文档库 最新最全的文档下载
当前位置:文档库 › 智能优化作业

智能优化作业

智能优化作业
智能优化作业

【问题】在-5<=Xi<=5,i=1,2区间内,用遗传算法求解

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+ cos(2*pi*x2))) 22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3

【运行结果】 p = 0.0000 -0.0000 0.0055

【程序清单】

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)

22.71282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

%初始化

function pop=initpop(popsize,chromlength)

pop=round(rand(popsize,chromlength));

%计算目标函数值

function pop2=decodebinary(pop)

[px,py]=size(pop); %求pop行和列数

for i=1:py

pop1(:,i)=2.^(py-i).*pop(:,i);

end

pop2=sum(pop1,2); %求pop1的每行之和

%将二进制编码转化为十进制数

function pop2=decodechrom(pop,spoint,length)

pop1=pop(:,spoint:spoint+length-1);

pop2=decodebinary(pop1);

% 计算目标函数值

function [objvalue]=calobjvalue(pop)

temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数

x=temp1*10/1023; %将二值域中的数转化为变量域的数

objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值

%计算个体的适应值

function fitvalue=calfitvalue(objvalue)

global Cmin;

Cmin=0;

[px,py]=size(objvalue);

for i=1:px

if objvalue(i)+Cmin>0

temp=Cmin+objvalue(i);

else

temp=0.0;

end

fitvalue(i)=temp;

end

fitvalue=fitvalue';

%选择复制

function [newpop]=selection(pop,fitvalue)

totalfit=sum(fitvalue); %求适应值之和

fitvalue=fitvalue/totalfit; %单个个体被选择的概率fitvalue=cumsum(fitvalue);

[px,py]=size(pop);

ms=sort(rand(px,1)); %从小到大排列

fitin=1;

newin=1;

while newin<=px

if(ms(newin))

newpop(newin)=pop(fitin);

newin=newin+1;

else

fitin=fitin+1;

end

end

% 交叉

function [newpop]=crossover(pop,pc)

[px,py]=size(pop);

newpop=ones(size(pop));

for i=1:2:px-1

if(rand

cpoint=round(rand*py);

newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)]; newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)]; else

newpop(i,:)=pop(i);

newpop(i+1,:)=pop(i+1);

end

end

%变异

function [newpop]=mutation(pop,pm)

[px,py]=size(pop);

newpop=ones(size(pop));

for i=1:px

if(rand

mpoint=round(rand*py);

if mpoint<=0

mpoint=1;

end

newpop(i)=pop(i);

if any(newpop(i,mpoint))==0

newpop(i,mpoint)=1;

else

newpop(i,mpoint)=0;

end

else

newpop(i)=pop(i);

end

end

%求出群体中最大得适应值及其个体

function [bestindividual,bestfit]=best(pop,fitvalue) [px,py]=size(pop);

bestindividual=pop(1,:);

bestfit=fitvalue(1);

for i=2:px

if fitvalue(i)>bestfit

bestindividual=pop(i,:);

bestfit=fitvalue(i);

