文档库 最新最全的文档下载
当前位置:文档库 › 分贝(dB)的指数级别和表现力

分贝(dB)的指数级别和表现力

分贝(dB)的指数级别和表现力

分贝(dB)的指数级别和表现力

此资料于1983年,由美国华盛顿耳鼻喉与头颈部外科协会和重听联盟(League for the Hard of Hearing)于1996年至2003年提供。

维也纳声学基础名词(二)

维也纳声学基础名词(二) 声波的衍射:声波在传播过程中遇到障碍物或孔洞的尺寸比波长小时,声波将绕过它们,这种现象叫衍射。绕射的情况与声波的波长和障碍物(或孔)的尺寸有关,与原来的波形无关。 只闻其声不见其人、隔墙有耳,即是说的声波的衍射。 1、声学:研究声波的产生、传播、接受和效应的科学。 2、声波:(1)弹性媒质中传播的压力、应力、质点位移、质点速度等的变化或几种变化 的综合。(2)声源产生振动时,迫使其周围的空气质点往复移动,使空气中产生在大气压力上附加的交变压力,这一压力称为声波。

3、纵波:媒质中质点沿传播方向运动的波。空气中的声波即为纵波。 4、横波:煤质中质点振动方向与传播方向相垂直的波。 5、驻波:由于频率相同,振幅相同的同类自由行波相互干涉而形成的空间分布固定的周 期波。驻波的特点是具有固定于空间的腹或节。 6、波腹:驻波中某种声场特性的幅值为最大的点、线或面。 7、波节:驻波中某种声场特性基本为零的点、线或面。 8、房间共振和共振频率 房间中,声音在各个界面之间往复反射,由于衍射效应,混叠的声波有可能在某些特定的频率上发生畸变,即由于房间对声音频率不同的“响应”,造成室内声能密度因声源发出声波频率不同而有强有弱。房间存在共振频率(也称“固有频率”或“简正频率”),声源的频率与房间的共振频率越接近,越容易引起房间的共振,该频率的声能密度也就越强。 房间共振防止原则:使共振频率分布尽可能均匀。 选择合适的房间尺寸、比例和形状; 将房间的墙或天花板做成不规则形状; 将吸声材料不规则的分布在房间的界面上。

9、阻抗:一个拟力的量(力、压力、力矩、电压、温度或电场强度)和它所产生的拟速 度的量(速度、体积速度、角速度,电流、热流或磁场强度)的复数比值。阻抗的倒数是导纳。 10、声阻抗:媒质在一定波阵面的面积上的声压与通过这个面积速度的复数比值。 11、声阻抗率:媒质里某一点的声压与质点速度的复数比值。声阻抗率的实数部分是声 阻率,虚数部分是声抗率。 12、特性阻抗:平面自由行波在媒质中某一点的有效声压与通过该点的有效速度的比值, 特性阻抗等于媒质的密度与声速的乘积。 13、基频;(1)周期性振荡中与其周期相同的正弦式量的频率。(2)振动系统的最低固 有频率。 14、谐频:频率为基频的整数倍的频率,称为谐频。 15、谐波:周期性振荡中,频率等于基频整数倍的正弦式量,在音乐声源中,谐波的多 少直接影响音质的好坏。 16、纯音:(1)有单一声调的声音。(2)瞬时值为一简单正弦式时间函数的声波。 17、复音:(1)具有一个以上音调的声觉。(2)由一些频率不同的简单正弦式成分合成 的声波。 18、分音:(1)复音中可以用耳分清为一简单声音而不能再分的成分。(2)复音中的一

听力损失如何分级

?听力损失如何分级 ?根据国际标准,听力损失程度分为以下几类:(分贝,即dB) 我国第二次残疾人抽样调查规定的听力残疾分级标准与1997-WHO推荐的听力障碍标准相接轨。依据听力损失程度不同,从结构、功能、活动和参与、环境和 支持四个方面,将听力残疾划分为四级: 听力残疾一级:听觉系统的结构和功能方面极重度损伤,较好耳平均听力损失在90 dB HL以上,在无助听设备帮助下,几乎听不到任何声音,不能依靠听觉进行言语交流,在理解和交流等活动上极度受限,在参与社会活动方面存在严 重障碍。 听力残疾二级:听觉系统的结构和功能重度损伤,较好耳平均听力损失在8 1~90 dB HL之间,在无助听设备帮助下,只能听到鞭炮声,敲鼓声或雷声,在理解和交流等活动上重度受限,在参与社会活动方面存在严重障碍。 听力残疾三级:听觉系统的结构和功能中重度损伤,较好耳平均听力损失在61~80 dB HL之间,在无助听设备帮助下,只能听到部分词语或简单句子,在理解和交流等活动上中度受限,在社会活动参与方面存在中度障碍。 听力残疾四级:听觉系统的结构和功能中度损伤,较好耳平均听力损失在4 1~60dB HL之间,在无助听设备帮助下,能听到言语声,但辨音不清,在理解和交流等活动上轻度受限,在参与社会活动方面存在轻度障碍。

