文档库 最新最全的文档下载
当前位置:文档库 › 天体运动的典型问题

天体运动的典型问题

天体运动的典型问题
天体运动的典型问题

天体运动的典型问题

一、 万有引力定律应用的两个基本式

1. 匀速圆周运动---万有引力提供向心力

2. 万有引力等于重力(忽略天体的自转)

【例1】土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动。其中有两 个岩石颗粒A 和B 与土星中心距离分别为r A =8.0×104km 和r B =1.2×105km 。忽略所有岩石颗粒间的相互作用。(结果可用根式表示)(1)求岩石颗粒A 和B 的线速度之比;(2)求岩石颗粒A 和B 的周期之比;(3)土星探测器上有一物体,在地球上重10N ,推算出它在距土星中心3.2×105km 处受到土星引力为0.38N 。已知地球半径为6.4×103km,请估算土星

质量是地球质量的多少倍?

[解析](1)设土星质量为M0,颗粒质量为m ,颗粒距土星中心距离为r ,线速度为v ,根据牛顿第二定律和万有引力定律: 解得: 对于A 、B 两颗粒分别有:

(2)设颗粒绕土星做圆周运动的周期为T ,则: 对于A 、B 两颗粒分别有:

(3)设地球质量为M ,地球半径为r0,地球上物体的重力可视为万有引力,探测器上物体质量为m0,在地球表面重力为G0,距土星中心r0'=3.2×105km 处的引力为G0' 根据万有引力定律: 二、近地卫星、同步卫星和在赤道上随地球的自转做匀速圆周运动的物体三个匀速圆周运动

的比较

(一)近地卫星:所谓近地卫星指的是卫星的半径等于地球的半径,卫星做匀速圆周运动的向心力是万有引力。它的运行速度为第一宇宙速度,也是卫星的最大绕行速度。 (二)同步地球卫星(定周期.定高度.定轨道)

(1)卫星运动周期和地球自转周期相同 (T=24h=8.64×104s); (2)卫星的运行轨道与地球的赤道平面共面; (3)卫星距地面高度有确定值(约3.6×107m). 卫星距地面的高度: 可解得: h ≈3.6×107m = 3.6 ×104km 。--为一定值 (三)在赤道上随地球的自转做圆周运动的物体: 在赤道上随地球的自转做匀速圆周运动的物体是地球的一部分,它不是地球的卫星,因此充当向心力的力是物体所受万有引力与重力之差。

【例2】同步卫星离地心距离为r ,运行速率为v1,加速度为a1,地球赤道上物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径为R ,则(AD)

三、同步卫星的发射

地面→近地轨道(停泊轨道)→转移轨道→同步轨道

n

ma r T

m r m r v m r Mm G ====222)2(πω22: gR GM mg R Mm G ==即)()(h R M G g h R mM G mg h

h

+=+=得r mv

r m GM 2

2

0=r GM v 0=

2600=

==B A B B A A v v r GM v r GM v ,得和v

r

T π2=9

6

2:22===B

A B

B

B

A

A

A

T T v

r T v r T 得和ππ(倍)得而 95:

00

000=='=M r m GM G r GMm G 2)(4)(T h R m h R Mm G +=+π由R T gR R GMT h -=-=3

2

2

23

2

244ππ2

11

22

11

22

A. B.C. D.a a r R a R a r

v v r v R v ===

【例3】、b 、c 是地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是: A.b 、c 的线速度大小相等且大于a 的线速度

B .b 、c 的向心加速度大小相等,且大于a 的向心加速度

C.c 加速可追上同一轨道上的b,b 减速可等候同一轨道上的c

D.a 卫星由于某种原因轨道半径缓慢减小,其线速度将增大

卫星的稳定运行和变轨运动 【拓展】发射地球同步卫星时, 先将卫星发射至近地圆轨道1, 然后经点火, 使其沿椭圆轨道2运行, 最后再一次点火, 将卫星送入同步轨道3. 轨道1、2相切于Q 点, 轨道2、3相切于P 点, 如图所示, 则当卫星分别在1、

2、3轨道上正常运行时, 以下说法正确的是(BD )

四、双星问题

双星运动是宇宙中一种运动形式,它们的运动特征是:(1)由它们之间相互作用的万有引力提供向心力.两星的向心力大小相等.(2)绕共同圆心转动且两者间距不变.两星的角速度相等. 【例4】宇宙中两颗相距较近的天体称为“双星”, 它们以两者连线上的某一点为圆心做匀速圆周运动, 而不至于因万有引力的作用吸引到一起. (1)试证它们的轨道半径之比、线速度之比都等于质量之反比.(2)设两者的质量分别为m1和m2, 两者相距L, 试写出它们角速度表达式.