end

end

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

(环境管理)第五章环境资源优化配置

第五章环境资源优化配置 第一节福利经济学 第二节经济效率的实现 第三节补偿原则与次优理论 第四节帕累托效率的政策意义 第五节环境资源配置效率目标的选择 第一节福利经济学 ?福利经济学,是一门规范经济学,又称经济伦理学,同时又是微观经济政策的理论 基础,带有经济政策学的性质。 ?福利经济学力图有系统地阐述一些命题,依据这些命题,我们可以判断某一经济状 况下的社会福利高于还是低于另一经济状况下的社会福利。 旧福利经济学与新福利经济学 ?旧福利经济学:以庇古的《福利经济学》为代表的福利经济学思想,其要点有:以 基数效用为基础;指出一般福利和经济福利两个不同概念(影响经济福利的因素有国民收入的总量和个人收入分配状况);确立了外部性理论,认为外部性是指边际社会净效益与边际私人净效益的不一致。 ?新福利经济学:20世纪30年代以后的形成的福利经济学。其要点有:以帕累托提 出的序数效用论为基础;认为社会福利改进是指任何社会成员的福利增进,但不能有其他社会成员的福利减少,这一标准无法评价收入再分配问题;创建了社会福利函数(指出帕累托最优是社会福利最大化的必要条件而不是充分条件,要达到最大福利,还必须满足其充分条件,即收入分配的合理性);提出了社会补偿原则。 福利经济学的意义 ?早期的经济学只是关注物质产品的生产、分配、交换和消费问题,而且压倒一切的 问题是数量的不足,所以经济学家的关注焦点是如何扩大社会财富的总量。但是随着社会财富总量的扩大,人们逐渐发现仅有社会财富总量的扩大,而社会分配不公、环境污染、劳动异化、人们的主观幸福、社会福利并且没有得到提高。于是,人们就要求有一种理论,对现实经济状况进行合意性评价。 ?福利经济学使人们能够理性地思考不同经济状态下社会福利的增减变动,以说明现 实经济政策或经济制度是否合意。 ?其主要应用领域为:评价不同经济体制的合意性;评价不同经济政策的合意性。 消费者偏好 ?一、商品组合 ?例:消费者每月购买食物与衣服的组合 ? A 食物20 衣服30 ? B 食物10 衣服50 ? C 食物40 衣服20 ? D 食物30 衣服20 ? E 食物30 衣服40 ? F 食物10 衣服40 二、基本假定 ?1、完备性,即指对每一种商品都能说出偏好顺序。 ?2、可传递性,即消费者对不同商品的偏好是有序的,连贯一致的。若A大于B, B大于C,则A大于C。 ?3、不充分满足性,即消费者认为商品数量总是多一些好。

智能优化算法综述

智能优化算法的统一框架 指导老师:叶晓东教授 姓名:李进阳 学号:2 班级:电磁场与微波技术5班 2011年6月20日

目录 1 概述 (3) 2群体智能优化算法.................................. 错误!未定义书签。 人工鱼群算法 (4) 蚁群算法 (5) 混合蛙跳算法 (9) 3神经网络算法 (10) 神经网络知识点概述 (10) 神经网络在计算机中的应用 (11) 4模拟退火算法 (15) 5遗传算法.......................................... 错误!未定义书签。 遗传算法知识简介 (17) 遗传算法现状 (18) 遗传算法定义 (19) 遗传算法特点和应用 (20) 遗传算法的一般算法 (21) 遗传算法的基本框架 (26) 6总结 (28) 7感谢 (29)

1概述 近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。智能优化算法就是在这种背景下产生并经实践证明特别有效的算法。 2群体智能优化算法 自然界中群体生活的昆虫、动物,大都表现出惊人的完成复杂行为的能力。人们从中得到启发,参考群体生活的昆虫、动物的社会行为,提出了模拟生物系统中群体生活习性的群体智能优化算法。在群体智能优化算法中每一个个体都是具有经验和智慧的智能体 (Agent) ,个体之间存在互相作用机制,通过相互作用形成强大的群体智慧来解决复杂的问题。自 20世纪 90年代模拟蚂蚁行为的蚁群算法(ACO)提出以来,又产生了模拟鸟类行为的微粒群算法 ( PSO)、模拟鱼类生存习性的人工鱼群算法、模拟青蛙觅食的混合蛙跳算法 ( SFLA)等。这些群体智能优化算法的出现,使原来一些复杂的、难于用常规的优化算法进行处理的问题可以得到解决,大大增强了人们解决和处理优化问题的能力,这些算法不断地用于解决工程实际中的问题,使得人们投入更大的精力对其理论和实际应用进行研究。群体智能优化算法本质上是一种概率搜索,它不需要问题的梯度信息具有以下不同于传统优化算法的特点: ①群体中相互作用的个体是分布式的,不存在直接的中心控制,不会因为个别个体出现故障而影响群体对问题的求解,具有较强的鲁棒性; ②每个个体只能感知局部信息,个体的能力或遵循规则非常简单,所以群体智能的实现简单、方便; ③系统用于通信的开销较少,易于扩充; ④自

