文档库 最新最全的文档下载
当前位置:文档库 › 第6章 精细化工废水处理-YYH

第6章 精细化工废水处理-YYH

精细化工废水处理技术方案范文

精细化工废水处理 技术方案

初步设计方案书 设计编号:F Y H B-08-12-10 项目名称:5.0吨/天苯甲酸废水处理工程项目单位: 设计单位: 单位地址: 电话: 邮箱:

目录 第一章工程概述 (03) 第二章设计依据 (04) 第三章设计原则 (04) 第四章设计范围和内容 (05) 第五章设计处理规模及排放标准 (05) 第六章废水处理工艺流程设计 (06) 第七章废水处理预期效果及水量变化 (09) 第八章废水处理主要构筑物及设备设计参数 (10) 第九章用电负荷及电气控制........................................ .. (11) 第十章工程总投资估算 (12) 第十一章运行成本估算 (14) 第十二章环境效益分析 (14) 第十三章质量和售后服务 (14) 设计: 审核: 批准:

第一章、企业简介 1.1 工程概况: 某化学科技有限公司拥有国内最大的对叔丁基苯甲酸系列生产车间,当前年产对叔丁基甲苯5000吨,对叔丁基苯甲酸3000吨,对叔丁基苯甲酸甲酯1200吨。产品广泛应用于化学合成,工业复配添加,化妆品、药品,香精香料等领域,销往世界各地,深受海内外客户的好评。当前,每天将产生5.0吨的高浓度有机废水,该废水COD浓度高,抗氧化性好,可生化性差。因此三废问题严重影响了企业的发展。企业急需寻找一条既合理又经济的处理方法。 根据《环境保护法》、《建设项目环境保护和管理条例》、《污水综合排放标准》等有关法律法规和厂方的实际情况,该废水经处理后必须达国家一级排放标准。针对该废水的特点,依托我公司的先进技术优势,并结合实际情况提出如下的废水处理工艺方案,供有关部门领导决策参考。 1.2设计单位简介: 设计工程有限公司--是环保集团有限公司控股子公司,依托环保集团科研开发、项目设计、设备制造、项目总承包等强大的整体实力优势,达到了信息、资源的共享;专业承揽大型污水处理及工业废水处理工程。 环保设备厂—是环境设计工程有限公司化工废水处理研究、开发基地。专业从事高浓度有机化工废水处理技术的研究和开发,拥有自主知识产权的高活性铁床微电解、催化氧化等多项高科技环保专业技术和成套设备;同时不断研发出针对各种有机废水的处理技术新工艺,并广泛应用于

Fenton试剂氧化法对染料中间体废水的深度处理

Vol.30,No.6,2011净水技术2011,30(6):28-30,52Water Purification Technology 染料中间体废水主要为带有硝基、氨基和磺酸基等取代基团的芳香族化合物,具有成分复杂、难降解有机物含量高、色度高、毒性大等特点,常规生化处理出水难以达到排放标准要求。近年来,对常规生化处理后的工业废水进行深度处理并回用的要求日益迫切。Fenton试剂氧化法因其反应速度快、操作简单、处理效果好而受到重视,但将其应用于染料中间体废水深度处理的研究报道很少。目前仅知张英等[1]做了铁催化内电解法预处理高浓度、高盐度和高色度的染料中间体废水的效果的研究。本文着重研究废水经铁催化内电解、水解酸化、好氧组合工艺处理后,再经Fenton试剂氧化法深度处理的效果及影响因素。 1材料与方法 1.1试验用水 试验用水为某化工厂染料中间体废水经铁催化 内电解、水解酸化、好氧组合处理后的出水,COD Cr 为187.5mg/L,色度为1085倍。 1.2试验方法 向500mL碘量瓶内加入200mL原水,用硫酸溶液调节pH后,加入适量浓度为2.8g/L的Fe2+和 浓度为27.2g/L的H 2 O2。将碘量瓶置于107r/min 的摇床中摇动,反应适当时间后取出碘量瓶,加入适量的氢氧化钠溶液调节pH值至10终止反应,再将其置于107r/min的摇床上摇动30min后,向溶液中滴加0.1g/L的聚丙烯酰胺(PAM)溶液2mL,搅拌2min,静置10min,取上清液进行分析。 1.3分析项目及方法 COD:快速测定仪5B-3F型;pH:pHS-2F型精密pH计;色度:SD-2型色度仪。 2结果与讨论 2.1Fenton试剂氧化法深度处理染料中间体废水 Fenton试剂氧化法对染料中间体废水的深度处理 任国栋1,魏宏斌1,唐秀华2,张英1,陈良才2 (1.同济大学环境科学与工程学院,上海200092;2.上海中耀环保实业有限公司,上海200092) 摘要以实际染料中间体废水经铁催化内电解、水解酸化、好氧生化组合工艺处理后的出水为研究对象,考察了Fenton试 剂氧化法深度处理染料中间体废水的效果和影响因素。当进水COD Cr 为187.5mg/L、色度为1085倍时,出水COD Cr 下降到 59.2mg/L,去除率为68.4%;色度下降到129倍,去除率为88.1%。 关键词染料中间体废水Fenton试剂氧化深度处理影响因素 中图分类号:TU992.3文献标识码:B文章编号:1009-0177(2011)06-0028-04 Advanced Treatment of Dye Intermediate Wastewater by Fenton Reagent Oxidation Pro-cess Ren Guodong1,Wei Hongbin1,Tang Xiuhua2,Zhang Ying1,Chen Liangcai2 (1.College of Environment Science and Engineering,Tongji University,Shanghai200092,China; 2.Shanghai Zhongyao Environmental Protection Industry Co.,Ltd.,Shanghai200092,China) Abstract On the basis of the actual dye intermediate wastewater treated by iron-catalyzed internal electrolysis,hydrolytic-acidifi-cation and aerobic biochemical process,the efficiency and influencing factors in advanced treatment by Fenton reagent oxidation pro-cess were investigated.When the influent COD Cr is187.5mg/L and the color is1085times,the effluent COD Cr is decreased to59.2mg /L,its removal rates being68.4%,and color is decreased to129times,its removal rates being88.1%. Keywords dye intermediate wastewater Fenton reagent oxidation advanced treatment influencing factors [收稿日期]2010-11-26 [作者简介]任国栋(1986-),男,硕士研究生,研究方向为水和废水处 理技术。电话:135********; E-mail:guodongrr@https://www.wendangku.net/doc/1216986993.html,。 28 --