1

2 3

P

Q

3

21)

(L m m G

双星与多星问题

双星与多星问题 双星模型 1?模型构建 在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同 的匀速圆周运动的行星称为双星。 2?模型条件 ① 两颗星彼此相距较近。 ② 两颗星靠相互之间的万有引力做匀速圆周运动。 ③ 两颗星绕同一圆心做圆周运动。 3?模型特点 如图所示为质量分别是 m i 和m 2的两颗相距较近的恒星。 它们间的 距离为L.此双星问题的特点是: (1) 两星的运行轨道为同心圆,圆心是它们之间连线上的某一点。 ⑵两星的向心力大小相等,由它们间的万有引力提供。 (3)两星的运动周期、角速度相同。 ⑷两星的运动半径之和等于它们间的距离,即 r i + r 2= L. 4. 双星问题的处理方法 双星间的万有引力提供了它们做圆周运动的向心力,即 5. 双星问题的两个结论 (1)运动半径:m i r i = m 2",即某恒星的运动半径与其质量成反比。 .一.十匕、★一 ,一 2 冗 ____,一..一—、十一 4 #L 3 ⑵质量之和:由于 3=〒,「i + r 2= L,所以两恒星的质量之和 m i + m 2 =石尹° 【示例i 】20I6年2月ii 日,美国科学家宣布探测到引力波,证实了爱因斯坦 I00年前的 预测,弥补了 爱因斯坦广义相对论中最后一块缺失的 拼图”双星的运动是产生引力波的来源之一,假设宇宙中有一双星 系统由 a 、b 两颗星体组成, 这两颗星绕它们连线的某一点在万有引力作用下做匀速圆周运动,测得 a 星的 周期为 T, a 、b 两颗星的距离为1, a 、b 两颗星的轨道半径之差为 Ar(a 星的轨道半径大于 b 星的轨道半径), 则( ) I — Ar B.a 星的线速度大小为 n I + Ar A"星的周期为| + Ar 1 T 规律总结 Gm i m 2 2 2 ―L2~ = m i 32门=m 2 32 r 2。 C.a 、b 两颗星的半径之比为 D.a 、b 两颗星的质量之比为 I + I —

专题:天体运动的三大难点破解3 剖析宇宙中的双星、三星模型(讲义)

重点:1. 根据万有引力定律求解双星、三星模型的周期,线速度等物理量; 2. 双星、三星两种模型的特点。 难点:双星、三星模型的向心力来源。 一、双星模型 绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示,双星系统模型有以下特点: (1)各自需要的向心力由彼此间的万有引力相互提供 即 221L m Gm =m 1ω21r 1,2 2 1L m Gm =m 2ω2 2r 2; (2)两颗星的周期及角速度都相同 即T 1=T 2,ω1=ω2; (3)两颗星的半径与它们之间的距离关系为 r 1+r 2=L ; (4)两颗星到圆心的距离r 1、r 2与星体质量成反比 即 1 2 21r r m m =; (5)双星的运动周期 T =2π) (213 m m G L +; (6)双星的总质量公式 m 1+m 2=G T L 23 24π。 二、三星模型 第一种情况:三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R 的圆轨道上运行。 特点:1. 周期相同; 2. 三星质量相同; 3. 三星间距相等; 4. 两颗星做圆周运动的向心力相等。

原理:A 、C 对B 的引力充当向心力,即:, 可得: Gm R T 543 π =,同理可得线速度:R GmR 25。 第二种情况:三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行。 特点:1. 运行周期相同; 2. 半径相同; 3. 质量相同; 4. 所需向心力相等。 原理:B 、C 对A 的引力的合力充当向心力,即: r T m R Gm F 2222430cos 2π==? 合,其中R r 33=, 可得:运行周期Gm R R T 32π=。 例题1 如图,质量分别为m 和M 的两颗星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L 。已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。引力常数为G 。 (1)求两星球做圆周运动的周期。 (2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期为T 2。已知地球和月球的质量分别为5.98×1024kg 和7.35 ×1022kg 。求T 2与T 1两者平方之比。(结果保留3位有效数字) 思路分析:(1)A 和B 绕O 做匀速圆周运动,它们之间的万有引力提供向心力,则A 和B 的向心力相等。且A 和B 和O 始终共线,说明A 和B 有相同的角速度和周期。因此有 ,,连立解得,。 对A 根据牛顿第二定律和万有引力定律得, 化简得:。 (2)将地月看成双星,由⑴得。 将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得 。 化简得:。 所以两种周期的平方比值为 R M r m 22ωω=L R r =+L M m m R += L M m M r +=L m M M T m L GMm +=22)2(π) (23 m M G L T +=π) (23 1m M G L T +=πL T m L GMm 2 2 )2(π=GM L T 3 22π=01.110 98.51035.71098.5)(24 22 24212=??+?=+=M M m T T