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

优化科技资源配置提升科技创新能力

优化科技资源配置提升自主创新能力 当前,全社会关心和支持科技创新的氛围日益浓厚,在科技投入总量持续快速增长的前提下,科技资源的配置和利用问题,已经成为影响未来科技发展成效和质量的关键因素。 十一五期间,为推动科技投入优化配置,我们努力聚焦科技投入、科技金融结合、科技成果推广、科研条件建设以及企业创新中心建设,加强宏观配置和统筹协调,为十一五新科技发展提供了强有力的支撑。 几年来共实施各级各类科技项目200 余项,争取国家和省、市级以上项目资金2400 万元,投入县级科研经费每年都在1000 万元以上,促进全县科技创新能力得到全面提升。 全县煤炭回采率由上世纪末的25%提高到了现在的65%。冶铸产业全部淘汰了100 立方以下的高炉,引进建成了300 万吨的福盛钢厂。发展培育了一批10万吨级规模铸造企业。建成26个现代农业科技示范园区,5个科技示范农场,15个规模养殖小区,农业新技术覆盖面达95%,农作物优种普及率达100%,37 个农产品通过国家无公害认证。发展科技示范户2100 个,培育科技 当家人35600 个,培训各类实用型技术人员20 多万名。每年对10 名外聘科技人才实施重奖,组织正高级、副高级、外聘和特殊技能专业人才进行免费体检,并每月分别给予500--1000 元生活津贴。近

年来共引进各类专业技术人才200 余名,其中高级专业技术人才40 余名。 认真实施可持续发展战略,努力改造提升传统产业。按照“扩大规模、延伸链条、提高档次、增加效益”的方针和“关小、改中、建大”的原则,对全县的煤铁传统产业进行了大刀阔斧的改造和提升。积极培育新兴产业。在努力改造提升传统产业的同时,大力发展和培育新兴产业。以科技为支撑,以项目为载体,靠示范项目的引导和带动,发展了一批市场前景好、发展空间大、环境污染少的高科技含量、高附加值的新兴产业。稳定发展基础产业。在可持续发展中,首先摒弃“重工轻农”的思想,用抓工业的理念抓农业。培育了一批农副产品加工龙头企业,建设了26个农业科技示范园区. 建设了四个生态农业基地和五个特色农产品生产基地。农业生产向着立体化、生态化发展。 注重科技成果转化。通过政策引导树立科技新理念。相继出台和完善了一系列科技政策,积极鼓励引导企业加强技术创新,提高企业核心竞争力。几年来共制定出台科技发展政策10 多个,其内容涉及科技宏观管理、高新技术产业培植、知识产权保护、创新资金扶持、创新体系建设、制造业信息化建设等方方面面,具有很强的针对性和可操作性,力度较大,成效显著。 当前我县科技工作呈现了新的态势: 一是以技术攻关引进为切入点,全国铸造产品交易集散 地初具雏形。我县依托传统铸造优势,通过技术改造、招商引资,

智能优化算法

智能计算读书报告(二) 智能优化算法 姓名:XX 学号:XXXX 班级:XXXX 联系方式:XXXXXX

一、引言 智能优化算法又称为现代启发式算法,是一种具有全局优化性能、通用性强、且适用于并行处理的算法。这种算法一般具有严密的理论依据,而不是单纯凭借专家的经验,理论上可以在一定时间内找到最优解或者近似最优解。所以,智能优化算法是一数学为基础的,用于求解各种工程问题优化解的应用科学,其应用非常广泛,在系统控制、人工智能、模式识别、生产调度、VLSI技术和计算机工程等各个方面都可以看到它的踪影。 最优化的核心是模型,最优化方法也是随着模型的变化不断发展起来的,最优化问题就是在约束条件的限制下,利用优化方法达到某个优化目标的最优。线性规划、非线性规划、动态规划等优化模型使最优化方法进入飞速发展的时代。 20世纪80年代以来,涌现出了大量的智能优化算法,这些新颖的智能优化算法被提出来解决一系列的复杂实际应用问题。这些智能优化算法主要包括:遗传算法,粒子群优化算法,和声搜索算法,差分进化算法,人工神经网络、模拟退火算法等等。这些算法独特的优点和机制,引起了国内外学者的广泛重视并掀起了该领域的研究热潮,并且在很多领域得到了成功地应用。 二、模拟退火算法(SA) 1. 退火和模拟退火 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。 模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。 模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟

