..................................................................... 1... 1 、工程概况............................................................... 1... 2 、地形、地貌 ............................................................. 1... 3 、地层岩性................................................................ 2... 4 、水文地质条件 ............................................................ 2... 三、通风设计标准................................................................. 2... 四、通风设计的原则............................................................... 3... 1 、通风系统................................................................. 3... 2 、通风设备................................................................. 4... 五、通风方案..................................................................... 4... 5.1 风量和风压计算 ........................................................... 4... 5.2 风机选型 ................................................................. 6... 六、施工通风检测................................................................. 6... 1 、风速测定.................................................................................. 7.. . 2 、风速测定要求.................................................................................. 7.. . 3 、用机械式风表测量隧道平均风速步骤 ........................................ 8.. 4 、隧道通风量计算 ......................................................... 1..0

地铁隧道通风系统

究改进的空间。 A型方案主要设计特征是每个车站有4个隧道通风亭、4个活塞通风

φ=2.0m、可正反转且正反转风量相等;每台TEF风机的选型参数是:QX=40m3/s、HX=600Pa、NX=45KW、φ=1.6m、只正转排风; B型方案主要设计特征是每个车站有2个隧道通风亭、2个活塞通风道、2台TVF风机及2台TV/EF风机及2台变频器。TV/EF风机即为TVF风机兼作TEF风机使用,平时通过变频器按照TEF风量运转,事故时则按TVF 风量运转,因此TV/EF选型参数同TVF。 显然A型方案比B型工程设备数量多,设计规模大,工程投资高。 二、设备功能充分发挥问题的讨论 地铁工程投资巨大,运营费用高昂,这是许多城市修建地铁的最大障碍,环控设备在地铁设计中占用建筑面积最大,环控设备在地铁运营中耗电最多,因此对“占地大户”和“用电大户”的环控专业进行优化研究,对降低地铁工程造价具有较大意义。为减少工程投资,降低运营成本,广州地铁建设者已经作出了艰巨的努力,将A型方案修改为B型方案,这一改进其工程的经济意义巨大,使每个车站:(1)少设2台TEF 风机;(2)减少了2条活塞通风道(土建规模约4m(宽)×4m(高)×30m(长)×2(条)),(3)少建2个地面风亭。遗憾的是这一设计进步没有得到充分肯定而加以全线推广采用,本人所参与的5号线工点设计咨询范围不少车站仍然采用了A型方案。个人认为对于A、B型就充分发挥设备的设置功能而言均还有进一步研究改进的空间。设备功能如何充分发挥个人认为目前可以从以下六方面进行研究,即为:设备设置的必要性、设备功能的使用性、设备设计的兼用性、设备运转的能效性、设备容量的小型化及设备控制的简明化。从这六个方面进行讨论可能有助于我们对设计中的问题进行深入研究。 1、设备设置的必要性讨论 地下空间十分宝贵,可设可不设的设备应尽可能不设,A型方案车站两端所设4台TVF风机属于这一问题探讨范围。设置屏蔽门后,区间隧道机械通风条件较开/闭式系统有了很大改善,计算结果及各条线的隧道通风工艺设计均表明,当列车阻塞或列车发生火灾而停在单线区间隧道内对其进行通风或排烟时,前后两个车站的TVF风机一般只需要运转2

(完整版)隧道通风专项方案

隧道通风专项方案 一、编制依据和原则 隧道施工通风是隧道施工的重要工序之一,是隧道安全施工的关键。合理的通风系统、理想的通风效果是实现隧道快速施工、保障施工安全和施工人员身心健康的重要保证。根据设计图纸、以往类似隧道通风经验及对当前通风设备技术性能的调研结果,按照自成体系的原则,综合考虑施工过程中可能出现的情况,制定隧道通风方案。 1.1 通风设计依据 ⑴《蒙华铁路MHSS-4标设计施工图》; ⑵《铁路隧道技术规范》(TB10003-2005); ⑶《铁路隧道工程施工技术指南》(TZTZ204-2008); ⑷《铁路隧道工程施工安全技术规程》(TB10304-2009); 1.2 编制原则 (1)严格遵守招标文件明确的设计规范,施工规范和质量评定验收标准。 (2)坚持技术先进性,科学合理性,适用性,安全可靠性与实事求是相结合。 (3)对现场坚持全员、全方位、全过程严密监控,动态控制,科学管理的原则。 二、工程概况 2.1 工程简介 MHSS-4标段起讫里程DK691+361.53~DK716+850.00,全长25.488km,包括城烟隧道1座,崤山隧道1座、渡槽1座、框架涵1座,路基土石方21975.95施工方,无碴道床50.921km。 崤山隧道位于河南省三门峡市下辖灵宝市寺河乡及卢氏县官道口镇境内,进口位于灵宝市寺河乡城烟村附近,右侧有 G209国道通过;出口位于卢氏县官道口镇车家岭附近,位于S323省道边。部分山区有乡间水泥路通过,仅局部地段交通较为便利,其余地方通行仍较困难。本隧道起止里程为DK694+053 (YDK694+045)~DK716+804(YDK716+816),为两条单线隧道,左线隧道全长

地铁机电安装知识(通风空调概述)