啤酒废水处理

啤酒废水处理

啤酒废水处理工艺及浅析 提要:我国是啤酒生产大国,啤酒废水已成为较高有机物污染大户,因此,对啤酒废水进行处理达标后排放已显得十分重要。介绍了5种较成熟的啤酒废水处理工艺(流程)方案,简述了各自的特点和优缺点,并对5种工艺方案进行了初步分析。 关键词:啤酒废水生化处理物化处理处理工艺水解酸化接触氧化厌氧内循环 概述 80年代以来,我国啤酒工业得到迅速发展,到目前我国啤酒生产厂已有800多家,据1996年统计我国啤酒产量达1 650万t,既成为世界啤酒生产大国,又成为较高浓度有机物污染大户,啤酒废水的排放和对环境的污染已成为突出问题,引起了各有关部门的重视。 啤酒废水的主要成分和来源是:制麦、糖化、果胶、发酵(残渣)、蛋白化合物,包装车间等有机物和少量无机盐类。其水质及变幅范围一般为:pH=5.5~7.0(显微酸性),水温为20~25℃,CODCr=1200~2300mg/L, BOD5=700~1400mg/L, SS=300~600mg/L, TN=30~70mg/L。水量为每生产1t啤酒废水排放量为10~20m3,平均约15m3,目前全国啤酒废水年排放量在2.5亿m3以上。 “七五”以来,我国对啤酒废水的处理工艺和技术进行了大量的研究和探索,特别是轻工业系统的设计院和科研单位,对啤酒废水的处理进行了各方面的试验、研究和实践,取得了行之有效的成功经验,逐渐形成了以生化为主、生化与物化相结合的处理工艺。生化法中常用的有活性污泥法、生物膜法、厌氧 与好氧相结合法、水解酸化与SBR相组合等各种处理工艺。这些处理方法与工艺各有其特点和不足之处,但各自都有较为成功的经验。目前还有不少新的处理方法和工艺优化组合正在试验和研究,有的已取得了理想的成效,不久将应用于实践中。 啤酒废水的主要特点之一是BOD5/COD Cr值高,一般在50%及以上,非常有利于生化处理,同时生化处理与普通物化法、化学法相比较:一是处理工艺比较成熟;二是处理效率高,COD Cr、BOD5去除率高,一般可达80%~90%以上;三是处理成本低(运行费用省)。因此生物处理在啤酒废水处理中,得到了充分重视和广泛采用。现把目前啤酒废水处理中相对比较成熟的生物处理工艺,进行一些阐述和比较。 1处理工艺 1.1处理工艺方案1(见图1) 图1处理工艺方案1 该处理工艺是轻工部设计院为代表的推荐采用方案,河南开封啤酒厂、青岛湖岛啤酒厂、厦门冷冻厂

高浓度含氟废水处理方法

高浓度含氟废水处理方法 字数:1030 来源:中国化工贸易2013年7期字体:大中小打印当页正文摘要:氟化物应用于钢铁、冶金、电子等行业中,因而产生了大量高浓度含氟废水,对人体健康和水环境安全构成威胁。通常在处理含氟废水过程中直接投加石灰作为沉淀剂,石灰投加到水体中后,钙离子会与氟离子发生沉淀反应产生氟化钙,因氟化钙在常温下难溶于水,以达到除氟的目的。本研究采用石灰-氯化钙沉淀,联合处理高浓度含氟废水。考虑到影响石灰去除氟离子的因素较多,如处理温度、PH值、反应时间等,因此本章重点对这些影响因素进行了研究,并得到石灰+氯化钙处理含氟废水工艺的最佳沉降条件,为联合处理工艺提供理论依据。 关键词:氢氟酸氟化钙氯化钙含氟废水去除率 工业含氟废水的大量排放,不仅污染环境,还会危害到农作物和牲畜的生长发育,并且可以通过食物链影响到人体健康。如果长期饮用氟浓度高于1.0mg/L的水,则会引发氟斑牙病、腹泻、氟骨病等中毒现象。因其毒害性之大,对工业含氟废水处理工艺研究,一直是国内外研究者期盼攻克的难关。 一、实验部分 二、实验结果与讨论 1.石灰浓度 从表中可看出,加入30ml与40ml,30%氯化钙溶液处理含氟废水的

去除率为99.98%,表明加入氯化钙已足量。因石灰乳的溶解度较小,不能提供充足的Ca2+与F-结合,使之形成CaF2沉淀,又因为新生成的CaF2微粒不稳定,在常温下其具有一定的溶解度,且通常废水中会含有一些其他阴离子物质,这些都会影响石灰对含氟废水中氟离子的去除率。为提高F-去除率,加入可溶性的氯化钙,该工艺不仅提高了沉淀速度,还增强了去除氟离子的效果。(本文由一体化污水处理设备生产厂家广东春雷环境工程有限公司采编,如有侵权请告知) 5.絮凝剂 由于PAM不能直接去除氟,而是通过其本身的吸附架桥作用,促使溶液中CaF2形成絮凝沉淀,以达到提高沉降速度及沉降性能的目的,从而强化除氟的效果。但与其他因素相比,其起到的作用较小。 三、结论 结果表明,采用石灰+氯化钙沉淀法处理高浓度氢氟酸的最佳沉降条件为在恒温100C反应温度条件下,缓慢滴加石灰乳,当调节溶液PH=8时,并充分搅拌约15分钟,加入适量30%氯化钙溶液至钙离子过量。该含氟废水的氟去除率高达99.98%。 作者简介:李金辉(1982-),男,广东深圳人,学士,助理工程师,主要从事工业废水处理。 侯筱凡(1986-),男,湖北荆门人,学士,助理工程师,主要研究方向为工业废水处理。