人工智能课程大作业

作业题目 摘要:机器博弈是人工智能的一个重要研究分支,本文通过设计一个五子棋智能博奕程序,采用传统的博弈树算法,利用剪枝和极大极小树搜索最佳位置,从而实现人机智能博弈。并对现有算法存在的问题进行探究改进,最后给出展示,结果表明效果比较理想。 关键词:人工智能;五子棋;博弈 本组成员: 本人分工:α-β剪枝实现 1 引言 人工智能[1]是一门综合新型的新兴边缘科学,与生物工程、空间技术并列为三大尖端技术,而机器博弈却是其一个重要的研究分支。它研究如何利用计算机去实现那些过去只能靠人的智力去完成的工作,博弈为人工智能提供了一个很好的应用场所。 博弈过程可以采用与或树进行知识表达,这种表达形式称为博弈树。α—β剪枝技术是博弈树搜索中最常采用的策略。 2 算法原理与系统设计 根据五子棋游戏规则,此次五子棋游戏我们采用基于极大极小值分析法的α—β剪枝算法来实现计算机走棋。α—β剪枝技术是博弈树搜索中最常采用的策略,α—β剪枝搜索由极大极小值分析法演变而来[2]。 极大极小分析法其基本思想或算法是: (1) 设博弈的双方中一方为MAX,另一方为MIN。然后为其中的一方(例如MAX)寻找一个最优行动方案。 (2) 为了找到当前的最优行动方案,需要对各个可能的方案所产生的后果进行比较,具体地说,就是要考虑每一方案实施后对方可能采取的所有行动,并计算可能的得分。 (3) 为计算得分,需要根据问题的特性信息定义一个估价函数,用来估算当前博弈树端节点的得分。此时估算出来的得分称为静态估值。 (4) 当端节点的估值计算出来后,再推算出父节点的得分,推算的方法是:对“或”节点,选其子节点中一个最大的得分作为父节点的得分,这是为了使自己在可供选择的方案中选一个对自己最有利的方案;对“与”节点,选其子节点中一个最小的得分作为父节点的得分,这是为了立足于最坏的情况。这样计算出的父节点的得分称为倒推值。 (5) 如果一个行动方案能获得较大的倒推值,则它就是当前最好的行动方案。 上述的极小极大分析法,实际是先生成一棵博弈树,然后再计算其倒推值,至使极小极大分析法效率较低。于是在极小极大分析法的基础上提出了α-β剪枝技术。α-β剪枝技术的基本思想或算法是,边生成博弈树边计算评估各节点的倒推值,并且根据评估出的倒推值范围,及时停止扩展那些已无必要再扩展的子节点,即相当于剪去了博弈树上的一些分枝,从而节约了机器开销,提高了搜索效率。 具体的剪枝方法如下: (1) 对于一个与节点MIN,若能估计出其倒推值的上确界β,并且这个β值不大于MIN的父节

2016年大连理工大学优化方法上机大作业

2016年理工大学优化方法上机大作业学院: 专业: 班级: 学号: : 上机大作业1: 1.最速下降法:

function f = fun(x) f = (1-x(1))^2 + 100*(x(2)-x(1)^2)^2; end function g = grad(x) g = zeros(2,1); g(1)=2*(x(1)-1)+400*x(1)*(x(1)^2-x(2)); g(2) = 200*(x(2)-x(1)^2); end

function x_star = steepest(x0,eps) gk = grad(x0); res = norm(gk); k = 0; while res > eps && k<=1000 dk = -gk; ak =1; f0 = fun(x0); f1 = fun(x0+ak*dk); slope = dot(gk,dk); while f1 > f0 + 0.1*ak*slope ak = ak/4; xk = x0 + ak*dk; f1 = fun(xk); end k = k+1; x0 = xk; gk = grad(xk); res = norm(gk); fprintf('--The %d-th iter, the residual is %f\n',k,res); end x_star = xk; end >> clear

>> x0=[0,0]'; >> eps=1e-4; >> x=steepest(x0,eps)

2.牛顿法: function f = fun(x) f = (1-x(1))^2 + 100*(x(2)-x(1)^2)^2; end function g = grad2(x) g = zeros(2,2);

智能优化算法作业

一、优化算法及其应用 1.简介 共轭梯度法(Conjugate Gradient )是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse 矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。 2.算法原理 共轭梯度法是利用目标函数梯度逐步产生共轭方向作为线搜索方向的方法,每次搜索方向都是在目标函数梯度的共轭方向,搜索步长通过一维极值算法确定。 设二次函数为1 ()2T T f X C b X X AX =++,其中C 为常数,,b X 为n 维列向 量,A 为对称正定矩阵,用共轭梯度法求()f X 的极小点: 共轭梯度法探索的第一步是沿负梯度方向。即()k X 点按()()()k k S f X =-?方向找到(1)k X +,然后沿着与上一次探索方向()k S 相共轭的方向(1)k S +进行探索直达到最小点*X 。 令()(1)(1)()k k k k S f X S β++=-?+。 上式的意义就是以原来的负梯度()()()k k f X S -?=的一部分即()k k S β,加上新的负梯度()(1)k f X +-?,构造(1)k S +。 在上式中k β的选择,应使n 维欧氏空间n E 中的两个非零向量()k S 与(1)k S +关于矩阵A 共轭。即 (1)() (0,1,2,...1)T k k S AS k n +??==-?? 因 1()2 T T f X C b X X AX =++ ,故有()f X b AX ?=+ 若令 ()()()()k k k g f X b AX =?=+ ()(1)(1)(1)k k k g f X b AX +++=?=+