目录 1、概述 (3) 2、通风空调系统分类 (3) 3、通风空调各系统组成及工作原理 (3) 4、车站排热系统 (7) 5、送排风(排烟)系统 (9) 6、空调通风(净化)系统 (11) 7、空调水系统 (13) 8、通风空调系统的控制方式 (15)

地铁通风空调系统简介 1、概述 地铁,顾名思义,是在地下运行的轨道交通工具。它是由区间隧道和站区构成的封闭式空间,它在作为城市地下交通的同时还肩负着战时人防的重要功能。地铁是作为一个特殊的公共场所,人口密度高,流量大,所存在的潜在危险也不容忽视。在这个封闭的空间里,由于空气流通不畅,随着季节、天气、客流量的变化而变化,同时地铁设备的运行所散发的热量及废气若不及时排除,将使本站和区间温度空气污染温度上升,空气质量下降,严重影响到地铁乘客乘车舒适度及车站办公人员工作环境的乘车环境。如何有效的控制室内环境,为乘客提供一个舒适、安全的乘车环境,如何在发生灾害(例如火灾)情况能够迅速和安全的帮助乘客离开现场,减少乘客和公共设施的损失通风空调系统发挥着极其重要的作用。归纳起来地铁通风空调系统有以下四方面作用: 1)为乘客正常行车创设舒适的环境; 2)为工作人员提供合理的工作环境; 3)保证设备正常运行; 4)事故及灾害情况下,进行合理的气流组织,及时排烟,诱导乘客疏散。 2、通风空调系统分类 2.1地铁通风空调系统按其质量验收规范分部工程分为:送排风系统、防排烟系统、空调风系统、冷却水系统、冷冻水系统

2.2按功能区域分为:隧道通风系统、排热系统、送排风系统、空调大系统(公共区空调通风)、空调小系统(设备办公区及设备机房空调通风)、空调水系统。 3、通风空调各系统组成及工作原理 3.1隧道通风系统组成 区间隧道活塞风与机械通风系统(兼排烟系统),简称TVF系统。隧道通风系统组成按照风亭至轨行区排列,一般主要设备包括:风亭、立式组合风阀、消声器、渐扩管、耐火软接、事故风机(可逆转轴流风机)、耐火软接、渐扩管、消声器、卧式风阀、就地控制箱、控制柜,按照该组成方式,在每个车站的两端安装分别两套,按照不同的功能模式,实现与风机同步配置运行的电动风阀(与风机开启状态一致),实现风机正反转(送排风)的单台或两台并联运行。其系统设备组成详见图1

广州地铁通风空调系统设计说课讲解

广州地铁通风空调系统设计 简介:随着广州地铁一号线于1997年的开通,地铁的客运量大、速度快、安全准点以及舒适的特点日益显现出来,并迅速得到了广大市民的欢迎,取得了巨大的经济和社会效益。在番禺和花县撤市改区后,市政府及地铁总公司为实现广州现代化大都市的目标,以及尽快形成地铁网络,完善广州市的交通网络,将在今后的几年里迅速发展地铁二号线以及三号线,以至更多线路。笔者有幸参加了一号线的设计工作,在二号线工程中又参加了新港东站的设计,本文就新港东站的通风空调系统的设计问题与大家进行探讨,供参考。 关键字:通风空调地铁冷负荷 前言 随着广州地铁一号线于1997年的开通,地铁的客运量大、速度快、安全准点以及舒适的特点日益显现出来,并迅速得到了广大市民的欢迎,取得了巨大的经济和社会效益。在番禺和花县撤市改区后,市政府及地铁总公司为实现广州现代化大都市的目标,以及尽快形成地铁网络,完善广州市的交通网络,将在今后的几年里迅速发展地铁二号线以及三号线,以至更多线路。笔者有幸参加了一号线的设计工作,在二号线工程中又参加了新港东站的设计,本文就新港东站的通风空调系统的设计问题与大家进行探讨,供参考。 一、工程概述

广州市地下铁道二号线首期工程全程约23.245km,南起于琶洲站,北终于江夏站,共设20个车站。新港东站是首期工程中第二个车站,编号为202,位于华南快速大道东侧新港东路中心,东侧为琶洲站,西侧为磨碟沙站,附近有广州会展中心和广州博览中心等大型建筑。车站总长度206.2m,标准段宽度16.5m,为单层明挖侧式站台的地下车站,站台在轨道两侧纵向布置,站厅为服务及中转区域,设在南北两侧中部,站台边缘设置屏蔽门与轨道隔开。由于轨道将车站分割为南北两侧,因此南北两侧均设环控机房及设备管理用房。车站东端隧道风亭及排风亭设于车站东端南北两侧,西端隧道风亭及排风亭,车站中部新风亭及排风亭结合出入口设于中部南北两侧,本车站南北两侧各有六个风亭。整个车站呈一个古字“車”形。车站总布置详见附图1。 根据隧道通风系统的要求,在车站两端布置相应的隧道通风设备。根据地铁运营环境要求,在车站站厅站台的公共区部分设置通风空调和防排烟系统,正常运行时为乘客提供过渡性舒适环境,事故状态时迅速组织排除烟气(简称大系统)。根据地铁设备管理用房的工艺要求和运营管理要求设置通风空调和防排烟系统,正常运行时为运营管理人员提供舒适的工作环境和为设备正常工作提供必需的运行环境,事故状态时迅速组织排除烟气(简称小系统)。