?听力伤残分级 ?级别听力伤残程度 一级双耳全聋,听力伤残值大于90dB. 二级一耳全聋,另一耳听力伤残值大于80dB。 三级双耳听力伤残值大于70dB。 四级单耳全聋或听力伤残值大于或等于50dB。 听力损失的分类 工作场所的噪声,遗传因素和一些疾病综合起来对不同的人产生不同类型的听力损失,听力损失可分为五种: (1)传导性听力损失:它是由于外伤、或者声波由外耳经中耳传至内耳的传播途径上发生问题引起的,比如听骨、鼓膜。 (2)感音神经性听力损失:此类型存在内耳退化,这可能是由于正常老化的结果,或是由于药物中毒引起内耳到大脑皮层整个神经系统退化所造成。 (3)混合性听力损失:是前面两类型听力损失发病因素并存的结果。 (4)中枢性听力损失:该类耳聋表现为耳蜗核平面以上病损,听力图以低频损失为主,可以是自身免疫、遗传、外伤、桥脑小脑角区占位性病变等多种损及中枢听觉神经系统的病因(病变)所致。 (5)功能性听力损失:是指非器质病变引起听力下降,如精神病等。

名词解释

环境监测:指通过对影响环境质量因素的代表值的测定,确定环境质量(或污染程度)及其变化趋势。 环境优先污染物:对众多有毒污染物进行分级排队,从中筛选出潜在危害性大,在环境中出现频率高的污染物作为监测和控制对象。这一过程就是数学上的优先过程,经过优先选择的污染物称环境优先污染物。 25、环境标准:是为了保护人群健康,防治环境污促使生态良性循环,合理利用资源,促进经济发展,依据环境保护法和有关政策,对有关环境的各项工作所做的规定。 26、环境优先监测:对优先污染物进行监测称为优先监测。 27、水质污染:由于人类活动改变了天然水的性质和组织,影响水的使用价值或危害人类健康,称为水污染. 28、水体净化:污染物进入水体中,由于水体自身发生一系列反应(包含物理、化学、生物反应)从而使污染物浓度降低的过程。 29、水质监测:水质监测是监视和测定水体中污染物的种类、各类污染物的浓度及变化趋势,评价水质状况的过程. 30、瞬时水样:瞬时水样是指在某一时间和地点从水体中随机采集的分散水样. 31、混合水样:混合水样是指在同一采样点于不同时间所采集的瞬时水样混合后的水样,有时称“时间混合水样”。 32、流速仪法:真机效率试验中,采用流速仪测量流量的方法。 33、湿式消解法:用液体或液体与固体混合物作氧化剂,在一定温度下分解样品中的有机质,此过程称为湿式消解法。 34、干灰化法:一般将灰化温度高于100'C的方法称为高温干灰化法. 35、富集或浓缩:是生物有机体或处于同一营养级上的许多生物种群,从周围环境中蓄积某种元素或难分解化合物,使生物有机体内该物质的浓度超过环境中生物富集效应 的浓度的现象。 36、分配系数:指一定温度下,处于平衡状态时,组分在固定相中的浓度和在流动相中的浓度之比,以K表示。 37、综合水样:把不同采样点同时采集的各个瞬时水样混合后所得到的样品称为综合水样. 38、凯式氮:凯氏氮是指以基耶达(Kjeldahl)法测得的含氮量。它包括氨氮和在此条件下能转化为铵盐而被测定的有机氮化合物。此类有机氮化合物主要有蛋白质、氨基酸、肽、胨、核酸、尿素以及合成的氮为负三价形态的有机氮化合物,但不包括叠氮化合物,硝基化合物等. 39、化学需氧量:氧化一升污水中有机物所需的氧化剂的量,以以O2的mg/L表示。

分贝计算

2007-黄杰(54584749) 22:46:57 就是因为现在基站不让随便建,所以要把发射功率提高,这样就能扩大覆盖范围2007-黄杰(54584749) 22:47:10 我们明年还要做300W呢 1.分贝的计算: dB=10*log(功率);记住一个3dB原则:每增加或降低3dB,意味着增加一倍或减少一半的功率。 +3dB:两倍大(乘以2);+10dB:10倍大(乘以10); -3dB:减小到1/2(除以以2);-10dB:减小到1/10(除以以10); 那这里有一个很简单的计算方法, 例如:增益为4000mw那换算dB是多少呢? 4000=10*10*10*2*2;那dB=10+10+10+3+3=36dB; 又例如:5000的增益是多少dB呢? 5000=10*10*10*10/2;那dB=10+10+10+10-3=37dB。 一般无委会或者FCC要求民用发射功率不能超过100mw也就是20dBm.所以WIFI 的AP发射功率不能超过这个数值。 类似的而50mw也就是17dBm了,而200mw就是23dBm. 2.百分比带宽:为带宽与中间频率的比值。 例如:75MHZ到125MHZ的百分比带宽为:[(125-75)/((125+75)/2)]*100%=50%; 当百分比带宽<50%叫窄带,>50%叫宽带; 3.VSWR:电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好定义 VSWR (电压驻波比,有时也称作垂直驻波比),用来衡量无线信号通过功率源、传输线、最终进入负载(例如,功率放大器输出通过传输线,最终到达天线)的有效传输功率。 对于一个理想系统,传输能量为100%,需要源阻抗、传输线及其它连接器的特征阻抗、负载阻抗之间精确匹配。由于理想的传输过程不存在干扰,信号的交流电压在两端保持相同。