(完整版)天体运动知识点

第二讲天体运动 一、两种对立的学说 1.地心说 (1)地球是宇宙的中心,是静止不动的;太阳、月亮以及其他行星都绕_地球运动; (2) 地心说的代表人物是古希腊科学家__托勒密__. 2.日心说 (1)__ 太阳_是宇宙的中心,是静止不动的,所有行星都绕太阳做__匀速圆周运动__; (2)日心说的代表人物是_哥白尼_. 二、开普勒三大定律 行星运动的近似处理 在高中阶段的研究中可以按圆周运动处理,开普勒三定律就可以这样表述: (1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心; (2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星做匀速圆周运动; (3)所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即r3 T2=k. 三、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做__匀速圆周__运动.太阳对行星的引力,就等于行星做_匀速圆周_运动的向心力. 2.太阳对行星的引力:根据牛顿第二定律F =m v2r 和开普勒第三定律r3T2∝k 可得:F∝___m r 2__.这表明:太阳对 不同行星的引力,与行星的质量成___正比_,与行星和太阳间距离的二次方成___反比___. 3.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F′∝_M r 2 4.太阳与行星间的引力:根据牛顿第三定律F =F′,所以有F∝Mm r 2_,写成等式就是F =_ G Mm r 2__. 四、万有引力定律 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.公式: F=G Mm r 2 (1)G 叫做 引力常量 , (2)单位:N ·m2/kg2 。在取国际单位时,G 是不变的。 (3)由卡文迪许通过扭秤实验测定的,不是人为规定的。 3.万有引力定律的适用条件 (1)在以下三种情况下可以直接使用公式F =G m1m2 r2 计算: ①求两个质点间的万有引力:当两物体间距离远大于物体本身大小时,物体可看成质点,公式中的r 表示两质点间的距离. ②求两个均匀球体间的万有引力:公式中的r 为两个球心间的距离. ③一个质量分布均匀球体与球外一个质点的万有引力:r 指质点到球心的距离. (2)对于两个不能看成质点的物体间的万有引力,不能直接用万有引力公式求解,切不可依据F =G m1m2 r2得出r→0 时F→∞的结论而违背公式的物理含义. 内容 理解 开普勒第一定律 所有行星绕太阳运动的轨道都 是椭圆,太阳处在椭圆的一个上。 开普勒第一定律又叫轨道定律. 某个行星在一个固定平面的轨道上运动。 不同行星的运动轨道是不同的。 开普勒第二定律 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等. 开普勒第二定律又叫面积定律. 行星运动的速度是在变化的,近日点速率最大,远日点速率最小。 开普勒第三定律 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比 值都相等 表达式 a 3T 2 =k 第三定律也叫周期定律 K 与中心天体的质量有关,与行星的质量无关。 如果围绕着同一个恒星运动,对于所有行星而言,K 是相同的。如果围绕着不同的恒星,K 不同。 此公式使用于所有天体。

(完整word版)天体运动中的追及相遇问题

天体运动中的追及相遇问题 信阳高中陈庆威2013.09.17 在天体运动的问题中,我们常遇到一些这样的问题。比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。 而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。 根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。 一、追及问题 【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 ①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远? 解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力 ,因此T1

果A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内,A 比B 多转了 π。所以再次相距最近的时间t 1,由;第一次相 距最远的时间t 2,由。如果在问题中把“再次” 或“第一次”这样的词去掉,那么就变成了多解性问题。 【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。地球的轨道半径为R ,运转周期为T 。地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。若某时刻该行星正好处于最佳观察期,问该行星下一次处于最佳观察期至少需经历多长时间? 解析:由题意可得行星的轨道半径θsin R r = 设行星绕太阳的运行周期为T /,由开普勒大三定律有: 23 23T r T R ' =,得:θ3sin T T =' 绕向相同,行星的角速度比地球大,行星相对地球 θ θπππω33sin )sin 1(222T T T -=-'=? 某时刻该行星正好处于最佳观察期,有两种情况:一是 刚看到;二是马上看不到,如图3所示。到下一次处于最佳观察期至少需经历时间分别为 两者都顺时针运转:T t ?--=?-= ) sin 1(2sin )2(2331θπθ θπωθπ 两者都逆时针运转: T t ?-+=?+= )sin 1(2sin )2(2332θπθ θπωθπ 二、相遇问题 【例3】设地球质量为M ,绕太阳做匀速圆周运动,有一质量为m 的飞船由静止 开始从P 点沿PD 方向做加速度为a 的匀加速直线运动,1年后在D 点飞船掠过地球上空,再过3个月又在Q 处掠过地球上空,如图4所示(图中“S ”表示太阳)。根据以上条件,求地球与太阳之间的万有引力大小。 视角 太阳 行星 图2 太阳 行星 地球 图3 θ θ