地铁隧道通风机和排热风机调试操作规程-暂行20160419

地铁隧道风机和排热风机调试与试运行操作规程(暂行) 第一章总则: 第一条本规程(暂行)适用于隧道风机(TVF风机)和排热风机(UO风机)的调试(包含单体调试、与环控柜调试、系统调试以及与综合监控联调等)和试运行阶段。 第二条在调试和试运行阶段,在启动隧道风机和排热风机前,应由监理单位牵头完成风机、风阀、环控柜、手操箱等相关设备的技术检查以及场地内人员清理等安全隐患排查工作,并安排专门人员负责风机运行过程中安保工作,严禁任何其他无关人员进入风道、风机房等调试相关区域。 第三条在TVF和UO风机调试与试运行启动前,必须上报专项调试/试运行方案,在方案审批通过后方可进行大风机的调试和试运行(审批表参见附件1和附件2,方案中须有大风机异常情况下的应急预案)。 第二章调试和试运行前后的技术检查: 第四条调试检查 (一)风机安装完毕后,在每次启动前,应认真进行下列检查: A、电压在正常范围内(一般为380伏,允差±6%),三相电流基本平衡; B、风机叶轮与机壳间的间隙正常,手动盘转叶轮无卡住和摩擦现象; C、软连接、天圆地方、风机本体连接件安装牢固; D、叶轮旋转方向与风机的旋向标志相符; E、风机机壳内和土建风道/管道内清理干净、无杂物。土建和设备施工单位 完成风道内所有工作; F、接地保护线和电流保护器(保险丝)按要求安装; G、人员全部撤离,并派人在风道、机房出入口处值守,禁止任何人员进入; H、地面风井口设置警示标志,严禁人员靠近风井口。 在各项检查合格后,才能进行调试运转。 (二)风机启动时先启风阀再开启风机,停止时先停风机再停风阀。 (三)启动后要时时检测风机的振动情况(正常振动值小于7.1mm/s),发现剧烈振动,发现异常应立即断电停车进行检查。

轨道空调系统简介

地铁通风空调系统 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 1、开式系统 开式系统是应用机械或"活塞效应"的方法使地铁内部与外界 交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 1)活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道内的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有效换气量达到设计要求。实验表明:当风井间距小于300m、风道的长度在25m以内、风道面积大于10m2时,有效换气量较大。在隧道顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难实现的,因此全"活塞通风系统"只有早期地铁应用,

现今建设的地铁多设置活塞通风与机械通风的联合系统。 暖通-空调-在线 2)机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风系统。 根据地铁系统的实际情况,可在车站与区间隧道分别设置独立的通风系统。车站通风一般为横向的送排风系统;区间隧道一般为纵向的送排风系统。这些系统应同时具备排烟功能。区间隧道较长时,宜在区间隧道中部设中间风井。对于当地气温不高,运量不大的地铁系统,可设置车站与区间连成一起的纵向通风系统,一般在区间隧道中部设中间风井,但应通过计算确定。 2、闭式系统 闭式系统使地铁内部基本上与外界大气隔断,仅供给满足乘客所需的新鲜空气量。车站一般采用空调系统,而区间隧道的冷却是借助于列车运行的"活塞效应"携带一部分车站空调冷风来实现。这种系统多用于当地最热月的月平均温度高于25℃、且运量较大、高峰时间内每小时的列车运行对数和每列车车辆数的乘积大于180的地铁系统。暖通空调在线 3、屏蔽门系统 在车站的站台与行车隧道间安装屏蔽门,将其分隔开,车站安装空调系统,隧道用通风系统(机械通风或活塞通风,或两者兼用)。若通风系统不能将区间隧道的温度控制在允许值以内时,应采用空

地铁通风

地铁通风 地下铁道是一种现代化的交通系统,具有速度快、客流量大等特点。由于地铁系统有许多机电设备以及车辆运行发热、乘客散热、新鲜空气带入的热量等,使地铁系统的温、湿度逐步升高。若不能很好地解决地铁内通风,地铁内温度会上升到乘客无法忍受的程度。因此,建立良好的地铁通风系统十分必要,不仅能提供安全、舒适的乘车环境,减少能源消耗,而且能够降低地铁系统的建设投资和运行效益。 本文首先介绍了地铁通风的背景,讲述了地铁通风的重要性,接着对地铁通风系统进行概述,包括地铁通风空调系统和地铁通风隧道系统,然后对地铁通风空调系统和地铁隧道通风系统分别进行了具体设计,从而更好地解决地铁通风问题,最后根据对地铁通风系统的设计分别对地铁通风空调系统和隧道通风系统的未来发展提出展望。 1背景 随着城市的快速发展, 交通已经成为制约城市建设的一个重要因素。因此, 地铁作为一种方便快捷的城市公共交通工具, 在国内也已受到关注, 越来越多的城市开始发展地铁交通系统。地铁尤其是地下线, 处在相对封闭的地下空间里, 必须通过通风空调系统创造人工环境, 以满足列车、设备、人员和防灾的需要, 可以说通风空调系统在地铁中处于一个相对较重要的地位。 地铁车站及区间隧道是狭长的地下建筑,除各车站出入口、送排风口与外界相通外,基本上与外界隔绝。由于列车运行及大量乘客的集散,使得地铁环境具有如下特点:列车运行过程中产生大量的热被带入车站;列车及各种设备的运行产生的噪声不易消除,对乘客造成很大影响;地铁列车运行时产生活塞效应,若不能合理利用,易干扰车站的气流组织,影响车站的负荷;地层具有蓄热作用,随着运营时间的增加,地铁系统内部的温度会逐年升高;当发生火灾事故时,将导致环境恶化,不易救援 2地铁通风空调系统 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 开式系统是应用机械或“活塞效应“的方法使地铁内部与外界交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道内的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风