声音与分贝

我们知道,声音是一种振动波。声音通过空气传播、被我们听到,本质上就是空气分子的振动传到了耳朵里,引发鼓膜的振动。所以,声音的大小,其实反映的是这种振动的强度。由于空气振动会引起大气压强的变化,所以确切地说,我们应该用压强变化的程度来描述一个声音的大小,这就是“声压”的概念,它的单位是Pa(帕斯卡)。比如:1米外步枪射击的声音大约是7000Pa;10米外开过的汽车大约是0.2Pa。 用声压来描述声音强度虽然准确,但却有很明显的问题:声压的变化范围非常大,不同声音的声压可能相差成百上千倍。比如上面两个例子:虽然步枪的声音确实比汽车声要大,但要说大出几万倍,这无论如何也与我们的日常感觉有出入。 因此,物理学上使用了“分贝”的概念。对于声音,“分贝”是这样定义的:我们将某一个声压值定义为“标准值”(0分贝),这是一个固定的值;任何一个声音,都和这个标准值相除,取结果的对数(以10为底),再乘以20,这样算出来的就是这个声音的分贝。写成公式就是: 其中:GdB为分贝;V0 为声压标准值;V1 为声压测量值。 对于上面的两个例子,步枪射击的声音换算过来就是171分贝,汽车开过的声音是80分贝,这样不仅方便计算,而且比较符合一般人的听觉感受。 这里涉及到了一个作为“标准值”的声音。当我们计算在气体介质中传播的声音时,采用的标准值是2×10^-5 Pa(20μPa),这是人耳在1000Hz这个频率下能听到的最小的声音,大致相当于3米外的一只蚊子在飞。这就是物理上对“0分贝”的定义。事实上,很多人听不到这样弱的声音。根据世界卫生组织的定义,如果一个人能听到的最小声音在25分贝以下,就属于正常听力。 另外,“分贝”并不仅仅用来描述声音强弱,它还被运用在电子学等其它物理领域,比如用来描述信号的增益衰减、信噪比等等。用来表示声音强弱时,“分贝”被写成dB(SPL),其中dB 是decibel(分贝)的缩写,SPL是Sound Pressure Level(声压位准)的缩写。除此以外,分贝还有别的形式。 通过上面对“分贝”的描述,我们会发现: 1. “分贝”并不反映声音的绝对响度,它是以某一个声音为基准,描述声音响度的相对关系。科学一点说,它把一个指数增长的物理量转换成了线性增长的物理量,便于计算。 2. “0分贝”并不代表“没有声音”,它只是一般认为人类能听到的最小声音而已。完全有可能有比0分贝还弱的声音(比如4米外的一只蚊子),那就是负分贝了。 3. 上面提到的2×10^-5 Pa,是用于计算“在空气或其它气体中传播的声音”时使用的标准值。当计算通过水下等液体介质传播的声音时,就要采用不同的标准值(1×10^-6 Pa,1μPa)。

2015年微波名词解释与简答题

二、名词解释 1、传输线理论 传输线理论是用来分析传输线上电压与电流的分布,以及传输线上阻抗变化规律的理论。它是分布参数理论,在场分析与基本电路理论之间架起了桥梁。 2、TEM 波、TE 波和TM 波 TEM 波(横电磁波): 在波传播的方向上没有电场或磁场分量的波。(02=c k ) TE 波或M 波(电场纯横向波): 在波传播的方向上有磁场分量,但没有电场分量的波。(02>c k ,00≠=z z H E ,此时只有纵向磁场) TM 波或E 波(磁场纯横向波): 在波传播的方向上有电场分量,但没有磁场分量的波。(02>c k ,00=≠z z H E ,此时只有纵向电场) 3、传播常数、相速、波长 传播常数γ是描述传输线上导行波沿波导系统传播过程中衰减和相移的参数。(通常为复数 βαγj +=,其中α为衰减常数,β为相移常数) 相速p v :电压、电流入射波(或反射波)等相位面沿传输方向的传播速度。 β ω = p v 波长λ:传输线上的波长λ与自由空间的波长0λ有以下关系: r p f v ελβ π λ0 2= = = 4、行波、驻波、行驻波 行波状态:是无反射的传输状态,此时终端反射系数01=Γ,而负载阻抗等于传输线的特性阻抗,即01Z Z =,也可称此时的负载为匹配负载。 驻波状态:是全反射的传输状态,此时终端反射系数11=Γ。 行驻波状态:当微波传输线终端接任意复数阻抗负载时,由信号源入射的电磁波功率一部分被终端吸收,另一部分则被反射,因此传输线上既有行波又有纯驻波,构成混合波状态。

5、传输线特性阻抗、输入阻抗、反射系数、驻波比 特性阻抗0Z :传输线上导行波的电压与电流之比。(其倒数称为特性导纳0Y ) 输入阻抗)(in z Z :传输线上任意一点z 处的输入电压与输入电流之比。 反射系数Γ:传输线上任意一点z 处的反射波电压(或电流)与入射波电压(或电流)之比。 驻波比ρ:(驻波系数)传输线上波腹点电压振幅与波节点电压振幅之比。(其倒数称为行波系数K ) 6、简并模 简并模是传播常数相同或截止波长相同的传输模。 7、工作波长、波导波长、截止波长 工作波长:TEM 波的相波长,它由频率与光速确定,即r r f c ελελ0 = = 波导波长:理想导波系统中的相波长,即波导系统内电磁波的相位改变π2所经过的距离。 截止波长:截止频率所确定的波长,r f c ελc = 8、Smith 圆图 史密斯圆图是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图。(主要用于传输线的阻抗匹配) 9、天线的互易定理 同一天线作为发射或接收的基本特性参数是相同的。 10、S 参数 S 参数,也就是散射参数,是建立在入射波、反射波的关系基础上的网络参数。