优化方法上机作业--2013

第一题(牛顿法和不精确一维搜索) 牛顿法: syms x1 x2; f=(x2-(x1)*(x1))^2+(1-x1)^2; v=[x1,x2]; df=jacobian(f,v); df=df.'; G=jacobian(df,v); epson=1e-12;x0=[0,1]';g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});G1=subs(G,{x1,x2},{x 0(1,1),x0(2,1)});k=0;mul_count=0;sum_count=0; mul_count=mul_count+12;sum_count=sum_count+6; while(norm(g1)>epson) p=-G1\g1; x0=x0+p; g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)}); G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)}); k=k+1; mul_count=mul_count+16;sum_count=sum_count+11; end; k x0 mul_count sum_count 运行结果: k = 9 x0 = 1 1 mul_count = 156 sum_count = 105 不精确一维搜索: fun1.m文件 function f=fun1(x) f=(x(1)-1)^2+(x(2)-x(1)^2)^2; gfun1.m文件

function gf = gfun1(x) gf=[2*x(1)*(x(1)^2-x(2))+2*(x(1)-1),2*(x(2)-x(1)^2)]'; wolfepowell.m文件 function [k,m,opt,x]=wolfepowell(xk,sk) max=1000; c1=0.1; c2=0.6;a=0;b=inf;dk=0.2;m=0; while(m<=max) if (fun1(xk)-fun1(xk+sk*dk)<-c1*dk*gfun1(xk)'*sk) b=dk;dk=(dk+a)/2; elseif (fun1(xk)-fun1(xk+sk*dk)>=-c1*dk*gfun1(xk)'*sk)&&(gfun1(xk+sk*dk)'*sk>xk=[0,1]';sk=[1,-1]'; [k,m,opt,x]= wolfepowell(xk,sk) k = 0.8000 m = 2 opt = 1.0080 x = 0.8000 0.2000 第二题(共轭梯度法) frcg.m文件 function [x,val,k]=frcg(fun,gfun,x0) maxk=5000; rho=0.6;sigma=0.4;

一种新型的智能优化方法—人工鱼群算法

浙江大学 博士学位论文 一种新型的智能优化方法—人工鱼群算法 姓名:李晓磊 申请学位级别:博士 专业:控制科学与工程 指导教师:钱积新 2003.1.1

加,,Z掌博士学位论文一III- 摘要 (优化命题的解决存在于许多领域,对于国民经济的发展也有着巨大的应用前景。随着优化对象在复杂化和规模化等方面的提高,基于严格机理模型的传统优化方法在实施方面变得越来越困难。厂吖 本文将基于行为的人工智能思想通过动物自治体的模式引入优化命题的解决中,构造了一种解决问题的架构一鱼群模式,并由此产生了一种高效的智能优化算法一人工鱼群算法。 文中给出了人工鱼群算法的原理和详细描述,并对算法的收敛性能和算法中各参数对收敛性的影响等因素进行了分析;针对组合优化问题,给出了人工鱼群算法在其中的距离、邻域和中心等概念,并给出了算法在组合优化问题中的描述;针对大规模系统的优化问题,给出了基于分解协调思想的人工鱼群算法;给出了人工鱼群算法中常用的一些改进方法;给出了人工鱼群算法在时变系统的在线辨识和鲁棒PID的参数整定中两个应用实例j最后指出了鱼群模式和算法的发展方向。 f在应用中发现,人工鱼群算法具有以下主要特点: ?算法只需要比较目标函数值,对目标函数的性质要求不高; ?算法对初值的要求不高,初值随机产生或设定为固定值均可以; ?算法对参数设定的要求不高,有较大的容许范围; ?算法具备并行处理的能力,寻优速度较快; ?算法具备全局寻优的能力; 鱼群模式和鱼群算法从具体的实施算法到总体的设计理念,都不同于传统的设计和解决方法,同时它又具有与传统方法相融合的基础,相信鱼群模式和鱼群算法有着良好的应用前景。∥ / 关键词人工智能,集群智能,动物自治体,人工鱼群算法,f优∥ ,l/。7