隧道通风方案设计,通风计算

蒙河铁路屏边隧道斜井 通风方案 1、工程概况 屏边隧道全长10381m,进口里程DⅡK60+875,出口里程DIK71+256,为单线隧道,设计为单面下坡,坡度分别为-20.2‰(坡长9025m)、-10‰(坡长650m)及-1‰(坡长706m),最大埋深660m。 屏边斜井位于隧道线路右侧,斜井与正洞隧道中心线交汇点里程为D ⅡK66+300,斜井与线路中线蒙自方向夹角80°,井口里程为XDK1+218,水平长度1218m,综合坡度为85‰。本斜井采用无轨单车道运输,断面净空尺寸5.6m(宽)×6.0m(高)。斜井施工任务为斜井1218m(XDK0+000~XDK1+218),平导1735.29m(PDK66+294.71~PDK68+030),辅助正洞4165m (DⅡK63+835~DⅡK68+000),其中出口方向为1700m(DⅡK66+300~DⅡK68+000),进口方向2465m(DⅡK63+835~DⅡK66+300)。 2、通风控制条件 隧道在整个施工过程中,作业环境应符合下列卫生及安全标准: 隧道内氧气含量:按体积计不得小于20%。 粉尘允许浓度:每立方米空气中含有10%以上游离二氧化硅的粉尘为2mg;含有10%以下游离二氧化硅的水泥粉尘为6mg;二氧化硅含量在10%以下,不含有毒物质的矿物性和动植物性的粉尘为10mg。 有害气体浓度:一氧化碳不大于30mg/m3,当施工人员进入开挖面检查时,浓度为100mg/m3,但必须在30min内降至30mg/m3;二氧化碳按体积计不超过0.5%;氮氧化物(换算为NO2)5mg/m3以下。洞内温度:隧道内气温不超过28℃,洞内噪声不大于90dB。

地铁隧道通风机房的典型布置.

地铁隧道通风机房的典型布置 摘要:结合屏蔽门系统地铁车站隧道通风系统配置要求,介绍了地铁区间隧道通风机房的几种典型布置形式总结了各典型布置形式的优缺点,并详细说明了其适用条件以及如何进行布置方式的选择,对类似工程设计具有一定的参考意义。 关键词:地铁;隧道;通风;机房;布置 隧道通风系统是地铁通风系统的重要组成部分,正常运营时隧道通风系统为地铁区间降温、换气提供服务。火灾情况下能控制烟雾和热度蔓延,排出烟雾为疏散乘客开通一条无烟通道。 为了满足隧道通风要求和便于运管理,隧道通风机房一般都布置在车站的两端,较长的区间隧道(长度>1.5km),有可能需要在区间中部设置中间风机房。隧道通风机房(包括风道)占用面积较大,其布置的好坏往往直接影响车站的建筑方案。以下结合不同车站形式,不同的环境条件介绍隧道通风机房的布置方式。 1 隧道通风机房布置的要求 1.1 隧道通风机房的布置要满足以下几方面的要求 ①满足隧道通风系统工艺要求,即能满足各种运行工况的风量、风向要求; ②满足设备检修的需要; ③尽量节省空间; ④气流组织顺畅,系统阻力最小,运行节能。 1.2 典型的隧道通风系统的基本要求 图1是国内屏蔽门系统地铁中常采用的区间隧道通风系统原理图,其基本要求包括以下几个方面: ①每端配2台隧道风机,风量60m3/s,风压1000Pa,静压比>70%,隧道风机均为可逆转式轴流式风机,用于早、晚时段及列车阻塞、火灾时通风和排烟,根据运行模式的要求给隧道排风或向隧道内送风,即正转或反转,两台风机可实现互为备用。满足此要求的风机一般是Φ2000~2300,本文的典型布置风机尺寸均按Φ2300×1500考虑。 ②每个隧道对应设置1个16m2活塞风道,活塞风道长度40m,弯头≯4个,活塞风井机械风井合用。机械风道风速6m/s,面积10m2。 ③风机的前后必须配置天圆地方的变径管和消音器,变径管长度不应小于2m,消声器片间风速≯6m/s, 面积10m2。对隧道侧的长度不应小于2m,对外侧的长度不应小于3m。 ④联动风阀按80%的有效面积计算,风速≯8m/s。风阀不应直接连接在消音器上,应设风室或风管过渡。 2 隧道通风机房常见的布置形式