关于分贝的知识

关于分贝的知识 分贝表示一种单位,即两种电或声功率之比或两种电压或电流值或类似声量之比;分贝还是一种测量声音相对响度的单位。 分贝(decibel)dB 分贝是以美国发明家亚历山大·格雷厄姆·贝尔命名的,他因发明电话而闻名于世。因为贝尔的单位太粗略而不能充分用来描述我们对声音的感觉,因此前面加了“分”字代表1/10。1贝尔等于10分贝。声学领域中,分贝的定义是声源功率与基准声功率比值的对数乘以10的数值。用于形容声音的响度。 分贝是通信系统传输单位。 一、两个功率之比用对数表示: log10 ((p1/p2), 若p1=10p2 则log10 ((p1/p2)= log10 ((10p2/p2) = log1010=1 (贝尔) 用分贝表示功率比,若p1=10p2,则 10 log10 (p1/p2)=10 log10 ((10p2/p2)=10 log1010=10 (分贝) 通常表示为:10 lg (p1/p2) (dB) p1>p2 时,dB为正,p1U2 时,dB为正,U1

声学名词解释

B 波长 声波振动一次所传播的距离,用声波的速度除以声波的频率就可以计算出该频率声波的波长,声波的波长范围为17米至1.7厘米,在室内声学中,波长的计算对于声场的分析有着十分重要的意义,要充分重视波长的作用。例如只有障碍物在尺寸大于一个声波波长的情况下,声波才会正常反射,否则绕射、散射等现象加重,声影区域变小,声学特性截然不同;再比如大于2倍波长的声场称为远场,小于2倍波长的声场称为近场,远场和近场的声场分布和声音传播规律存在很大的差异;此外在较小尺寸的房间内(与波长相比),低音无法良好再现,这是因为低音的波长较长的缘故,故在一般家庭中,如果听音室容积不足够大,低音效果很难达到理想状态。 很多现场调音师都没有理会到音频与波长的关系,其实这是很重要的:音频及波长与声音的速度是有直接的关系。在海拔空气压力下,21摄氏温度时,声音速度为344m/s,而我接触国内的调音师,他们常用的声音速度是34Om/s,这个是在15摄氏度的温度时声音的速度,但大家最主要记得就是声音的速度会随着空气温度及空气压力而改变的,温度越低,空气里的分子密度就会增高,所以声音的速度就会下降,而如果在高海拔的地方做现场音响,因为空气压力减少,空气内的分子变得稀少,声音速度就会增加。音频及波长与声音的关系是:波长=声音速度/频率;λ=v/f,如果假定音速是344m/s时,100Hz的音频的波长就是3.44m,1000hz(即lkHz)的波长就是34.4cm,而一个20kHz的音频波长为1.7cm。 D 对混响时间 声源停止发声后,声压级衰减到人耳听不到的程度所需要的时间。 D 动态范围 音响设备的最大声压级与可辨最小声压级之差。设备的最大声压级受信号失真、过热或损坏等因素限制,故为系统所能发出的最大不失真声音。声压级的下限取决于环境噪声、热噪声、电噪声等背景条件,故为可以听到的最小声音。动态范围越大,强声音信号就越不会发生过荷失真,就可以保证强声音有足够的震撼力,表现雷电交加等大幅度强烈变化的声音效果时能益发逼真,与此同时,弱信号声音也不会被各种噪声淹没,使纤弱的细节表现得淋漓尽致。一般来说,高保真音响系统的动态范围应该大于90分贝,太小时还原的音乐力度效果不良,感染力不足。在专业音响系统的调整过程中,音响师在调音时要主意以下两方面问题:一是调音台的的输入增益量不要调的过小,否则微弱的声音会被调音台的设备噪声所淹没。二是压限器的阈值和压缩比的调整要格外慎重,阈值过小和压缩比过大,都会使声音动态压缩严重,故应该在保证效果的前提下,尽量减少对声音的动态损失。另外,在放大电路和音源中也存在动态范围,此时即可分辨的最小信号和可达到的最大不失真信号之差。 导波模式

dB换算表

■dB換算表

3dB法则总结: 对功率比dB=10log10(P2/P1)而言,每增加或减少3dB,表示P2比P1增 强或减弱2倍。 对电压比dB=20log10(V2/V1)而言,每增加或减少3dB,表示P2比P1增 强或减弱√2倍。 无线电单位换算表-dBmV、mW、dBuV、dBm、mVpp、mVp、mV(RMS)、uV(RMS)转换 型号:MSA338 厂商:迈克尼斯 无线电单位换算表-dBmV、mW、dBuV、dBm、mVpp、mVp、mV(RMS)、uV(RMS)相互转换 System:50W mVpp mVp mV(RMS)uV(RMS)dBmV dBuV mW dBm 2.00E-04 1.00E-047.07E-050.07-8 3.01-23.01 1.00E-13-130.00 5.00E-04 2.50E-04 1.77E-040.18-75.05-15.05 6.25E-13-122.04