高中物理天体运动多星问题

双星模型、三星模型、四星模型 天体物理中的双星, 三星,四星,多星系统是自然的天文现象,天体之间的相互作用 遵循万 有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、 三星系统的等效质量的计算, 运行周期的计算等都是以万有引力提供向心力为出发点的。 双 星系统的引力作用遵循牛顿第三定律: F F ,作用力的方向在双星间的连线上,角速度 相等,1 2 。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系 统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。 已知某 双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为 T ,两颗 恒星之间的距离为r ,试推算这个双星系统的总质量。(引力常量为 G ) 【解析】:设两颗恒星的质量分别为 m 、m ,做圆周运动的半径分别为 r i 、「2,角速度分别 为3 1、3 2。根据题意有 r i r 2 r 根据万有引力定律和牛顿定律,有 6曹2 m 1w 2r 1 r 联立以上各式解得 根据解速度与周期的关系知 1 联立③⑤⑥式解得 m 1m 2 G 12 2 r 2 m|W 1 * r 1 m 2r mi m 2

【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体, 探寻黑洞的 方案之一是观测双星系统的运动规律 .天文学家观测河外星系大麦哲伦云 时,发现了 LMCX3双星系统,它由可见星 A 和不可见的暗星 B 构成,两星视 为质点,不考虑其他天体的影响 .A 、B 围绕两者连线上的 0点做匀速圆周运动,它们之间的 距离保持不变,如图 4-2所示.引力常量为G,由观测能够得到可见星 A 的速率v 和运行周 期T. ⑴ 可见星A 所受暗星B 的引力F a 可等效为位于 0点处质量为m 的星体(视为质点)对它的 引力,设A 和B 的质量分别为 m 、m ,试求m (用m 、m 表示). (2) 求暗星B 的质量皿与可见星A 的速率V 、运行周期T 和质量m 之间的关系式; (3) 恒星演化到末期,如果其质量大于太阳质量 m 的2倍,它将有可能成为黑洞?若可见星A 的速率v=x 105 m/s ,运行周期T=nX 104 s ,质量m=6m ,试通过估算来判断暗星 B 有可能 是黑洞吗 (G=x 10-11 N ?m 2/kg 2, m=x 1030 kg ) m i m 2 T 2G 解析:设 A B 的圆轨道半径分别为 ,由题意知, B 做匀速圆周运动的角速度相同, 设其为点。由牛顿运动定律,有 F A F B m 2 r 2 , F A F B 设A B 间距离为 广,则r r 1 由以上各式解得r m m 2 m 2 由万有引力定律,有 m 1m 2 F A G_V r 3 尸 一 m 1 m 2 ,代入『得F A G 1 2 2 2 (m m ) r 入 一gm 令F A G 冷,通过比较得m 「1 3 m 2 (m 1 m 2)2 (2)由牛顿第二定律,有 r 2 V m, 一 A

(完整版)天体运动总结

天体运动 总结 一、处理天体运动的基本思路 1.利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即G Mm r 2=ma ,其中a =v 2r =ω2r =(2π T )2r ,该组公式可称为“天上”公式. 2.利用天体表面的物体的重力约等于万有引力来求解,即G Mm R 2=m g ,gR2=GM ,该公式通常被称为黄金代 换式.该式可称为“人间”公式. 合起来称为“天上人间”公式. 二、对开普勒三定律的理解 开普勒行星运动定律 1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不 同的星系中,此比值是不同的.(R 3 T 2=k ) 1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小. 3.开普勒第三定律的表达式为a 3 T 2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关. 三、开普勒三定律的应用 1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转. 2.表达式a 3 T 2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太 阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关. 四、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力 2.万有引力的三个特性 (1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力. (2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律. (3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.

物理必修二天体运动各类问题

天体运动中的几个“另类”问题 江苏省靖江市季市中学范晓波 天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。 如有必要,可结合黄金代换式简化运算过程。不过,还有几类问题仅依靠 基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。 一、变轨问题 例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测 量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、 表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则() A.,, B.,, C.,, D.,, 分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨 道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加的数 值超过原先减少的数值。所以、,又由可知。 解:应选C选项。 说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。 卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。 以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力, 要使卫星改做圆周运动,必须满足和,而在远点明显成立,所以 只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。 二、双星问题 例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线 速度。 分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。但两者做匀速圆周运动的半径不相等。