垃圾填埋场渗滤液处理方案

垃圾处理场 渗滤液处理工程方案 二〇一六年三月

一、工程概况 1、项目简介 根据《中华人民共和国环境保护法》规定“防止环境污染,保护人民健康,促进经济发展”的原则、国务院(98)253号令《建设项目环境保护设计规定》及有关法规的规定,需对生产和生活垃圾进行有效治理或综合利用。 在睢县城建局领导的高度重视下,以及当地主管部门的关心下,决定对睢县垃圾填埋场垃圾渗滤液进行升级改造,减轻渗漏废水对附近水环境的污染、保护人民身体健康、改善人类的环境卫生条件,使其达到2008年4月2日国家重新颁布的《生活垃圾填埋污染控制标准》(GB16889-2008)版新标准后排放,故提出此方案。 设备采用预处理+硝化+反硝化+MBR+NF+RO处理工艺,配有自控系统装置,有自动切换,报警功能。对垃圾渗滤液设施、设备和工艺进行方案设计,以供各方决策和参考。 为严格遵守有关环境法规,保护环境,本着经济建设和环境保护同步进行的“三同时”原则。我单位受投资者邀请,在进行初步调研,并经多项垃圾渗滤液成功的实践经验的基础上,编制该垃圾填埋场渗滤液设计方案,以供有关部门决策、实施。为了保护水体环境不受垃圾渗滤液影响,针对该垃圾填埋场渗滤液具体水质的特点,本方案拟采用常规的“预处理+硝化+反硝化

+MBR+NF+RO处理”工艺,该处理工艺较为简单,操作运行方便,日常费用低 廉,出水稳定。 2、设计要求: 遵守国家对环境保护、垃圾填埋场渗滤液治理的制定的法规、标准及规范,服从单位的总体规划,执行各种相关的标准和规定;节约能源,最大限度降低运行费用;延长设备的使用寿命。 3、方案设计原则: 1. 水质 工程出水水质必须达到2008年7月1日实施的《生活垃圾填埋场污染控制标准》(GB16889-2008)版新标准表2中的排放限值 2. 设计原则 1)严格执行国家现行的环保技术标准、规范,遵守国家和地方环保的有关 法律、法规及排放标准; 2)选用先进、合理、可靠的处理工艺,在确保处理排放达标的前提下,做 到操作简单、管理方便、占地小、投资省、运行费用低; 3)本工程系环境工程,尤其要注意环境保护,避免和减少二次污染。要求 改善劳动卫生条件,贯彻安全生产和清洁文明生产的方针; 4)为了提高污水处理站管理水平,设计采用PLC程序控制,减轻操作人员 的劳动强度;

染料中间体生产项目环境影响报告书

1.总论 1.1.项目由来 句容市隆鑫试剂厂,总投资800万,占地12000m2。 该厂主要以生产染料中间体为主,年产量1500吨,主要供给印染行业及染料、农药等行业。厂区绿化面积3000m2,职工人数70多名。预计年产值4000-5000万元。 根据《中华人民共和国环境保护法》和《建设项目环境保护管理条例》(国务院98-253号令)中的有关规定,应当在工程项目可行性研究阶段对该项目进行环境影响评价,为此,建设单位于2005年5月委托江苏中瑞咨询有限公司承担该项目环境影响报告书的编制工作。我单位接受委托后,即认真研究该项目的有关材料,并进行了实地踏勘、调研,收集和核实了有关材料,根据《环境影响评价技术导则》的有关要求,编制了环境影响评价报告书。该报告书报请环保主管部门审批后,将作为开展环评工作的指导性文件。 编制依据 国家法律依据 (1)《中华人民共和国环境保护法》; (2)《中华人民共和国水污染防治法》; (3)《中华人民共和国大气污染防治法》; (4)《中华人民共和国固体废物污染环境防治法》; (5)《中华人民共和国环境噪声污染防治法》;

(6)《中华人民共和国清洁生产促进法》; (7)《中华人民共和国环境影响评价法》; 标准及技术规范 (1)《建设项目环境保护管理条例》(国务院98—253号文); (2)江苏省环委会[98]1号文《关于加强建设项目环境保护管理的若干规定》; (3)《江苏省排放污染物总量控制暂行规定》(江苏省政府[1993]第38号令); (4)苏政复(2003)29号文《江苏省地表水环境功能区划》; (5)《环境影响评价技术导则》HJ/~,HJ/; (6)《关于印发〈江苏省排污口设置及规范化整治管理办法〉的通知》(苏环控[97]122号); (7)国经贸资源[2000]1015号文印发《关于加强工业节水工作的意见》的通知; (8)国经贸资源[2001]1017号文印发《关于工业节水“十五”规划》的通知; (9)国家环保总局、国家经济贸易委员会、科学技术部关于发布

啤酒废水处理方法比较(一)

啤酒废水处理方法比较(一) 摘要:随着改革开放的发展,90年代初完整的厌氧技术也在国内啤酒、饮料行业得到应用。这里所说完整的意义在于除厌氧生化技术外,沼气通过自动化系统得到燃烧,这是厌氧系统安全运行和不产生二次污染的重要保证,这也是国内外开发厌氧技术和设备应充分引起重视的问题。厌氧技术的引进与应用能耗节约70%以上。 关键词:啤酒废水SBR法好氧接触新型接触生物接触UASB+SBR法一、前言: 啤酒废水主要来自麦芽车间(浸麦废水),糖化车间(糖化,过滤洗涤废水),发酵车间(发酵罐洗涤,过滤洗涤废水),灌装车间(洗瓶,灭菌废水及瓶子破碎流出的啤酒)以及生产用冷却废水等。 啤酒工业废水主要含糖类,醇类等有机物,有机物浓度较高,虽然无毒,但易于腐败,排入水体要消耗大量的溶解氧,对水体环境造成严重危害。啤酒废水的水质和水量在不同季节有一定差别,处于高峰流量时的啤酒废水,有机物含量也处于高峰。国内啤酒厂废水中:CODcr 含量为:1000~2500mg/L,BOD5含量为:600~1500mg/L,该废水具有较高的生物可降解性,且含有一定量的凯氏氮和磷。 啤酒废水按有机物含量可分为3类:①清洁废水如冷冻机冷却水,麦汁冷却水等。这类废水基本上未受污染。②清洗废水如漂洗酵母水、洗瓶水、生产装置清洗水等,这类废水受到不同程度污染。③含渣废水如麦糟液、冷热凝固物。剩余酵母等,这类废水含有大量有机悬浮