1.00E-03 5.00E-04 3.54E-040.35-69.03-9.03 2.50E-12-116.02 1.00E-020.010.00 3.54E+00-49.0310.97 2.50E-10-96.02 1.00E-010.050.04 3.54E+01-29.0330.97 2.50E-08-76.02 1.00E+000.500.35 3.54E+02-9.0350.97 2.50E-06-56.02 10.00 5.00 3.54 3.54E+0310.9770.97 2.50E-04-36.02 20.0010.007.077.07E+0316.9976.99 1.00E-03-30.00 50.0025.0017.68 1.77E+0424.9584.95 6.25E-03-22.04 100.0050.0035.36 3.54E+0430.9790.97 2.50E-02-16.02 200.00100.0070.717.07E+0436.9996.990.10-10.00 300.00150.00106.07 1.06E+0540.51100.510.23-6.48 400.00200.00141.42 1.41E+0543.01103.010.40-3.98 500.00250.00176.78 1.77E+0544.95104.950.63-2.04 1000.00500.00353.55 3.54E+0550.97110.97 2.50 3.98 1100.00550.00388.91 3.89E+0551.80111.80 3.03 4.81 1200.00600.00424.26 4.24E+0552.55112.55 3.60 5.56 1300.00650.00459.62 4.60E+0553.25113.25 4.23 6.26 1400.00700.00494.97 4.95E+0553.89113.89 4.90 6.90 1500.00750.00530.33 5.30E+0554.49114.49 5.637.50 2000.001000.00707.117.07E+0556.99116.9910.0010.00 2500.001250.00883.888.84E+0558.93118.9315.6311.94 3000.001500.001060.66 1.06E+0660.51120.5122.5013.52 3500.001750.001237.44 1.24E+0661.85121.8530.6314.86 4000.002000.001414.21 1.41E+0663.01123.0140.0016.02 5000.002500.001767.77 1.77E+0664.95124.9562.5017.96 6000.003000.002121.32 2.12E+0666.53126.5390.0019.54 7000.003500.002474.87 2.47E+0667.87127.87122.5020.88 8000.004000.002828.43 2.83E+0669.03129.03160.0022.04 9000.004500.003181.98 3.18E+0670.05130.05202.5023.06 10000.005000.003535.53 3.54E+0670.97130.97250.0023.98 11000.005500.003889.09 3.89E+0671.80131.80302.5024.81 12000.006000.004242.64 4.24E+0672.55132.55360.0025.56 13000.006500.004596.19 4.60E+0673.25133.25422.5026.26 14000.007000.004949.75 4.95E+0673.89133.89490.0026.90 15000.007500.005303.30 5.30E+0674.49134.49562.5027.50 16000.008000.005656.85 5.66E+0675.05135.05640.0028.06 17000.008500.006010.41 6.01E+0675.58135.58722.5028.59 18000.009000.006363.96 6.36E+0676.07136.07810.0029.08 19000.009500.006717.51 6.72E+0676.54136.54902.5029.55 20000.0010000.007071.077.07E+0676.99136.991000.0030.00

噪声场所危害级别分为几级

噪声场所危害级别分为几级噪声场所危害分级: 1、城市5类环境噪声标准值如下 类别昼间夜间 0类50分贝40分贝dB(A) 1类55分贝45分贝 2类60分贝50分贝 3类65分贝55分贝 4类70分贝55分贝 2、各类标准的适用区域 (1)0类标准适用于疗养区、高级别墅区、高级宾馆区等特别需要安静的区域。位于城郊和乡村的这一类区域分别按严于0类标准5分贝执行。 (2)1类标准适用于以居住、文教机关为主的区域。乡村居住环境可参照执行该类标准。 (3)2类标准适用于居住、商业、工业混杂区。 (4)3类标准适用于工业区。 (5)4类标准适用于城市中的道路交通干线道路两侧区域,穿越城区的内河航道两侧区域。穿越城区的铁路主、次干线两侧区域的背景噪声(指不通过列车时的噪声水平)限值也执行该类标准。 噪声场所危害的预防措施: (1)控制和消除噪声源,这是防止噪声危害的根本措施,应根据具体情况和不同对象采取不同的方式解决。用焊接或压接代替铆接,用挤压代替冲压,用压力机代替锻锤;对鼓风机、电动机可采取隔离措施或移出室外;用滚压机矫正或弯曲钢板,代替用敲打的方法矫正钢板;拆卸生锈的螺旋时,用液压钳子代替錾子。用发声较小的材料制造的齿轮代替金属齿轮,或将发声较小的材

料制成的零件安置在金属零件之间。对排气噪声较大的机组设置专用消声器;提高齿轮制造的精确度,减少转向装置的活动间隙;实现生产过程自动化,可以减少噪声对生产人员的影响。 (2)控制噪声的传播和反射,吸声利用吸声材料装饰室内墙面或顶棚面以减低室内噪声;消声是防止空气动力性噪声的主要措施;减振为了防止通过固体传播的振动性噪声,必须在机器或振动体的基础和地板、墙壁连接初设隔振和减震装置。

环境学名词解释

名词解释 温室效应:是指是太阳短短波辐射可以透过大气射入地面,而地面增暖后放出的长波辐射却被大气中的二氧化碳等物质所吸收,从而产生大气变暖的效应。 反渗透:一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作持久性有机污染物(POPs):指人类合成的能持久存在于环境中、通过生物食物链(网)累积、并对人类健康造成有害影响的化学物质。环境系统:地球表面各种环境要素或环境结构及其相互关系的总和。黄道面:地球绕太阳公转的轨道平面,与地球赤道面交角为23度26分。 水环境:地球上分布的各种水体以及其密切相连的诸多环境要素如河床、海岸、植被、土壤等。 富营养化:水体在外界条件的影响下,由于营养盐类不断积聚,引起水体内部物理、化学性状不断改变,水体生态系统发生相应的演替,并由生物生产力低的状态逐步向生物生产力高的状态过渡的现象。TOC:总有机碳,用以表示水体中全部有机物的含碳量 酸雨:PH值小于5.6的大气降水(雨、雪或雾、露、) 热岛效应:一个地区的气温高于周围地区的现象 过滤式除尘器:利用多孔过滤介质分离捕集气体中固体或液体粒子的净化装置。 环境:以人类社会为主体的外部世界的总体 莫霍面:地壳下部与地幔分界的面