天体运动和万有引力总结

精心整理 天体运动总结 1. 开普勒三定律 1.1所有绕太阳运动的行星轨道都是椭圆,太阳在椭圆的一个焦点上(后简化为所有轨道都是圆,太阳在圆心上),注意:第一定律只是描述了一个图像,并没有需要计算的东西,而且太阳究竟在哪个焦点上还得看第二定律 1.2对于某一颗行星来说,它的扫面速度是恒定的。这句话也可以说成是:离太阳越近,速度越大。这是判断近日点远日点的根据。 第二定律有个计算是研究近日点远日点速度与到太阳距离关系的。 ab 2.m 1的错误,将会直接导致后面计算错误。 C.万有引力的方向肯定在两物体之间的连线上而指向对方 D.甲对乙的引力和乙对甲的引力是一对作用力反作用力 2.2万有引力的规律 2.2.1从公式上来看,当两个物体质量一定时,万有引力随着距离的增大而减小,并且 和距离的“平方”成反比。所以一定要养成这样的意识,距离是原来n 倍,力就 变为原来的n 2分之一倍,或者,力变为原来的n 分之一倍,倍。这样会缩短做题时间,一般做题的时候不要在这方面浪费时间。 2.2.2地球对地球表面的物体都有吸引力,这个力就表现在重力上,但要清楚,重力只

是万有引力的一个分力。可以这么想:万有引力首先得提供物体由于随地球自转 而所需的向心力,剩下来的那部分就是重力。这样就需要注意,向心力指向自转 轴,所以重力就不能指向地心了。又由于这个向心力很小,所以重力很接近万有 引力。当然,地球不同纬度所需向心力是不同的,赤道所需向心力最大,两极点 不需要向心力,所以赤道表面的重力加速度最小,两极点重力加速度最大。 2.2.3一个物体受到另一个物体的吸引力和第三个物体无关,所以太空中一个物体所受 吸引力应为所有其他物体对它的吸引力的矢量和,只不过我们现在所考虑的都是 吸引力最大的那个力(其他的引力比起这个引力小的不是一点半点)。不过也有例 外情况,最常见的就是在地球和月球的连线上,肯定会有那么一个点,使得地球 和月球对这一点上的物体的吸引力大小相等方向相反。 3.天体运动 参阅八大行星的公转周期。 3.4关于开普勒第三定律 上面三个公式推导过程都是用了万有引力提供向心力,从 2 2 2 Mm G m r r T π ?? = ? ?? 可知: 3 22 4 r GM Tπ =,只要中心天体质量M一样,那么轨道半径的三次方和周期平方只比就 是固定值,这也就是为什么第三定律在应用时必须绕同一中心天体。 其实我们可以推导出这样的定律: 对于所有绕同一中心天体运动的行星来说,轨道半径的三次方与角速度的平方的乘积是固定值

(完整版)天体运动中的追及相遇问题

天体运动中的追及相遇问题 信阳高中 陈庆威 2013.09.17 在天体运动的问题中,我们常遇到一些这样的问题。比如, A 、B 两物体都 绕同一中心天体做圆周运动,某时刻 A 、B 相距最近,问 A 、B 下一次相距最近或 最远需要多少时间,或“至少”需要多少时间等问题。 而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在 思维有上一些相似的地方, 即必须找出各相关物理量间的关系, 但它也有其自身 特点。 根据万有引力提供向心力, 即当天体速度增加或减少时, 对应的圆周轨道就 会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相 遇。天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂, 成为 同学们学习中的难点。 而解决此类问题的关键是就要找好角度、 角速度和时间等 物理量的关系。 、追及问题 【例 1】如图 1所示,有 A 、B 两颗行星绕同一颗恒星 M 做圆周运动,旋转方向相 同, A 行星的周期为 T 1,B 行星的周期为 T 2,在某一时刻两行星相距最近,则 ①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远? 有达到一周,但是要它们的相距最近,只有 A 、B 行星和恒星 M 的连线再次在一 条直线上,且 A 、B 在同侧,从角度上看,在相同时间内, A 比 B 多转了2π; 如 解析:A 、B 两颗行星做匀速圆周运动 ,由 万有引力提供向心力 B 还没