性固体。 二、啤酒废水处理方法: 鉴于啤酒废水自身的特性,啤酒废水不能直接排入水体,据统计,啤酒厂工业废水如不经处理,每生产100吨啤酒所排放出的BOD值相当于14000人生活污水的BOD值,悬浮固体SS值相当于8000人生活污水的SS,其污染程度是相当严重的,所以要对啤酒废水进行一定的处理。 目前常根据BOD5/CODcr比值来判断废水的可生化性,即:当BOD5/CODcr>0.3时易生化处理,当BOD5/CODcr>0.25时可生化处理,当BOD5/CODcr0.3所以,处理啤酒废水的方法多是采用好氧生物处理,也可先采用厌氧处理,降低污染负荷,再用好氧生物处理。目前国内的啤酒厂工业废水的污水处理工艺,都是以生物化学方法为中心的处理系统。80年代中前期,多数处理系统以好氧生化处理为主。由于受场地、气温、初次投资限制,除少数采用塔式生物滤池,生物转盘靠自然充氧外,多数采用机械曝气充氧,其电耗高及运行费用高制约了污水处理工程的发展和限制了已有工程的正常使用或运行。 随着人们对于节能价值和意义的认识不断变化与提高,开发节能工艺与产品引起了国内环保界的重视。1988年开封啤酒厂国内首次将厌氧酸化技术成功的引用到啤酒厂工业废水处理工程中,节能效果明显,约节能30~50%,而且使整个工艺达标排放更加容易和可靠。随着改革开放的发展,90年代初完整的厌氧技术也在国内啤酒、饮料行业得

含氟离子废水处理技术经验

含氟离子废水处理技术 如何除氟离子,钙离子,NH4F受热或遇热水即分解成氨和氟化氢,或分解失去氨转化成更稳定的氟化氢铵。,钙离子,镁离子反应生成沉淀。 按照国家工业废水排放标准,氟离子浓度应小于10?mg/L;对于饮用水,氟离子浓度要求在1?mg /L以下。 含氟离子废水如何处理:对于高浓度含氟工业废水,一般采用钙盐沉淀法,即向废水中投加石灰,使氟离子与钙离子生成CaF2沉淀而除去。该工艺具有方法简单、处理方便、费用低等优点,但存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。 氟化钙在18℃时于水中的溶解度为16.3mg/L,按氟离子计为7.9mg/L,在此溶解度的氟化钙会形成沉淀物。氟的残留量为10~20?mg/L时形成沉淀物的速度会减慢。当水中含有一定数量的盐类,如氯化钠、硫酸钠、氯化铵时,将会增大氟化钙的溶解度。因此用石灰处理后的废水中氟含量一般不会低于20~30?mg/L。 石灰的价格便宜,但溶解度低,只能以乳状液投加,由于生产的CaF2沉淀包裹在Ca(OH)2颗粒的表面,使之不能被充分利用,因而用量大。投加石灰乳时,即使其用量使废水pH达到12,也只能使废水中氟离子浓度下降到15?mg/L左右,且水中悬浮物含量很高。当水中含有氯化钙、硫酸钙等可溶性的钙盐时,由于同离子效应而降低氟化钙的溶解度。含氟废水中加入石灰与氯化钙的混合物,经中和澄清和过滤后,pH为7~8时,废水中的总氟含量可降到10?mg/L左右。 为使生成的沉淀物快速聚凝沉淀,可在废水中单独或并用添加常用的无机盐混凝剂(如三氯化铁)或高分子混凝剂(如聚丙烯酰胺)。为不破坏这种已形成的絮凝物,搅拌操作宜缓慢进行,生成的沉淀物可用静止分离法进行固液分离。在任何pH下,氟离子的浓度随钙离子浓度的增大而减小。在钙离子过剩量小于40 mg/L时,氟离子浓度随钙离子浓度的增大而迅速降低,而钙离子浓度大于100 mg/L时氟离子浓度随钙离子浓度变化缓慢。因此,在用石灰沉淀法处理含氟废水时不能用单纯提高石灰过剩量的方法来提高除氟效果,而应在除氟效率与经济性二者之间进行协调考虑,使之既有较好的除氟效果又尽可能少地投加石灰。这也有利于减少处理后排放的污泥量。 含氟离子废水如何处理:由于氟化物不是废水中唯一要被除去的污染物,因此要根据实际情况选择合适的处理方法。例如含氟废水中溶有碳酸钠、重碳酸钠时,直接投加石灰或氯化钙,除氟效果会降低。这是因为废水中存在着一定量的强电解质,产生盐效应,增加了氟化钙的溶解度,降低除氟效果。其有效的处理方法是先用无机酸将废水pH调到6~8之间,再与氯化钙等反应就可有效地除去氟离子。若废水中含有磷酸根离子,则先用石灰处理至pH大于7,再将沉淀物分离出来。对于成分复杂的含氟废水,可用加酸反调pH法,即首先在废水中加入过量的石灰,使pH=11,当钙离子不足时补加氯化钙,搅拌20 min,然后加盐酸使废水pH反调到7.5~8,搅拌20 min,加入絮凝剂,搅拌后放置30 min,然后底部排泥,上清液排放。 含氟离子废水如何处理:近年来有些研究者提出在投加钙盐的基础上联合使用镁盐、铝盐、磷酸盐等工艺,处理效果比单纯加钙盐效果好。如阎秀芝提出氯化钙与磷酸盐除氟法,其工艺过程是:先在废水中加入氯化钙,调pH至9.8~11.8,反应0.5 h,然后加入磷酸盐,再调pH为6.3~7.3,反应4~5 h,最后静止澄清4~5 h,出水氟质量浓度为5 mg/L左右。钙盐、磷酸盐、氟三者的摩尔比大约为(15~20)∶2∶1。 文献中报道了一种用氯化钙和三氯化铝联合处理含氟水的方法,其工艺过程是:先在废水中投加氯化钙,搅溶后再加入三氯化铝,混合均匀,然后用氢氧化钠调pH至7~8。沉降15 min后砂滤,出水氟离子浓度为4 mg/L。氯化钙、三氯化铝和氟的摩尔比为(0.8~1)∶(2~2.5)∶1。钙盐联合使用镁盐、铝盐、磷酸盐后,除氟效果增加,残氟浓度降低,主要是因为形成了新的更难溶