分贝:是声源功率与基准声功率比值的对数乘以10的数值,用来度量噪声的无量纲单位 BOD:生化需氧量,在人工控制的条件下,使水体中的有机物在微生物作用下进行生物氧化,在一定时间内所消耗的溶解氧的数量。分解者:各种微生物,也包括某些以有机碎屑为食物的动物。 环境影响评价制度:指在进行建设活动之前,对建设项目的选址、设计和建成投产使用后可能对周围环境产生的不良影响进行调查、预测和评定,提出防治措施,并按照法定程序进行报批的法律制度。 生态平衡:在一定时期和一定范围内,系统内生产者、消费者和分解者之间保持着一种动态平衡,也就是系统的能量流动和物质循环在较长时间内保持稳定状态 氧垂曲线:在河流受到大量有机物污染时,由于有机物这种氧化分解作用,水体溶解氧发生变化,随着污染源到河流下游一定距离内,溶解氧由高到低,再到原来溶解氧水平,可绘制成一条溶解氧下降曲线,称之为氧垂曲线。 光化学烟雾:大气中的碳氢化合物和NOx等一次污染物,在阳光作用下发生光学反应,生成臭氧、醛类、酮类、过氧乙酸硝酸酯(PAN)等二次污染物。这类光化学反应的反应物(一次污染物)与生成物(二次污染物)形成的特殊混合物 COD:指化学氧化剂氧化水中有机污染物时所需的氧量,以每升水

dB换算表

对于无线工程师来说更常用分贝dBm这个单位,dBm单位表示相对于1毫瓦的分贝数,dBm和W之间的关系是:dBm=10*lg(mW)1w的功率,换算成dBm 就是10×lg1000=30dBm。2w是33dBm,4W是36dBm……大家发现了吗?瓦数增加一倍,dBm就增加3。为什么要用dBm做单位?原因大致有几个:1、对于无线信号的衰减来说,不是线性的,而是成对数关系衰减的。用分贝更能体现这种关系。2、用分贝做单位比用瓦做单位更容易描述,往往在发射机出来的功率几十上百瓦,到了接收端已经是以微微瓦来计算了。3、计算方便,衰减的计算公式用分贝来计算只用做加减法就可以了。 以1mW 为基准的dB算法,即0dBm=1mW,dBm=10*log(Power/1mW)。发射功率dBm-路径损失dB=接收信号强度dBm最小通信功率dBm-路径损失dB≥接收灵敏度下限dBm 最小通信功率dBm≥路径损失dB+接收灵敏度下限dBm 射频知识 ?功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm。dBm是取1mw作基准值,以分贝表示的绝对功率电平。 ?换算公式: 电平(dBm)=10lgw 5W → 10lg5000= 37dBm 10W → 10lg10000 = 40dBm 20W → 10lg20000 = 43dBm ?从上不难看出,功率每增加一倍,电平值增加3dBm 1、dB dB是一个表征相对值的值,纯粹的比值,只表示两个量的相对大小关系,没有单位,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面计算公式:10log(甲功率/乙功率),如果采用两者的电压比计算,要用20log (甲电压/乙电压)。 [例] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB。反之,如果甲的功率是乙的功率的一半,则甲的功率比乙的功率小3 dB。 2、dBi 和dBd