果 A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内, A 比 B 多转了 距最远的时间 t 2,由 。如果在问题中把“再次” 或“第一次”这样的词去掉,那么就变成了多解性问题。 【例 2】 如图 2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。 地球的轨道半径为 R ,运转周期为 T 。地球和太阳中心的连线与地球和行星的连 线的夹角叫地球对行星的观察视角(简称视角)。已知该行星的最大视角为θ, 当行星处于最大视角处时, 是地球上天文爱好者观察该行星的最佳时期。 若某时 刻该行星正好处于最佳观察期, 问该行星下一次处于最佳观察期至少需经历多长 时间? 解析: 由题意可得行星的轨道半径 r Rsin 设行星绕太阳的运行周期为 T / ,由开普勒大三定律有: 二、相遇问题 【例 3】设地球质量为 M ,绕太阳做匀速圆周运动,有一质量为 m 的飞船由静止 开始从 P 点沿PD 方向做加速度为 a 的匀加速直线运动, 1年后在 D 点飞船掠过地 球上空,再过 3个月又在 Q 处掠过地球上空,如图 4所示(图中“ S ”表示太阳) 根据以上条件, 求地球与太阳之间的万有引力大小。 π。所以再次相距最近的时间 太阳 R 3 T 2 3 T r 2 ,得:T T sin 3 绕向相同, 行星的角速度比地球大,行星相对地球 2 2 (1 sin 3 ) 行星 视角 地球 图2 T T sin 3 某时刻该行星正好处于 最佳观察期, 刚看到;二是马上看不到 , 如图 3 所示。 观察期至少需经历时间分别为 有两种情况: 到下一次处于最佳 两者都顺时针运转: t 1 2 ) sin 3 ?T 3 2 (1 sin 3 ) 两者都逆时针运转: t 2 ( 2 ) sin 3 ?T 2 (1 sin 3 ) 太阳 行星 θθ 地球 图3 t 1, ;第一次相

天体运动常见问题总结解析

问题9:会讨论重力加速度g 随离地面高度h 的变化情况。 例15、设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球 的引力作用而产生的重力加速度g ,,则g/g , 为 A 、1; B 、1/9; C 、1/4; D 、1/16。 分析与解:因为g= G 2 R M ,g , = G 2)3(R R M +,所以g/g , =1/16,即D 选项正确。 问题10:会用万有引力定律求天体的质量。 通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。 例16、已知地球绕太阳公转的轨道半径r=1.49?1011 m, 公转的周期T= 3.16?107 s,求太阳的质量M 。 分析与解:根据地球绕太阳做圆周运动的向心力来源于万有引力得: G 2r Mm =mr(2π/T)2 M=4π2r 3/GT 2=1.96 ?1030 kg. 例17 、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。求该星球的质量M 。 分析与解:设抛出点的高度为h,第一次平抛的水平射程为x,则有 x 2+h 2=L 2 由平抛运动规律得知,当初速度增大到2倍时,其水平射程也增大到2x,可得 (2x )2+h 2=(3L)2 设该星球上的重力加速度为g ,由平抛运动的规律得: h= 2 1gt 2 由万有引力定律与牛顿第二定律得: mg= G 2R Mm 联立以上各式解得M=2 2 332Gt LR 。 问题11:会用万有引力定律求卫星的高度。 通过观测卫星的周期T 和行星表面的重力加速度g 及行星的半径R 可以求出卫星的高度。 例18、已知地球半径约为R=6.4?106 m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约 m.(结果只保留一位有效数字)。 分析与解:因为mg= G 2R Mm ,而G 2 r Mm =mr(2π/T)2

天体运动相关问题处理

天体运动 开普勒行星运动三定律 引力势能 机械能守恒定律 动量守恒 1.根据行星绕日做椭圆运动(开普勒第一定律)的面积速度为恒量(开普勒第二定律),试证明各行星绕日 运行的周期T 与椭圆轨道的半长轴a 之间的关系为C T a =23 (开普勒第三定律),并求出常量C 的表达式。 2.要发射一颗人造地球卫星,使它在半径为2r 的预定轨道上绕地球做匀速圆 周运动,为此先将卫星发射到半径为1r 的近地暂行轨道上绕地球做匀速圆周运动,如图所示,在A 点,实际上使卫星速度增加,从而使卫星进入一个椭圆的转移轨道上,当卫星到达转移轨道的远地点B 时,再次改变卫星速度,使它进入预定轨道运行,试求卫星从A 点到达B 点所需的 时间,设万有引力恒量为G ,地球质量为M 。 3.质量为m 的飞船在半径为R 的某行星表面上空高R 处绕行星作圆周运动,飞船在A 点短时间向前喷气,使飞船与行星表面相切地到达B 点,如图所示。设喷气相对飞船的速度大小 为Rg u =,其中g 为该行星表面处的重力加速度。(1)试求飞船在A 点短时 间喷气后的速度;(2)求所喷燃料(即气体)的质量。