精细化工中废水处理技术

精细化工中废水处理技术 一、精细化工废水的特点与危害分析 1.1 精细化工废水特点 精细化工废水性质性质独特,与其他化工废水相比,精细化工废水成分更加复杂,且废水中含有高浓度COD、氨氮,处理起来难度较大。结合精细化工废水离子色谱,发现其中包含浓度比较高的金属离子,这与废水内的染料有关,金属离子和染料间发生反应形成金属络合物,进而产生一定色度。 1.2 精细化工废水危害 面对各类污染,自然有着一定的缓解能力,但自然对污染的承受范围是有限的,一旦某种污染超过范围,污染将会给生态环境带来负面影响。精细化工废水中带有超标物质,这些物质严重影响了生态环境。虽然有机物本身没有毒性,但在化工废水中浓度高,甚至超过了水体容量,这将直接对水体生物造成影响。 二、精细化工废水处理技术 2.1 清洁生产技术 近年来,国家在冶金、化工、造纸、石油化工、印染、磷化工等行业启动了清洁生产技术研究课题。铬化工清洁生产技术的研发建成了1万t示范工程,皮革清洁生产技术研发出无铬制革技术和高吸收皮革染色加脂技术。凭借酒精清洁生产技术研发的自絮凝颗粒酵母酒精连续发酵装置、凭借磷酸一铵清洁生产技术研发的20万tMAP工程、凭借冶炼厂尾气乙烯制丙醛技术研发出700t丙醛中试装置,目前我国正在研发亚熔盐技术、生物技术、膜技术、超临界技术等,以期望进一步落实精细化工清洁生产技术,避免废水在生态环境中排放。 2.2 增强生化处理技术 针对精细化工废水采用生化处理技术,应从以下几方面入手: (1)扩大调节池容量,加强对水质和水量的调节与控制,使其保持平衡。 (2)如果废水中盐分浓度较高,建议稀释部分污泥,或者对活性污泥驯化处理。 (3)结合化工生产相关工艺参数,通过调整参数降低废水污染含量。 (4)氧处理之前可以在调节池中加入填料,提升化工废水可生化特性。 (5)如果化工废水中有毒有害物质浓度大,建议处理时使用混合式装置。如果生化处理效率不高,可以加入其它外加剂,改善生化处理效果。 (6)对精细化工废水进行生化处理后,应将其混凝沉淀,将其中的COD成分去除。 2.3 酸类废水处理技术 精细化工废水中有不少酸类废水,对于酸类废水应采取以下处理方式: (1)蒸馏法和蒸发法处理酸类废水。该方法就是向化工废水中倒入甲醇,经过废水的酯化生成甲酸甲酯。甲酸甲酯沸点低,经过加热能够蒸发其中的甲酸。持续加热甲酸甲酯后能够将甲醇回收。 (2)混凝沉降法处理化工废水。判断化工废水pH值,通过对酸碱度的调节,在其中加入混凝土,将废水中有机酸去除。 (3)吸附法和萃取法处理化工废水。应用吸附树脂回收羧酸和其他化学物质。如果化工废水中带有醋酸,可以采用萃取法,利用丁醇将醋酸回收。 (4)沉淀法处理废水。废水中如果带有芳香算或者盐,可以以三价铁盐为沉淀剂,对废水酸碱值加以调节,使其中物质沉淀,过滤后去除沉淀即可。 (5)氧化法处理化工废水。羧酸类化工废水可以应用该方法,比如臭氧氧化与液相氧化。与氧化法相对应的是还原法,当废水处理酸性条件时,炭和铁屑混合后对废水产生微电解反映,将废水发色基团破坏,实现了废水的脱色。

H酸T酸染料中间体合成废水—UAV技术处理方案

H酸T酸染料中间体合成废水处理方案 浙江临海市楚玛尔海水淡化处理设备厂 项目单位Project unit: 承建单位Construction unit: 一、概述: (India)某企业生产H酸染料及反应中间体T酸废水,日总废水量1800吨。 H酸(1-氨基-8-萘酚-3,-6-二磺酸,是重要的萘系染料中间体,主要用于生产直接、酸性、活性染料和偶氮染料中间体,以及,制药中间体合成。H酸的生产工艺以精萘为原料,经磺化、硝化、中和、还原、碱溶和酸析等工序制取。生产中产生高COD、高盐废水,其中有机物主要为H酸和中间体T酸,COD生物降解性差,是国内、外环保处理公认的高难废水之一。 二、废水指标: 三、废水处理量和要求: 1、处理量:1800t/h。 2、处理要求: (1).H酸、T酸分质回收。 (2).硫酸钠、硫酸铵分质回收。

(3).废水回收利用,回用水水质指标: 四、设计处理工艺: (一)、废水主要组分分析: 1.COD:主要由H酸和T酸组成. ①.H酸理化性质:1-氨基-8-萘酚-3,6-二磺酸,相对分子量319,性状:无色晶体,微溶于冷水0.17%(20℃)、2.4%(60℃),溶于纯碱和烧碱等碱性溶液中。 ②.T酸理化性质:科赫酸(1-萘胺-3,6,8-三磺酸),分子量:383.38,性状:白色固体,微溶于水。 2.硫酸钠:性状:无色、透明、结晶颗粒或粉状。分子量142.06 ,溶解度19.5g(20℃)。 3.硫酸铵:性状:无色斜方晶体,白色至淡黄色结晶体。相对密度(水=1):1.77,分子量132.14,溶解度75.4g(20℃)。 (二)、采用工艺和过程分析: 废水首先过滤分离悬浮物,,通过UAV技术进行浓缩,提高COD(即H酸、T酸物质)、硫酸钠和硫酸铵各组分的浓度,然后,依据废水组分溶解度、温度的特性依次进行分离、分质提取,实现废水回收回用,物质资源化回收。 (三)、设计处理量和工艺流程: 设计处理量:100t/h