计算智能习题合集

计算智能 习题总集 习题一: 空缺 习题二: 1、在反馈型神经网络中,有些神经元的输出被反馈至神经元的( ) A .同层 B .同层或前层 C .前层 D .输出层 2、在神经网络的一个节点中,由激励函数计算得到的数值是该节点的( ) A .实际输出 B .实际输入 C .期望输出 D .期望值 3、在神经网络的一个节点中,由激励函数计算得到的数值,是与该节点相连的下一个节点的( ) A .实际输出 B .实际输入 C .期望输出 D .期望值 4、下面的学习算法属于有监督学习规则的是( ) A .Hebb 学习规则 B .Delta 学习规则 C .概率式学习规则 D .竞争式学习规则 E .梯度下降学习规则 F .Kohonen 学习规则 5、BP 算法适用于( ) A .前馈型网络 B .前馈内层互联网络 C .反馈型网络 D .全互联网络 6、BP 神经网络采用的学习规则是( ) A .联想式Hebb 学习规则 B .误差传播式Delta 学习规则 C .概率式学习规则 D .竞争式学习规则 习题三: 1、设论域U ={u 1, u 2, u 3, u 4, u 5}, 5 432118.06.04.02.0u u u u u A ++++=,

5 43214.06.016.04.0u u u u u B ++++=, 求 B A B A , , , 。 2、设X ={1, 5, 9, 13, 20}, Y ={1, 5, 9, 13, 20}, ~ R 是模糊关系“x 比y 大得多”。 隶属度函数: 求模糊关系矩阵~ R 3、 4、Zadeh 教授提出了著名的不相容原理,是指复杂系统的那两种矛盾( ) A .精确性和有效性 B .精确性和模糊性 C .模糊性和有效性 D .复杂性和模糊性 5、在模糊推理得到的模糊集合中取一个最能代表这个集合的单值的过程称为( ) A .去模糊 B .模糊化 C .模糊推理 D .模糊集运算 6、判断 1.一个模糊集合可以被其隶属度函数唯一定义( ) 2.隶属度越大表示真的程度越高;隶属度越小表示真的程度越低( ) 3.当隶属度函数有若干点取值为1,其余点取值为0时,该隶属度函数对应的模糊集 合可以看作一个经典集合( ) 7、简答题:试述模糊计算的主要模块及其操作内容。 ???????≥-<-<-≤-=101100100 0),(~y x y x y x y x y x R ,,,

最优化方法大作业答案

武工院你们懂的 1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x

列成表格: 00001216 100114 60105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 0000 1 2 121023 10 40116201002 1 21 211-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 002 1232 30210231 040116201002121211-- ----- 再从底行中选元素-3,和第二列正元素2,迭代一次得 4002 3 03410120280114042001112--- 再迭代一次得

10 23021 062 21023 1010 213 000421 2 10 13- - 选取最优解: 01=x 42=x 23=x 3. 试用DFP 变尺度法求解下列无约束优化问题。 min f (X )=4(x 1-5)2+(x 2-6)2 取初始点X=(8,9)T ,梯度精度ε=0.01。 解:取I H =0,初始点()T X 9,8= 2221)6()5(4)(-+-=x x x f ??????--=?122408)(21x x x f ???? ??=?624)() 0(x f T x f d )6,24()()0()0(--=-?= )0(0)0()1(d x x α+= T )69,248(00αα--= ])669()5248(4min[)(min 2020)0(0)0(--+--?=+αααd x f )6()63(2)24()2458(8) (00)0(0)0(=-?-+-?--=+ααααd d x df 13077.013017 0≈= α ???? ??=???? ??--?+???? ??=21538.886153.462413077.098)1(x