分贝的基本概念

1、分贝 1.1 分贝的感觉 当物体振动时,在它周围就会产生声波,声波不断向外传播,被人们听到成为声音。人耳的听觉下限是0dB,低于15dB的环境是极为安静的环境,安静得会使人不知所措。乡村的夜晚大多是25-30dB,除了细心才能够体会到的流水、风、小动物等自然声音以外,其他感觉一片宁静,这也是生活在喧嚣之中的城市人所追求的净土。城市的夜晚会因区域不同而有所不同。较为安静区域的室内一般在30-35dB,住在繁华的闹市区或是交通干线附近的居民,将不得不忍受室内40-50dB(甚至更高)的噪声。人们正常讲话的声音大约是60-70dB,大声呼喊的瞬间可达100dB。在机器轰鸣的厂房中,持续的噪声可达80-110dB,这种高强度的噪声会损害人耳的听觉,并对神经系统产生不良影响,长期还会导致神经衰弱、消化不良、听力下降、心血管等疾病。人耳的噪声听觉上限是120dB,超过120dB的声音会耳痛、难以忍受,140dB的声音会使人失去听觉。高分贝喇叭、重型机械、喷气飞机引擎等都能够产生超过120dB的声音。 1.2 人耳的感觉 人耳听觉非常敏感,正常人能够察觉1dB的声音变化,3dB的差异将感到明显不同。人耳存在掩蔽效应,当一个声音高于另一个声音10dB时,较小的声音因掩蔽而难于被听到和理解,由于掩蔽效应,在90-100dB的环境中,即使近距离讲话也会听不清。人耳有感知声音频率的能力,频率高的声音人们会有“高音”的感觉,频率低的声音人们会有“低音”的感觉,人耳正常的听觉频率范围是20-20KHz。人耳耳道类似一个2-3cm的小管,由于频率共振的原因,在2000-3000Hz的范围内声音被增强,这一频率在语言中的辅音中占主导地位,有利于听清语言和交流,但人耳最先老化的频率也在这个范围内。一般认为,500Hz以下为低频,500-2000Hz为中频,2000Hz以上为高频。语言的频率范围主要集中在中频。人耳听觉敏感性由于频率的不同有所不同,频率越低或越高时敏感度变差,也就是说,同样大小的声音,中频听起来要比低频和高频的声音响。 1.3频率特性 声音可以分解为若干(甚至无限多)频率分量的合成。为了测量和描述声音频率特性,人们使用频谱。频率的表示方法常用倍频程和1/3倍频程。倍频程的中心频率是31.5、63、125、250、500、1K、2K、4K、8K、16KHz十个频率,后一个频率均为前一个频率的两倍,因此被称为倍频程,而且后一个频率的频率带宽也是前一个频率的两倍。在有些更为精细的要求下,将频率更细地划分,形成1/3倍频程,也就是把每个倍频程再划分成三个频带,中心频率是20、31.5、40、50、63、80、100、125、160、200、250、315、400、500、630、800、1K、1.25K、1.6K、2K、2.5K、3.15K、4K、5K、6.3K、8K、10K、12.5K、16K、20KHz 等三十个频率,后一个频率均为前一个频率的21/3倍。在实际工程中更关心人耳敏感的部分,大多数情况下考虑的频率范围在100Hz到5KHz。噪声治理中一般采用倍频程。如果将声音的频率分量绘制成曲线就形成了频谱。 不同声源发出噪声有不同的频率特性,有些噪声低频能量很大,如气泵、齿轮转动机器等,有些声源中频能量很大,如轴承、冷却塔淋水声,有些噪声高频能量很大,如交直流电机、变压器、阀门等,但大多噪声往往是各种频率都有很大声音,而且没有任何规则。对于各种声学材料来讲,不同频率条件下声学性能是不同的。有的材料具有良好的高频吸声性能,有的材料具有良好的低频吸声性能,有的材料对某些频率具有良好的吸声性能,不一而同。隔声等其他声学性能也是如此。

名词解释复习

酌量性固定成本:也称为选择性固定成本或者任意性固定成本,是指管理当局的决策可以改变其支出数额的固定成本。例如广告费、职工教育培训费、技术开发费等。这些成本的基本特征是其绝对额的大小直接取决于企业管理当局根据企业的经营状况而作出的判断。 约束性固定成本:是指管理当局的决策无法改变其支出数额的固定成本。例如厂房及机器设备按直线法计提的折旧费、照明费、行政管理人员的工资等。 本—量—利分析:是对成本、产量(或销量)、利润之间相互关系进行分析的一种简称,也称CVP分析(Cost Volume Profit Analysis)。 盈亏临界点:是指企业的经营规模(销售量)刚好使企业达到不盈不亏的状态。 广义在产品:是就整个企业而言的,即指产品生产从投料开始,到最终制成产成品交付验收入库前的一切产品。 狭义在产品:是就某一生产车间(或生产步骤)来说的,它仅指本生产车间或生产步骤正在加工尚未完成的产品。 约当产量比例法:就是将月末在产品的数量按其完工程度折算为相当于完工产品的数量,即约当产量,并将本期产品生产费用按照完工产品数量和月末在产品的约当产量比例进行分配,计算出完工产品成本和月末在产品成本的方法。 定额比例法:将归集的生产费用按照完工产品和在产品的定额 耗用量、定额费用或定额工时等比例进行分配的方法。 生产损失:是指在在生产过程中,因产品报废、生产停工或在产品盘亏、毁损而造成的各种人力、物力、财力上的损失,可归为四类:一、生产损耗;二、生产废料;三、废品损失;四、停工损失 废品:指不符合规定的技术标准,不能按照原定用途使用,或者需要加工修理才能使用的在产品、半成品或产成品。