啤酒废水处理工程技术方案

啤酒废水处理工程技术方案 啤酒废水属于中等浓度有机废水。啤酒废水主要来源于啤酒生产工艺中的洗麦、发酵、糖化、洗瓶等过程。废水中的固形物主要为麦糟、废酵母等;溶解性物质主要为多糖、醇类等有机物。 废水组成分为清洁废水、低浓度废水和高浓度废水:清洁废水包括锅炉蒸汽冷凝水、制冷循环用外排水、给水厂反冲洗水等,约占总废水量的20%;低浓度废水包括酿造车间和包装车间地面冲洗水,洗瓶机、灭菌机废水及生活污水。该废水COD为 100-700mg/L,水量约占总水量的70%;高浓度废水包括滤过洗槽废水、糖化锅、糊化锅冲洗水,贮酒罐前期冲洗水,滤过废藻土泥冲洗水,废酵母、酵母压缩机冲洗水,水量约占总水量的10%。 一般CODcr为1500~2500mg/L, BOD5 为1000~1500mg/L, BOD5 /CODcr的比值为0.5-0.6,表明其可生化性较好,污染物中的有机物容易降解。因此,国内外对啤酒废水一般均采用生物处理方法,其处理工艺有以下3种。 ①调节水解酸化+SBR工艺; ②调节水解酸化+接触氧化工艺; ③UASB工艺+好氧工艺。 上述3种处理工艺技术上都是可行的,处理后的水质都能够达到国家要求的排放标准。 一、建设规模 日产污水量每天为3300m3,设计处理量140 m3/h。 二、设计水质指标 (1) 原水水质指标 CODcr 1500—2000mg/L SS 300—460mg/L BOD5 800-1200mg/L

(2) 处理后要求达到的水质指标 CODcr ≤100mg/L SS ≤70mg/L BOD5 ≤20mg/L 三、设计处理工艺流程 工艺流程图。 四、各处理单元工艺简介 1.格栅初沉池 格栅主要拦截废水中较大漂浮物,沉降废水中的悬浮物(如酒糟、啤酒花及凝聚蛋白)、细小的麦糟和酵母,在进入调节池前分离去除,避免悬浮物在沉淀池、生物接触氧化池中积累,防止超量的悬浮物对已形成的颗粒污泥床的冲击,以保护设备的正常运行,减少后续处理单元负荷。本工程设计水力停留时间为1.5h。 2.调节池 啤酒废水水质水量波动较大,进行水质水量调节是必要的。设计水力停留时间为8h。 3.水解酸化池

酸性含氟工业废水处理方法

酸性含氟工业废水处理方法 我国现行的《污水综合排放标准》(GB8978-1996)规定排放水中F-的质量浓度不超过10mg?L-1,而一般条件下氟化钙的溶解度为8.9mg?L-1,因此,处理含氟工业废水的难度较大,很难稳定地控制出水中F-的质量浓度小于10mg?L-1。 含氟废水的处理方法有多种,国内外常用的方法大致分为两类,即沉淀法和吸附法。目前,对于高浓度含氟工业废水,一般采用钙盐沉淀法,即向废水中投加石灰乳,使氟离子与钙离子生成CaF2沉淀而除去。但该方法处理后出水难达标、泥渣沉降缓慢且脱水困难。絮凝沉淀法及吸附法主要用于中低浓度含氟废水。对于高浓度的含氟废水,为保证出水质量,往往需进行两步处理,先用石灰进行沉淀,使氟含量降低到20~30mg?L-1,继而用吸附剂处理使氟含量降到10mg?L-1以下。 文章结合化学沉淀和絮凝沉淀,在钙盐沉淀的基础上,从配合不同铝盐混凝沉淀以及碱的种类等多种因素上考虑,对福建某化工厂含氟废水进行小试实验,发现采用NaOH调节废水pH,以CaCl2作为沉淀反应剂并辅助PAC的混凝沉淀作用,出水氟离子浓度小于4mg?L-1,达到排放标准,效果稳定。 1试验部分 1.1试剂与仪器 JJ-4六联电动搅拌器,PHS-25型pH计(上海雷磁厂),PXS-270型离子活度计(上海雷磁厂),E-201-C型pH电极,PF-1型氟电极,217型双盐桥甘汞电极。 Ca(OH)2配制成10%乳液,CaCl2、PAC、Al2(SO4)3配制成10%溶液。NaF(分析纯)105℃~l10℃烘干2小时后干燥器中保存,配制成所需的不同浓度的含氟水溶液,用于标定氟离子电极。试验所用废水为福建某化工厂含氟工业废水,该化工厂是集萤石开采、加工、氟化物生产销售为一体的氟化工公司,主要产品有氟化氢、氟化氢铵、氟化铵等氟化盐。 1.2试验方法 取一定量的含氟废水,氟离子浓度为975~1094mg?L-1,pH值2.95~3.23,采用下述方法进行试验: 用Ca(OH)2调节pH值到中性或碱性,反应1h,投加PAC或Al2(SO4)3等混凝剂反应10min,沉淀2h后测定上清液氟离子浓度。 用NaOH调节pH值到中性或碱性,加入CaCl2反应1h,投加PAC作为混凝剂反应10min,沉淀2h后测定上清液氟离子浓度。 2结果及讨论 2.1钙离子浓度对氟离子去除的影响 石灰沉淀法处理工艺运行成本低,是目前使用最多的处理方法。通过投加Ca(OH)2调节废水pH值,同时钙离子与氟离子形成CaF2沉淀,反应1h后,投加PAC作为混凝剂,投加浓度为400mg?L-1,反应10min后沉淀2h,测定上清液氟离子浓度,实验结果如下表所示: 氟离子与钙离子之间的静电引力强,晶格能高,氟化钙的溶解度小。其溶度积为Ksp=4×10-11(25℃)。 2F-+Ca2+一CaF2↓