生产建设兵团科技资源优化配置

生产建设兵团科技资源优化配置探析 姜正方 (新疆兵团农三师 农业生产资料公司,新疆 喀什 844000) [摘要]目前,生产建设兵团在科技资源优化配置上存在着宏观管理调控力度不强、对科技要素之间协调不够、企 业尚未成为技术创新主体、 科研机构创新能力及资金投入不足等现实问题。生产建设兵团应改革科技体制,加强科技资源的宏观调控;加强科研机构建设,广泛吸纳科技人才;营造良好环境,建立多元化的投入机制和渠道;完善中介服务体系,促进科技资源合理流动;提高科技知识的应用能力,发挥企业在科技创新中的主体地位,依靠科技资源的优化配置,为兵团经济社会发展提供有力支撑。 [关键词]兵团科技资源;优化配置;问题与对策[中图分类号]F830 [文献标识码]B [收稿日期]2012-02-02 [作者简介]姜正方(1962-),新疆兵团农三师农业生产资料公司经济师,在职研究生。研究方向:经济管理专业。 一、科技资源配置概述 (一)兵团科技资源 1.科技财力资源。根据第二次全国R&D 资源清查结果可看出,2000年以来,兵团R&D 经费支出以年均28.7%的速度增长,2009年达到3.39亿元,是2000年的8.7倍。2009年,兵团在国民经济各行业中,制造业、农林牧渔业、科学研究、技术服务和地质勘查业及教育行业R&D 经费支出分别为1.37亿元、0.58亿元、0.61亿元和0.4亿元,占全部行业的比重分别是40.5%、16.9%、17.9%和11.7%。 2.科技人力资源。2010年兵团在科研机构中,从事科研活动852人, 按工作性质分,科技管理人员占15.61%;课题活动人员占67.02%;科技服务人员占17.37%。按学历分,博士学历占0.93%;硕士占21.01%,本科46.95%;其他占31.1%。按专业技术职称分,高级职称占28.4%;中级职称占38.5%;初级职称占33.1%。人才构成呈“橄榄型”,高、初级人才比例小,中级人才多,高层次人才少。按行业分,从事农林牧渔水利业的占96.19%;从事其他行业的占3.81%。2010年,兵团所属的6所普通、成人高等学校教师共有3353人,其中具有教授职称的225人,副教授961人,讲师1552人。 (二)兵团科技资源配置现状 兵团对优化科技资源配置、创新能力的认识不断提高,制定了2015年长期发展规划,提出了“整合科技资源,加强条件建设,构建创新体系,提高科研水平,增强技术创新能力” 的总体思路。兵团还出台了一系列配套政策和措施,如“兵团产学研联合工程”等,科技资源配置呈现了良好状态。 1.科研机构建设方面。兵团、师所属研究与开发机构 和高等院校是兵团科研活动的主要单位,目前共有17家,其中兵团直属科研机构2家,师属农科所、科研所15个;另有石河子大学和塔里木农垦大学所属的研究中心。目前兵团高校具有10大学科门类,50余个本科专业,在校生2.65万人,图书馆藏书135万册,专任教师1489人,教授、副教授共694人,享受政府特殊津贴专家60余人,中国工程院院士1人。兵团高校已为兵团和全国农垦系统培训各类管理和专业人才10万余人。 2.工业企业技术中心建设方面。据2002年统计,全兵团共有三类公交建商企业249家,其中一类企业全部建立了技术中心或工程中心,二、三类企业也有部分建立技术中心。兵团共认定了15家企业技术中心,其中天业(集团)公司技术中心被国家认定为国家级企业技术中心。 3.农技推广服务体系方面。兵团建立了四级农业科技推广体系,基本形成了从兵团到基层团场的农业技术推广网络,有力地促进了兵团农业新品种、新技术的创新和转化应用,为兵团农业整体技术水平的提高提供了强有力的科技支撑。 4.科技中介机构建设方面。目前,兵团的科技中介服务机构主要有两种,一是利用技术、管理和市场等知识为企业和社会提供咨询服务的机构,如石河子专利事务所,兵团技术市场办公室等;二是直接参于技术创新过程的机构,如国家节水工程中心(天业集团)、兵团细毛羊工程中心(新疆农垦科学院)。这些机构已成为科技成果转化和产业化的示范基地、科技企业的孵化器,起到了一定的作用。 二、兵团科技资源配置中存在的问题 (一)宏观管理调控力度不够 由于兵团的体制特殊,所以各单位、各部门的职责、任务交叉重叠,封闭运行,自成体系,科技要素之间协调不 第2012年第6期(总第399期) 商业经济 SHANGYE JINGJI No.6,2012Total No.399 [文章编号]1009-6043 (2012)06-0054-0254--