地铁车站通风空调系统优化设计探讨

地铁车站通风空调系统优化设计探讨 【摘要】以缩小地铁车站规模、减少工程投资为出发点,在满足地铁车站通风空调系统基本功能的前提下,通过对地铁隧道通风系统和空调水系统遇到的设计问题进行总结,提出优化设计方案供设计参考。隧道通风系统可通过设置单活塞风井来压缩车站规模,减少活塞风亭对车站周围环境的影响。同时特殊区段的隧道通风系统,可在充分了解地铁隧道通风系统原理的基础上优化系统设计,降低车站土建规模、避免对重要场合周围建筑景观的影响。地铁车站空调水系统可以选择设置集中冷站和采用新型制冷设备等方式来减小冷水机房的面积。 【关键词】地铁车站;通风空调;优化设计 0 引言 城市轨道交通作为城市中重要的交通工具,具有舒适、快捷等特点。随着我国国民经济的发展与城市化水平的不断提高,越来越多的城市开始建设并拥有地铁。地铁通风空调系统设备庞大,其布置方案的合理与否直接影响车站的建筑规模。地铁车站一般分为公共区和设备区,通风空调系统是占用机房最多的机电系统,根据系统形式的不同,通常占用设备管理用房面积的1/2~1/3。如何在满足系统功能的前提下,减少通风空调系统占用的设备用房面积,减小车站土建规模,降低地铁投资一直是地铁设计者的努力方向。 以缩小地铁车站规模为出发点,在满足系统基本功能的前提下,本文通过对实际设计过程遇到的问题进行总结,提出设计方案供设计参考。 1 车站隧道通风系统优化设计方案 目前上海、广州、深圳、成都等城市设计的地铁都采用了屏蔽门(Platform Screen Door,PSD)系统,很多采用开式或闭式系统的车站也加装了屏蔽门。屏蔽门系统的设置可以有效防止乘客有意或无意跌入轨道,减小噪声及活塞风对站台候车乘客的影响,改善了乘客候车环境的舒适度,具有节能、安全、美观等特点,在地铁中的应用越来越广泛。 屏蔽门系统的应用使隧道与车站分隔开来,不仅减小了车站公共区空调负荷,对隧道通风系统的形式与运行效果也产生了影响。 1.1 单活塞风井方案

地铁隧道通风系统

?简介:本文结合广州地铁环控系统设计对如何充分发挥设备的设置功能从六个方面进行了讨论,提出了较为简明的隧道通风系统设计新方案,可供新建地铁环控系统设计时使用或参考?关键字:设备功能,隧道通风,系统设计,备用风机,兼用设计 前言 广州地铁1、2号线已经开通运营,3号线即将开通运营,4、5号线正在进行设计。就设计进度和设计水平而言,广州处于国内最前列的位置,对广州地铁进行研究具有更大现实意义。广州地铁1号线环控制式采用开/闭式系统,对其设计问题已在个人所写的《广州地铁1号线环控设计总结》(收入《回顾与思考》一书第九章—环境控制系统)中进行了讨论,文中的一些见解和意见,对其它采用开/闭系统的城市地铁设计有一定的参考价值。广州地铁2、3、4、5号线环控制式采用了屏蔽门系统,对于屏蔽门系统,个人仅参加了一些车站工点的设计或设计咨询工作,对全线系统设计的资料不够全面了解,本文就个人所了解的情况和问题发表一些见解或看法,难免存在不够准确之处,仅供同行们对这些问题进行深入研究或讨论时参考。 一、地铁隧道通风系统设计方案简介 广州地铁隧道通风设备均设于车站的两端,2、3号线车站两端的隧道通风系统设计如图1所示,本文将其称为A型设计方案。4、5号线部分车站采用A型设计方案,部分车站则采用图2所示系统,本文将其称为B型设计方案。深圳地铁1号线等国内多条地铁线路均采用A型方案,已被各方面普遍接受,B型方案是最近几年出现的,虽然一些地铁线已参照采用,但尚还存在一些争议。个人认为,从A型到B型是一个巨大的前进,应当肯定,从充分发挥设备的设置功能讲对A型和B型都有进一步研究改进的空间。 A型方案主要设计特征是每个车站有4个隧道通风亭、4个活塞通风道、4台TVF风机及2台TEF风机。每台TVF风机的设备选型技术参数是:风量QX=60m3/s、风压HX=1000Pa、电机功率NX=90KW、风机直径φ=2.0m、可正反转且正反转风量相等;每台TEF风机的选型参数是:QX=40m3/s、HX=600Pa、NX=45KW、φ=1.6m、只正转排风;