垃圾渗滤液废水处理

垃圾渗滤液废水来源 在垃圾的的卫生填埋过程中,由于压实、降水和微生物的分解等作用,会从垃圾层中渗出一定量的高浓度废液,与其填埋场内渗入的地表水和渗出的地下水、共同形成垃圾渗滤液。它的产生主要来源于三个方面:分别是大气降水和径流,垃圾中本身含有一定量的水分,而且也会因为有机物的分解产生一定量的水分,但垃圾渗滤液的主要来源还是降水,也就是说,特定场合的垃圾填埋场内渗滤液的量的多少主要与气候变化,水文条件和季节交替变化有关。 1. 垃圾渗沥液的特性 渗沥液成分取决于垃圾成分、填埋时间、气候条件、填埋场设计等多种因素。一般来说,垃圾渗沥液具有如下特性: 1)水质复杂,危害性大。张兰英等人采用G-MS-DS联用技术鉴定出垃圾渗沥液中有93种有机化合物,其中22种被列入我国和美国EPA环境优先控制污染物的黑名单中。此外,渗沥液中还含有10多种金属和植物营养素(氨氮等),水质成分十分复杂。 2)CODCr和BOD5浓度高。特别是在垃圾填埋场运行初期,垃圾渗沥液中的CODCr 最高达到90000mg/L,BOD5最高达到38000mg/L,和城市污水相比,浓度极高。显然这就要求其处理构筑物的有机负荷率高,水力停留时间长构筑物容积大。 3)金属含量高。垃圾渗沥液中含有10多种金属离子,其中铁2050mg/L,铅12.3mg/L,锌370mg/L,钾、钠2500mg/L,钙甚至高达4300mg/L。生物处理系统中如金属离子含量过高,对微生物有强烈抑制作用,长时间运行,会导致污泥中的无机物含量增加,影响系统正常运行,故须先调pH值使重金属离子沉淀。 4)氨氮含量高、含盐量高。氨氮浓度随填埋时间的增加而相应增加,最高可达1700mg/L,渗沥液中的氮多以氨氮形式存在,约占TKN40%~50%。如此高浓度的氨氮,使微生物营养元素比例严重失调,仅靠硝化细菌和反硝化细菌脱氮不仅不能去除,反而会影响处理系统的正常运行,因此,在渗沥液进入生化处理前常需用物化法脱氮,渗沥液中的盐主要为氯化物(100~4000mg/L)和磷酸盐(9~1600mg/L),若在缺水地区需对渗沥液回收利用时,应对其脱盐处理。 5)色度深且有恶臭,需考虑脱色处理,臭味给运行操作带来困难。 6)微生物营养元素比例失调。垃圾渗沥液通常有机物和氨氮含量高,而磷元素较为缺乏,其C/P比较大,C/N比较小,NH3-N含量过高。加上碱度高,对厌氧消化不利。磷元素的缺乏也影响系统的稳定。因此,处理工艺中需在生化前进行脱氮处理,并往往需向系统投加磷等营养元素。

生活垃圾填埋场渗滤液处理综述.

某城镇生活垃圾填埋场渗滤液处理工艺设计综述 郑世超 (四川理工学院材料与化学工程学院,四川自贡 643000) 摘要本文分析了填埋场渗滤液的现状,介绍了渗滤液处理的几种主要工艺,对比了好氧法、厌氧法、好氧-厌氧法、物理化学法、土地处理法及回灌技术处理渗滤液的特点,分析了综合工艺处理渗滤液的优势,描述了国内外填埋场渗滤液处理技术及其运用的现状及趋势。 关键词生活垃圾填埋场渗滤液 ABR SBR 1生活垃圾填埋场渗滤液现状 1.1渗滤液产生背景 随着我国城市化进程的加快,城镇数目不断增加,城市规模日益扩大(我国现有建制市668座,包括县城在内的中小城镇则达3万多座),人口也急剧增长,直接导致城镇生活垃圾大幅度增长,而垃圾处理设施、处理资金却面临很大的缺口,呈现垃圾包围城市的局面。垃圾问题已成为制约我国城镇发展的重要因素。 作为垃圾处理过程的副产品,渗滤液问题已严重影响我国垃圾处理事业的健康发展。现有的垃圾处理设施中,包括填埋场、焚烧场、垃圾中转站、堆场以及堆肥场都将产生大量的渗滤液。目前我国城市生活垃圾的新鲜渗滤液年产量约2900万吨,可控点源排放的渗滤液为1515万吨,如果加上填埋场/堆场历年垃圾产生的渗滤液,则其年产量估计为新鲜渗滤液的数倍,而lt渗滤液约相当于100t城市污水所含污染物的浓度。生活垃圾填埋场渗滤液一方面通过填埋场地向下渗透,随着时间延长,当填埋场底下的土壤对大部分有机污染物吸附达到饱和时,污染物会沿着地下水流向作扇形扩散,造成了对地下水的污染。另一方面经垃圾填埋场导流管引流出来的渗滤液,往往没有经过完全的处理就直接用于农田灌溉或排入江河湖泊。随渗滤液进入河流或农田的各种有机污染物、无机污染物,会使水生生物和农作物受到污染,并通过食物链和生态环境对人体健康产生危害。但到目前为止,适合我国国情、符合“高效、低耗”处理标准的渗滤液处理工艺仍处于研发阶段,渗滤液问题已成为垃圾产业化进程的“瓶颈”,严重威胁了垃圾处理设施周围环境的安全及居民的健康生活[1]。 1.2渗滤液水质分析 垃圾渗滤液是指从垃圾填埋场中渗出的黑棕红色水溶液,当垃圾含水47%时,每吨垃圾可产生0.0722t渗滤液[2]。填埋场渗滤液的来源有直接降水、