智能算法综述

摘要:随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,本文介绍了当前存在的一些智能计算方法,阐述了其工作原理和特点,同时对智能计算方法的发展进行了展望。关键词:人工神经网络遗传算法模拟退火算法群集智能蚁群算法粒子群算1什么是智能算法智能计算也有人称之为“软计算”,是们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学。这是我们向自然界学习的一个方面。另一方面,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法、模拟退火技术和群集智能技术等。 2人工神经网络算法“人工神经网络”(ARTIFICIALNEURALNETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,FRosenblatt、Widrow和J.J.Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。据神经生物学家研究的结果表明,人的一个大脑一般有1010~1011个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。 2.1人工神经网络的特点人工神经网络是由大量的神经元广泛互连而成的系统,它的这一结构特点决定着人工神经网络具有高速信息处理的能力。人脑的每个神经元大约有103~104个树突及相应的突触,一个人的大脑总计约形成1014~1015个突触。用神经网络的术语来说,即是人脑具有1014~1015个互相连接的存储潜力。虽然每个神经元的运算功能十分简单,且信号传输速率也较低(大约100次/秒),但由于各神经元之间的极度并行互连功能,最终使得一个普通人的大脑在约1秒内就能完成现行计算机至少需要数10亿次处理步骤才能完成的任务。人工神经网络的知识存储容量很大。在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系。它分散地表示和存储于整个网络内的各神经元及其连线上。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。只有通过各神经元的分布式综合效果才能表达出特定的概念和知识。由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的不确定性信息处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图象。只要输入的模式接近于训练样本,系统就能给出正确的推理结论。 [!--empirenews.page--]正是因为人工神经网络的结构特点和其信息存储的分布式特点,使得它相对于其它的判断识别系统,如:专家系统等,具有另一个显著的优点:健壮性。生物神经网络不会因为个别神经元的损失而失去对原有模式的记忆。最有力的证明是,当一个人的大脑因意外事故受轻微损伤之后,并不会失去原有事物的全部记忆。人工神经网络也有类似的情况。因某些原因,无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工作。人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。 2.2几种典型神经网络简介 2.2.1多层感知网络(误差逆传播神经网络) 在1986年以Rumelhart和McCelland为首的科学家出版的《ParallelDistributedProcessing》一书中,完整地提出了误差逆传播学习算法,并被广泛

最优化方法大作业

发动机空燃比控制器 引言:我主要从事自动化相关研究。这里介绍我曾经接触过的发动机空燃比控制器设计中的优化问题。 发动机空燃比控制器设计中的最优化问题 AFR =a f m m && (1) 空燃比由方程(1)定义,在发动机运行过程中如果控制AFR 稳定在14.7可以获 得最好的动力性能和排放性能。如果假设进入气缸的空气流量a m &可以由相关单元检测得到,则可以通过控制进入气缸的燃油流量f m &来实现空燃比的精确控制。由于实际发动机的燃油喷嘴并不是直接对气缸喷燃油,而是通过进气歧管喷燃油,这么做会在进 气歧管壁上液化形成油膜,因此不仅是喷嘴喷出的未液化部分燃油会进入气缸,油膜 蒸发部分燃油也会进入气缸,如方程(2)。这样如何更好的喷射燃油成为了一个问题。 1110101122211ττττ?? ?? -?? ??????????=+????????-????????????-???? ? ??? ?? ????????? ?f f f v X x x u x x X x y =x && (2) 其中12、,==ff fv x m x m &&=f y m &,=fi u m &这里面,表示油膜蒸发量ff m &、fv m &表示为液化部分燃油、fi m &表示喷嘴喷射的燃油,在τf 、τv 、X 都已知的情况下,由现代控制理论知识,根据系统的增广状态空间模型方程(3) 0000001 1 011011114.70ττττ????-?? ??????????=-+-??????????????? ??????????????? ?? ??=?????? f f v v a X X u +q q m y q x x x &&& (3) 其中()0 14.7?t a q = y -m &。由极点配置方法,只要设计控制器方程(4),就可以 使得y 无差的跟踪阶跃输入,那么y 也能较好的跟踪AFR *a m /&。 12-- u =K q K x (4) 这里面的12、K K 确定,可由主导极点概念降维成两个参数12C ,C ,虽然都是最终稳态无差,但是目标是使得瞬态过程中y 和阶跃输入y r 的差异尽可能的小。所以原问

相关文档