地铁通风空调系统设计分析

地铁通风空调系统设计分析 发表时间:2019-08-16T09:48:31.743Z 来源:《科技新时代》2019年6期作者:骆运霖[导读] 因此要求设计人员在进行地铁通风空调系统设计时,必须要加强对相关结构和构件的设计应用,提高设计质量。 广州广电运通智能科技有限公司广东广州 510663 摘要:交通事业是我国的基础建设事业,交通事业的发展对于我国经济社会发展的重要性是毋庸置疑的,所以随着我国现代化建设水平的不断提高,我国的交通事业发展也在进一步加快。当前我国的道路交通系统建设逐渐向着智能化和立体化的方向发展,特别是地铁作为当前城市的新型交通方式,给人们的生活提供了更大的便利。地铁在建设的过程中,通风空调系统是十分必要的,可以保证地铁车厢内空气的正常流通,保证空气质量,这对于保护人们的身体健康也有着积极作用。所以本文就对地铁通风空调系统进行分析,并探究其设计和优化的有效策略。 关键词:地铁;通风空调系统;设计地铁是目前我国城市交通体系中的重要构成部分,很多城市都已经进行了地铁的建设,而地铁作为一种地下公共交通方式,其建设和发展能够使城市交通系统向着更加立体化的方向发展,提高城市交通系统的运行效率和水平,给人们的出行带来更大的便利,促进城市的快速发展。在地铁系统中,通风空调系统是其中的基础系统,通风空调系统的设计和施工能够为人们提供更舒适的出行体验,所以在现代地铁的设计工作中,必须要加强通风空调系统的设计和施工。 一、地铁通风空调系统的类型 1、开式系统 开式系统是早期地铁通风空调系统的主要类型,其具体又可以被划分为带空调的开式系统和不带空调的开式系统,其主要区别在于通风空调系统在运行时是否使用空调进行辅助。带空调的开始系统在运行时,需要利用空调对空气流通进行辅助,以此来提高通风效果;而不带空调的开始系统在运行时,不需要使用空调进行辅助,只是利用了隧道的方向流动,充分利用自然风带动空气流通。所以由此可见,开式系统在运行时具有低能耗的明显优势,其自然通风率更高,对自然风的利用率也更高,可以减少能源浪费,但是却无法充分满足乘客的需求。 2、闭式系统 闭式系统是与开式系统相对应的地铁通风空调系统,这种系统与开式系统存在着明显的差异,地铁车厢内部与外部是完全隔离的地铁车厢内部与外部是完全隔离的,其通风功能的实现完全依赖于空调设备和排风系统等。所以闭式系统在设计和施工的过程中,需要使用到大量的相关基础设备,而且设备的运行也需要消耗大量的能源,所以能耗比较高。但是,闭式系统能够应用于更大运载量的地铁站中,而且由于地铁内外的充分隔绝,所以可以安装大量的空调和排风系统,与自然风相比,能够为乘客创造更舒适的环境。 3、屏蔽门式系统屏蔽门式系统是近几年来地铁通风空调系统中发展出来的新类型,该系统已经在地铁站的通风空调中得到了有效的应用,其在运行的过程中,屏蔽门能够将地铁的隧道与车站隔离开来,这样地铁站内的通风系统就可以充分发挥出作用,其隔热性能良好,也可以有效保持地铁站内的温度适宜。屏蔽门还具有隔音效果,所以可以有效避免噪声对车站内造成影响。所以屏蔽门式系统已经成为了地铁通风空调系统的主要发展类型,其运行稳定性更强,能耗也得到了有效控制,通风性能更强。 二、地铁通风空调系统设计的问题 1、参数不合理 地铁通风空调系统在设计的过程中,参数的选择是极为重要的,这会对整个系统的功率、功能的发挥以及施工都会产生影响,进而影响到工程的整体质量。地铁通风空调系统的参数会受到多方面因素的影响,比如材料性能、质量以及相关设备的分布等,而设计人员往往没有对其进行深入分析,导致参数设置不合理,使地铁通风空调系统发挥出应有的作用。 2、能耗高 地铁通风空调系统在运行的过程中势必会消耗大量的能源,这是无法避免的,但是能耗却是可以控制的,可是大部分的设计人员在进行系统设计时,却没有考虑到其能耗问题,只考虑其质量和功能,对自然通风的利用率不足,空调系统的功能设置也不合理,这样使得通风空调系统的运行能耗加大。 3、结构不协调 地铁的通风空调系统结构比较复杂,所以在设计的过程中必须要保证结构的协调性,要严格遵循相关规范,并做好后期维护工作。但是很多设计人员在进行地铁通风空调系统的结构设计时,都存在着结构不协调的情况,无法对材料的用量和质量进行有效控制,这会给工程施工造成不利影响。 三、地铁通风空调系统的设计优化 1、利用自然风 在地铁通风空调系统的设计过程中,系统功能的实现不应该仅仅依赖于通风设备,否则会导致能耗过高,这不符合我国的可持续发展战略的要求。所以在现代地铁通风空调系统设计过程中,设计人员需要加强对自然风的利用,要利用自然通风适当替代排风设备的功能,以此来有效降低系统运行的能耗,从而达到节能减排。 2、完善系统冷源设置地铁的通风空调系统比较复杂,其在设计和运行的过程中能够发现,需要大量的设备进行辅助,这就导致了系统在运行的过程中会产生较大的能耗,同时设备本身的温度还会增加,这会使能耗进一步加大,能源的利用率降低。所以在地铁通风空调系统的设计工作中,必须要合理设置冷源,在每个组成部分分别设置不同的冷源,以此来实现对设备的降温和区域温度的调节,减少系统运行的能耗,提高能源利用率。 3、屏蔽门转换装置

地铁通风空调系统方案

地铁通风空调系统 【摘要】简述了地铁通风空调系统和设备控制模式 【关键词】地铁通风空调系统控制模式 1概述 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 1.1 开式系统 开式系统是应用机械或“活塞效应“的方法使地铁部与外界交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 1.1.1 活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有效换气量达到设计要求。实验表明:当风井间距小于300m、风道的长度在25m以、风道面积大于10㎡时,有效换气量较大。在隧道顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难实现的,因此全“活塞通风系统”只有早期地铁应用,现今建设的地铁多设置活塞