啤酒厂废水处理之欧阳光明创编

毕业设计开题报告

UASB成功处理高浓度啤酒废水的关键是培养出沉降性能良好的厌氧颗粒污 泥。颗粒污泥的形成是厌氧细菌群不断繁殖、积累的结果,较多的污泥负荷有利于细菌获得充足的营养基质,故对颗粒污泥的形成和发展具有决定性的促进作用;适当高的水力负荷将产生污泥的水力筛选,淘汰沉降性能差的絮体污泥而留下沉降性能好的污泥,同时产生剪切力,使污泥不断旋转,有利于丝状菌互相缠绕成球。此外,一定的进水碱度也是颗粒污泥形成的必要条件,因为厌氧生物的生长要求适当高的碱度。碱度不足,所以需投加工业碳酸钠或氧化钙加以补充。研究表明[4,12],在 UASB启动阶段,保持进水碱度不低于1000 mg.L-1对于颗粒污泥的培养和反应器在高负荷下的良好运行十分必要。 总之,UASB具有效能高,处理费用低,电耗省,投资少,占地面积小等一系列优点,完全适用于高浓度啤酒废水的治理。其不足之处是出水CODcr的浓度仍达500 mg.L-1左右,需进行再处理或与好氧处理串联才能达标排放。 三、可行性研究 该啤酒厂废水处理站的设计处理水量为6000m3/d。 ⑴各生产部门的废水经混合后,进水水质:CODcr =1500~1800mg/L, BOD5=950~1100 mg/L L,SS =500-700mg/L; ⑵处理后,执行城镇污水处理厂污染物排放一级B类标准: 20mg/L,SS 20mg/L。 CODcr 60 mg/L,BOD 5 ⑶生产区废水自流入污水处理站,废水管道水面标高按-0。50m考虑,处理后的废水通过埋地管道排出。 ⑷该地区夏季主导风向为南风。 根据污水的特点:(1)废水以有机污染物为主,BOD/COD=0。633〉0。3,可生化性好,重金属及其他难以生物降解的有毒有害污染物一般不超标;(2)废水中主要污染物指标BOD、、COD、SS都值都不高,属中等啤酒厂废水;(3)本课题污水处理量小,在达到污水处理要求的前提下,应着重考虑工程占地面积和污水处理费用的节省。 按《城市污水处理和污染防治技术政策》要求推荐,大于20 万t/d 规模大型污水厂一般采用常规活性污泥法工艺,10-20 万t/d 污水厂可以采用常规活性污泥法、氧化沟、SBR、AB 法等工艺,小型污水厂还可以采用生物滤池、水解好氧法工

含氟废水处理

1 化学沉淀法 对于高浓度含氟工业废水,一般采用钙盐沉淀法,即向废水中投加石灰,使氟离子与钙离子生成CaF2沉淀而除去。该工艺具有方法简单、处理方便、费用低等优点,但存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。 氟化钙在18 ℃时于水中的溶解度为16.3 mg/L,按氟离子计为7.9 mg/L,在此溶解度的氟化钙会形成沉淀物。氟的残留量为10~20 mg/L时形成沉淀物的速度会减慢。当水中含有一定数量的盐类,如氯化钠、硫酸钠、氯化铵时,将会增大氟化钙的溶解度。因此用石灰处理后的废水中氟含量一般不会低于20~30 mg/L[6]。石灰的价格便宜,但溶解度低,只能以乳状液投加,由于生产的CaF2沉淀包裹在Ca(OH)2颗粒的表面,使之不能被充分利用,因而用量大。投加石灰乳时,即使其用量使废水pH达到12,也只能使废水中氟离子浓度下降到15 mg/L左右,且水中悬浮物含量很高[7]。当水中含有氯化钙、硫酸钙等可溶性的钙盐时,由于同离子效应而降低氟化钙的溶解度。含氟废水中加入石灰与氯化钙的混合物,经中和澄清和过滤后,pH为7~8时,废水中的总氟含量可降到10 mg/L左右。为使生成的沉淀物快速聚凝沉淀,可在废水中单独或并用添加常用的无机盐混凝剂(如三氯化铁)或高分子混凝剂(如聚丙烯酰胺)。为不破坏这种已形成的絮凝物,搅拌操作宜缓慢进行,生成的沉淀物可用静止分离法进行固液分离。在任何pH下[8],氟离子的浓度随钙离子浓度的增大而减小。在钙离子过剩量小于40 mg/L时,氟离子浓度随钙离子浓度的增大而迅速降低,而钙离子浓度大于100 mg/L时氟离子浓度随钙离子浓度变化缓慢。因此,在用石灰沉淀法处理含氟废水时不能用单纯提高石灰过剩量的方法来提高除氟效果,而应在除氟效率与经济性二者之间进行协调考虑,使之既有较好的除氟效果又尽可能少地投加石灰。这也有利于减少处理后排放的污泥量。 由于氟化物不是废水中唯一要被除去的污染物,因此要根据实际情况选择合适的处理方法。例如含氟废水中溶有碳酸钠、重碳酸钠时,直接投加石灰或氯化钙,除氟效果会降低。这是因为废水中存在着一定量的强电解质,产生盐效应,增加了氟化钙的溶解度,降低除氟效果。其有效的处理方法是先用无机酸将废水pH调到6~8之间,再与氯化钙等反应就可有效地除去氟离子。若废水中含有磷酸根离子,则先用石灰处理至pH大于7,再将沉淀物分离出来。对于成分复杂的含氟废水,可用加酸反调pH法[9],即首先在废水中加入过量的石灰,使pH=11,当钙离子不足时补加氯化钙,搅拌20 min,然后加盐酸使废水pH反调到 7.5~8,搅拌20 min,加入絮凝剂,搅拌后放置30 min,然后底部排泥,上清液排放。 在投加钙盐的基础上联合使用镁盐、铝盐、磷酸盐等工艺,处理效果比单纯加钙盐效果好。如氯化钙与磷酸盐除氟法,其工艺过程是:先在废水中加入氯化钙,调pH至9.8~11.8,反应0.5 h,然后加入磷酸盐,再调pH为6.3~7.3,反应4~5 h,最后静止澄清4~5 h,出水氟质量浓度为5 mg/L左右。钙盐、磷酸盐、氟三者的摩尔比大约为(15~20)∶2∶1。另一种用氯化钙和三氯化铝联合处理含氟水的方法,其工艺过程是:先在废水中投加氯化钙,搅溶后再加

相关文档
相关文档 最新文档