4.天文学家在16世纪就观测到了哈雷彗星,天文资料显示:哈雷彗星的近日距为0.59天文单位,远日距为3 5.31天文单位(1天文单位 = 地日距离R ,),地球公转速率为km/s 30。试根据以上资料求: (1)哈雷彗星的回归周期为多少年; (2)哈雷彗星的最大速率v 是多少。 5.卫星沿圆周轨道绕地球运行,轨道半径R r 3=,其中地球半径km 6400=R 。由于制动装置短时间作用,卫星的速度减慢,使它开始沿着与地球表面相切的椭圆轨道运动,如图所示。问:制动后经过多少时间卫星落回到地球上? 6.宇宙飞船在距火星表面H 高度处作匀速圆周运动,火星半径为R ,今设飞船在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原速度的a 倍,因a 量很小,所以飞船新轨道不会与火星表面交会,如图所示,飞船喷气质量可忽略不计。 (1)试求飞船新轨道的近火星点的高度近h 和远火星点高度远h ; (2)设飞船原来的运动速度为0v ,试计算新轨道的运行周期T 。 7.地球m 绕太阳M (固定)做椭圆运动,已知轨道半长轴为a ,半短轴 为b ,如图所示,试求地球在椭圆各顶点1,2,3的运动速度的大小及其曲 率半径。

高中物理复习 双星问题,天体追击

一、双星问题 1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、 周期相同的匀速圆周运动的恒星称为双星。 2.模型条件: (1)两颗星彼此相距较近。 (2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。 (3)两颗星绕同一圆心做圆周运动。 3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。 (2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。 (3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2 推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。 (4)巧妙求质量和:Gm1m2 L2 =m1ω2r1① Gm1m2 L2 =m2ω2r2②由①+②得: G m1+m2 L2 =ω2L ∴m1+m2= ω2L3 G 4. 解答双星问题应注意“两等”“两不等” (1)“两等”: ①它们的角速度相等。②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。 (2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。 ②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。 二、多星模型 (1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同. (2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示). ②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示). (3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙). ②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示). 三、卫星的追及相遇问题 1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律: 内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。 2、某星体的两颗卫星从相距最近到相距最远遵从的规律: 内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为π的奇数倍。 3、对于天体追及问题的处理思路: (1)根据GMm r2 =mrω2,可判断出谁的角速度大;

天体运动总结

天体运动总结 一、处理天体运动的基本思路 1利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即GM2m I ma其中a= V 2 =w2r = ( 丁)},该组公式可称为天上"公式. r T 2. 利用天体表面的物体的重力约等于万有引力来求解,即G R2 = mg, gR2= GM该公式通常被称为黄金代换式. 该 式可称为人间”公式. 合起来称为天上人间”公式. 二、对开普勒三定律的理解 开普勒行星运动定律 1. 所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2. 对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3. 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不 同的星系中,此比值是不同的.(T2=k) 1 .开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2. 行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动, 速度减小,在远日点速度最小. 3 3. 开普勒第三定律的表达式为旱=k,其中a是椭圆轨道的半长轴,T是行星绕太阳公转的周期,k 是一个常 量,与行星无关但与中心天体的质量有关. 三、开普勒三定律的应用 1 .开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转. 3 a 常数k只与太2.表达式T2= k中的常数k只与中心天体的质量有关.如研究行星绕太阳运动时, 阳的质量有关,研究卫星绕地球运动时,常数k只与地球的质量有关. 四、太阳与行星间的引力 1. 模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星 间的引力 2. 万有引力的三个特性 (1) 普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在 着这种相互吸引的力. (2) 相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律.

天体运动中的双星问题

天体运动中的双星问题 1.我们的银河系的恒星中大约四分之一是双星。某双星是由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。由天文观察 测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G。由此 可求出S2的质量为 C. D. 2.经长期观测人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线速度远小于两个星体之间的距离,而且双星系统一般远离其他天体。如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期 相同的匀速圆周运动。现测得两颗星之间的距离为L,质量之比为m1︰m2=3︰2。则可 知 A.m1︰m2做圆周运动的角速度之比为2︰3 B.m1︰m2做圆周运动的线速度之比为3︰2 C.m1做圆周运动的半径为 D.m 2做圆周运动的半径为 3.月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成 的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。据此观点,可知月球与地球 绕O点运动的线速度大小之比约为 A 1∶6400 B 1∶80 C 80∶1 D 6400∶1 8.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线 上某点O做匀速圆周运动,由此可知,冥王星绕O点运动的 A C.线速度大小约为卡戎的7倍 D.向心力大小约为卡戎的7倍 11.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O 的两侧。引力常数为G。 求两星球做圆周运动的周期; 1、设想把质量为m的物体,放到地球的中心,地球的质量为M,半径为R,