声学常识及一些基本概念

声学常识及一些基本概念 一、声音 物体的振动产生“声”,振动的传播形成“音”。人们通过听觉器官感受声音,声音是物理现象,不同的人对声音有不同的感受,相同声音的感受也会因人而异。美妙的音乐令人陶醉,清晰激昂的演讲令人鼓舞,但有时侯,邻居传来的音乐声使人难以入睡,他人之间的甜言蜜语也许令人烦恼。建筑声学不同于其他物理声学,主要研究目的在于如何使人们在建筑中获得良好的声音环境,涉及的问题不局限于声音本身,还包括心理感受、建筑学、结构学、材料学甚至群体行为学等多方面问题。 人耳的听觉下限是0dB,低于15dB的环境是极为安静的环境,安静的会使人不知所措。乡村的夜晚大多是25-30dB,除了细心才能够体会到的流水、风、小动物等自然声音以外,其他感觉一片宁静,这也是生活在喧嚣之中的城市人所追求的净土。城市的夜晚会因区域不同而有所不同。较为安静区域的室内一般在30-35dB,如果你住在繁华的闹市区或是交通干线附近,将不得不忍受40-50dB(甚至更高)的噪声,如果碰巧邻居是一位不通情达理的人,夜深人静时蹦蹦跳跳、高声喧哗,也许更要饱受煎熬了。人们正常讲话的声音大约是60-70dB,大声呼喊可达100dB。在中式餐馆中,往往由于缺乏吸声处理,人声鼎沸,声音将达到70-80dB,有国外研究报道噪声中进餐会影响健康。人耳的听觉上限一般是120dB,超过120dB 的声音会造成听觉器官的损伤,140dB的声音会使人失去听觉。高分贝喇叭、重型机械、喷气飞机引擎等都能够产生超过120dB的声音。 人耳听觉非常敏感,正常人能够察觉1dB的声音变化,3dB的差异将感到明显不同。人耳存在掩蔽效应,当一个声音高于另一个声音10dB时,较小的声音因掩蔽而难于被听到和理解,由于掩蔽效应,在90-100dB的环境中,即使近距离讲话也会听不清。人耳有感知声音频率的能力,频率高的声音人们会有“高音”的感觉,频率低的声音人们会有“低音”的感觉,人耳正常的听觉频率范围是20-20KHz。人耳耳道类似一个2-3cm的小管,由于频率共振的原因,在2000-3000Hz的范围内声音被增强,这一频率在语言中的辅音中占主导地位,有利于听清语言和交流,但人耳最先老化的频率也在这个范围内。一般认为,500Hz以下为低频,500Hz-2000Hz为中频,2000Hz以上为高频。语言的频率范围主要集中在中频。人耳听觉敏感性由于频率的不同有所不同,频率越低或越高时敏感度变差,也就是说,同样大小的声音,中频听起来要比低频和高频的声音响。 二、声音的频率特性 声音可以分解为若干(甚至无限多)频率分量的合成。为了测量和描述声音频率特性,人们使用频谱。频率的表示方法常用倍频程和1/3倍频程。倍频程的中心频率是31.5、63、125、250、500、1K、2K、4K、8K、16KHz十个频率,后一个频率均为前一个频率的两倍,因此被称为倍频程,而且后一个频率的频率带宽也是前一个频率的两倍。在有些更为精细的要求下,将频率更细地划分,形成1/3倍频程,也就是把每个倍频程再划分成三个频带,中心频率是20、31.5、40、50、63、80、100、125、160、200、250、315、400、500、630、800、1K、1.25K、1.6K、2K、2.5K、3.15K、4K、5K、6.3K、8K、10K、12.5K、16K、20KHz等三十个频

噪声的等级和对人类健康的危害

噪声的等级和对人类健康的危害 噪声的等级: 按照国家标准规定,住宅区的噪音,白天不能超过50分贝,夜间应低于45分贝,若超过这个标准,便会对人体产生危害。那么,室内环境中的噪声标准是多少呢?国家《城市区域环境噪声测量方法》中第5条4款规定,在室内进行噪声测量时,室内噪声限值低于所在区域标准值10dB。 噪声的定义: 我们国家制定的《中华人民共和国环境噪声污染防治法》中把超过国家规定的环境噪声排放标准,并干扰他人正常生活、工作和学习的现象称为环境噪声污染。声音的分贝是声压级单位,记为dB。用于表示声音的大小。《中华人民共和国城市区域噪声标准》中则明确规定了城市五类区域的环境噪声最高限值: 噪声污染对身心健康的危害: 1.强的噪声可以引起耳部的不适,如耳鸣、耳痛、听力损伤。据测定,超过115分贝的噪声还会造成耳聋。据临床医学统计,若在80分贝以上噪音环境中生活,造成耳聋者可达50%。医学专家研究认为,家庭噪音是造成儿童聋哑的病因之一。 2.使工作效率降低。研究发现,噪声超过85分贝,会使人感到心烦意乱,人们会感觉到吵闹,因而无法专心地工作,结果会导致工作效率降低。 3.损害心血管。噪声是心血管疾病的危险因子,噪声会加速心脏衰老,增加心肌梗塞发病率。医学专家经人体和动物实验证明,长期接触噪声可使体内肾上腺分泌增加,从而使血压上升,在平均70分贝的噪声中长期生活的人,可使其心肌梗塞发病率增加30%左右,特别是夜间噪音会使发病率更高。调查发现,生活在高速公路旁的居民,心肌梗塞率增加了30%左右。调查1101名纺织女工,高血压发病率为7.2%,其中接触强度达100分贝噪声者,高血压发病率达15.2%。 4.噪声还可以引起如神经系统功能紊乱、精神障碍、内分泌紊乱甚至事故率升高。高噪声的工作环境,可使人出现头晕、头痛、失眠、多梦、全身乏力、记忆力减退以及恐惧、易怒、自卑甚至精神错乱。在日本,曾有过因为受不了火车噪声的刺激而精神错乱,最后自杀的例子。 5.干扰休息和睡眠。休息和睡眠是人们消除疲劳、恢复体力和维持健康的必要条件。但噪声使人不得安宁,难以休息和入睡。当人辗转不能入睡时,便会心态紧张,呼吸急促,脉搏跳动加剧,大脑兴奋不止,第二天就会感到疲倦,或四肢无力。从而影响到工作和学习,久而久之,就会得神经衰弱症,表现为失眠、耳鸣、疲劳。 6.对女性生理机能的损害。女性受噪声的威胁,还可以有月经不调、流产及早产等,如导致女性性机能紊乱,月经失调,流产率增加等。专家们曾在哈尔滨、北京和长春等7个地区经过为期3年的系统调查,结果发现噪声不仅能使女工患噪声聋,且对女工的月经和生育均有不良影响。另外可导致孕妇流产、早产,甚至可致畸胎。国外曾对某个地区的孕妇普遍发生流产和早产作了调查,结果发现她们居住在一个飞机场的周围,祸首正是那飞起降落的飞机所产生的巨大噪声。

相关文档