通风与机械通风的联合系统。 1.1.2 机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风系统。 根据地铁系统的实际情况,可在车站与区间隧道分别设置独立的通风系统。车站通风一般为横向的送排风系统;区间隧道一般为纵向的送排风系统。这些系统应同时具备排烟功能。区间隧道较长时,宜在区间隧道中部设中间风井。对于当地气温不高,运量不大的地铁系统,可设置车站与区间连成一起的纵向通风系统,一般在区间隧道中部设中间风井,但应通过计算确定。 2.1 闭式系统 闭式系统使地铁部基本上与外界大气隔断,仅供给满足乘客所需的新鲜空气量。车站一般采用空调系统,而区间隧道的冷却是借助于列车运行的“活塞效应”携带一部分车站空调冷风来实现。 这种系统多用于当地最热月的月平均温度高于25℃、且运量较大、高峰时间每小时的列车运行对数和每列车车辆数的乘积大于180的地铁系统。 2.2 屏蔽门系统 在车站的站台与行车隧道间安装屏蔽门,将其分隔开,车站安装空调系统,隧道用通风系统(机械通风或活塞通风,或两者兼用)。若通风系统不能将区间隧道的温度控制在允许值以时,应采用空调或其他有效的降温方法。 安装屏蔽门后,车站成为单一的建筑物,它不受区间隧道行车时活塞风的影响。车站的空调冷负荷只需计算车站本身设备、乘客、广告、照明等发热体的散热,及区间隧道与车站间通过屏蔽门的传热和屏蔽门开启时的对流换热。此时屏蔽门系统的车站空调冷负荷仅为闭式系统的22%~28%,且由于车站与行车隧道隔开,减少了运行噪声对车站的干扰,不仅使车站环境较安静、舒适,也使旅客更为安全。 地铁环控系统一般采用屏蔽门制式环控系统或闭式环控系统。屏蔽门制式系统

隧道通风作业指导书

新建衢州至宁德铁路浙江段站前工程 QNZJZQ-Ⅳ标隧道工程 编号:QNZJZQ4-Ⅲ-ZDS-2016003 隧道通风施工作业指导书 单位: 编制: 审核: 批准:

二〇一五年十一月一日发布二〇一五年十一月二十五日实施

衢宁铁路浙江段(Ⅳ标)三分部隧道工程 隧道通风施工作业指导书 1.适用范围 适用于衢宁铁路浙江段(Ⅳ标)三分部承建隧道通风施工。 2.作业准备 2.1内业技术准备 作业指导书编制后,应在开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行技术交底,对参加施工人员进行上岗技术培训,考核合格后持证上岗。 2.2外业技术准备 施工作业层中所涉及的各种外部技术数据收集。修建生活房屋,配齐生活、办公设施,满足主要管理、技术人员进场生活、办公需要。 3.技术要求 3.1空气中氧气含量,按体积计不得小于20%。 3.2粉尘容许浓度,每立方米空气中含有10%以上的游离二氧化硅的粉尘不得大于2mg。每立方米空气中含有10%以下的游离二氧化硅的矿物性粉尘不得大于4mg。 3.3有害气体最高容许浓度:

(1)一氧化碳最高容许浓度为30mg/m3;在特殊情况下,施工人员必须进入开挖工作面时,浓度可为100mg/m3,但工作时间不得大于30min; (2)二氧化碳按体积计不得大于0.5%; (3)氮氧化物(换算成NO2)为5mg/m3以下。 3.4隧道内气温不得高于28℃。 3.5隧道内噪声不得大于90dB。 3.6隧道内气温不得大于 28℃; 3.7压入开挖工作面的局部通风机的通风管路百米漏风率不大于0.02; 3.8隧道施工通风的风速,全断面开挖时不应小于 0.15m/s,分部开挖的坑道内不应小于0.25m/s,并均不应大于 6m/s。 3.9指导书中未详细说明处参见相关施工技术指南及验标规范。 4.施工程序与工艺流程 4.1工艺概述 隧道通风工作一般包括隧道通风系统设计、风机及风管选型、风机及风管安装、风机及风管维护、通风排烟、工程结束拆除通风系统。 4.2工艺流程 见图4-2-1隧道通风施工工艺流程图

地铁通风及设备.ppt.Convertor

第一章地铁通风空调工程概述 地铁通风空调系统是应地铁特殊的环境需求而产生。 原因: 1.温度:基本与外界隔绝,高密度列车运行、设备运转和大量乘客的集散产生的热量,地层的蓄热,若不及时排除,空气温度 2.湿度:地铁周围土壤通过地铁围护结构渗湿量也较大,空气湿度,乘客难以忍受,地铁设备正常运行也会受到影响。 3.新鲜空气:巨大的客流,补充新鲜空气,保证地铁内的空气环境。 必须设置通风空调系统,对地铁内部的空气温度、湿度、气流速度和空气质量等空气环境因素进行控制,为乘客和工作人员提供一个舒适的环境,并满足地铁设备正常运行的需要。 第一章地铁通风空调工程概述 概述 通过空气处理机组、风机、冷水机组、冷却塔、水泵、风阀、消声器、变频多联空调机、BAS系统等设备的工作,实现对地铁线路的站厅、站台、隧道正常工况时的 通风空调;阻塞、事故、火灾等工况时的通风的工程。 地铁通风空调系统是地铁环控系统的主体部分。 第一节地铁通风空调工程的组成 一、组成