万有引力定律与天体运动知识总结

万有引力定律与天体运动知识总结 一、开普勒行星运动定律 1) 轨道定律:近圆,太阳处在圆心(焦点)上 2) 面积定律:对任意一个行星来说, 它与太阳的连线在相等的时间内扫过的面积相等。 K= k 取决于中心天体 3) 周期定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值相等。 k= ,[r 为轨道半径] 二、万有引力定律 F 引=2r Mm G G=6.67×10-11Nm 2/kg 2 卡文迪许扭秤 测量出来 三、重力加速度 1. 星体表面:F 引≈G =mg 所以:g = GM/ R 2(R 星体体积半径) 2. 距离星体某高度处:F ’引 ≈G’ =mg ’ 3. 其它星体与地球 重力加速度的比值 四、星体(行星 卫星等)匀速圆周运动 状态描述 1. 假设星体轨道近似为圆. 2. 万有引力F 引提供星体圆周运动的向心力Fn F n =r m v 2 F n=22T mr 4π F n = m ω2r Fn=F 引 r m v 2=2r Mm G =2 2T mr 4π = m ω2r r GM v =,r 越大,ν越小; 3r GM =ω,r 越大,ω越小 GM r T 3 24π=,r 越大,T 越大。 23 T a 23T r

3. 计算中心星体质量M 1) 根据 g 求天体质量 mg= M= M 为地球质量,R 为物体到地心的距离 2 )根据环绕星体的圆周运动状态量, F 引=Fn 2r Mm G =22T mr 4π M= (M 为中心天体质量,m 为行星(绕行天体)质量 4. 根据环绕星体的圆周运动状态量(已知绕行天体周期T ,环绕半径≈星体半径), 计算中心星体密度ρ ρ=v m =323R GT r 3π [v=3r 34π] 若r≈R ,则ρ=2GT 3π 5. 计算卫星最低发射速度 (第一宇宙速度VI = (近地)= (r 为地球半径 黄金代换公式) 第一宇宙速度(环绕速度):s km v /9.7=; 第二宇宙速度(脱离速度,飞出地月系):s km v /2.11=; 第三宇宙速度(逃逸速度,飞出太阳系):s km v /7.16=。 6. 人造卫星上失重的现象 分析卫星上某物体受合力及圆周运动的状态 F 万 – N = m v 2/r 物体视重 N= F 万 - m v 2/r ( r=R 地 + h ) ∵F 万 = m v 2/r ∴ N=0 即卫星在围绕地球做圆周运动时,它上面物体处于失重状态 7. 同步卫星升轨,全球通信 8. 其它功能人造卫星: 1)全球定位系统 GPS ,由24颗卫星组成 分布在6个轨道平面 2)人造月球卫星 G 2 23 2GT r 4πr GM

天体运动变轨问题.doc

变轨问题——金榜教育 1.(安徽省皖南八校2011 届)我国“嫦娥二号" 探月卫星于2010 年 10 月成功发射。在“嫦娥 二号”卫星奔月过程中,在月球上空有一次变轨过程,是由椭圆轨道 A 变为近月圆形轨道 B ,A 、 B .两轨道相切于P 点,如图所示.探月卫星先后沿 A 、 B 轨道运动经过P 点时,下列说法正确的是 A .卫星运行的速度v A= v B B .卫星受月球的引力F A =F B C.卫星的加速度a A >a B D .卫星的动能 E kA

宇宙中的双星及多星问题

【宇宙中的双星及多星问题】 宇宙中,因天体间的相互作用而呈现出诸如双星、三星、四星及多星系统组成的自然天文现象,天体之间相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运 动的三条基本规律。 现代实验观测表明,在天体运动中,将两颗彼此距离较近而绕同一点做圆周运动的行星称为双星模型。而三星、四星等多星模型则是指彼此相互依存和相互作用且围绕某一点作圆周运动的行星。多星系统问题的求解方法仍然是建立万有引力方程和牛顿第二定律方程。由于多星间的引力和运动情况特殊性,从而产生了很多有趣的天文现象。 一、双星问题 近年来,天文学家们发现,大部分已知恒星都存在于双星甚至多星系统中。双星对于天体物理尤其重要,因为两颗星的质量可从通过观测旋转轨道确定。这样,很多独立星体的质量也可以推算出来。 在银河系中,双星的数量非常多,估计不少于单星。研究双星,不但对于了解恒星形成和演化过程的多样性有重要的意义,而且对于了解银河系的形成和演化,也是一个不可缺少的方面。双星系统具有如下特点: (1)它们以相互间的万有引力来提供向心力。 (2)它们共同绕它们连线上某点做圆周运动。 (3)它们的周期、角速度相同。 例题1:(2013?山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别 围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n 倍,DC运动的周期为() 解:设m 1的轨道半径为R 1 ,m 2 的轨道半径为R 2 .由于它们之间的距离恒定,因此双星 在空间的绕向一定相同,同时角速度和周期也都相同.由向心力公式可得:

相关文档
相关文档 最新文档