第一节地铁通风空调工程的组成 二,作用 1.为乘客提供过渡性舒适环境: 往返于地面到车站至列车内 2.当列车阻塞在区间隧道时,通风系统向阻塞区间提供通风: 保证列车空调正常工作,维持列车箱内乘客在短时间内能承受的环境条件; 3.在车站或区间隧道发生火灾时,通风系统有效排烟: 向乘客和工作人员提供必要的新风和通风,使得乘客和工作人员能安全迅速 疏散,为消防人员灭火创造条件; 4.满足地铁车站内管理用房及设备用房的温度、湿度要求: 提供良好的工作环境和保证设备正常运行环境。 三、基本要求、设计原则和标准《地铁设计规范》GB50157—2003 1.基本要求: 当列车正常运行时,应保证地铁内部空气环境在规定范围内; 当列车阻塞在区间隧道时,应保证阻塞处的有效通风功能; 当列车在区间隧道发生火灾事故时,应具备防灾排烟、通风功能; 当车站发生火灾事故时,应具备防灾排烟、通风功能。 2.地铁隧道、车站室内参数及设计原则(部分): 列车车厢设置空调,车站设置屏蔽门时,地铁隧道夏季的最高温度不得高于40℃; 当地下车站采用空调系统时,站厅层的空气计算温度比空调室外计算干球温度低2—3℃,且不应超过30℃; 站台层的空气计算温度比站厅层的空气计算温度低1—2℃; 当采用空调系统时,每个乘客每小时需供应的新鲜空气量不应少于12.6m3,且系统的新风量不应少于总送风量的10%。 地下车站管理用房及设备用房内每个工作人员每小时需供应的新鲜空气量不应少于30m3,且新风不应少于总送风量的10%。 3. 对噪声控制的标准 地铁的通风空调系统设备传至站厅、站台厅的噪声不得超过70dB(A); 车站管理用房及设备用房的通风空调应有消声和减振措施。 通风空调设备传至各房间内的噪声不得超过60dB(A); 通风空调机房内的噪声不得超过90dB(A)。 这些基本要求、设计原则和标准,能有效保证地铁通风空调工程实现其功能 第二节隧道通风系统 活塞通风: 一般是在车站在两端上下行线各设一个活塞风道及相应的风井 原理: 利用地铁列车在隧道内高速运行所产生的活塞效应(指在隧道中高速运行的列车,会带动隧道中的空气产生高速流动,类似汽缸内活塞压缩气体(如图)的现象)而形成的通风,实现隧道与外界通风换气

XX隧道通风专项方案

金堂县观音山至云顶山旅游公路建设工程(2期)2标段工程项目 施工技术方案(或专项施工方案)报审单 承包单位:四川川交路桥有限责任公司合同号:201441 监理单位:四川合石工程咨询监理有限公司编号: 监表05

金堂县观音山至云顶山旅游公路建设工程(2期)2标 小云顶隧道通风方案 (K7+575~K8+855) 四川川交路桥有限责任公司 金堂县观音山至云顶山旅游公路建设工程(2期)2标项目部 二〇一七年十一月

目录 1、编制依据......................................................................................... 错误!未定义书签。2、工程概况................................................................................................. 错误!未定义书签。 2.1设计概况?错误!未定义书签。 2.2隧道地理位置.................................................................................. 错误!未定义书签。 2.3隧道工程地质条件........................................................................... 错误!未定义书签。 2.4水文地质条件?错误!未定义书签。 2.5地震烈度........................................................................................... 错误!未定义书签。 2.6有毒有害气体.................................................................................. 错误!未定义书签。 3、施工方案概述........................................................................................... 错误!未定义书签。 3.1现场施工条件?错误!未定义书签。 3.2 施工安排....................................................................................... 错误!未定义书签。 3.3 主要施工方法.................................................................................. 错误!未定义书签。 4、影响通风方案的要素分析....................................................................... 错误!未定义书签。 4.1瓦斯?错误!未定义书签。 4.2火工产品?错误!未定义书签。 4.3 施工机械和作业人员?错误!未定义书签。 5、隧道通风方案?错误!未定义书签。 5.1通风方案设计标准.......................................................................... 错误!未定义书签。 5.2通风方式.......................................................................................... 错误!未定义书签。 7、通风管理?错误!未定义书签。 7.1建立健全通风管理制度................................................................. 错误!未定义书签。 7.1.1建立通风管理制度...................................................................... 错误!未定义书签。 7.1.2通风系统定期检查制度............................................................. 错误!未定义书签。 7.1.3通风管理交接班制度?错误!未定义书签。 7.1.4停风报批制度?错误!未定义书签。 7.1.5建立风管维护工作制度.............................................................. 错误!未定义书签。 7.2喷淋降尘系统?错误!未定义书签。 7.3隧道通风管理具体措施?错误!未定义书签。 7.4通风监测?错误!未定义书签。

相关文档
相关文档 最新文档