文档库 最新最全的文档下载
当前位置:文档库 › DSP实验三和实验四

DSP实验三和实验四

DSP实验三和实验四
DSP实验三和实验四

实验三离散时间系统及响应

[实验目的]

1、熟悉离散时间系统的时域和频域分析方法。

2、掌握稳定系统性的判别。

3、掌握利用MATLAB求解零极状态、差分方程和频率响应的方法。

[实验仪器]

计算机、Matlab6.5(或更高版本)软件

[实验参考书] :自编实验指导书

与本实验有关的MA TLAB函数:

1. conv.m用来实现两个离散序列的线性卷积。其调用格式是:y=conv(x,h)

2.filter.m求离散系统的输出y(n) 。若系统的h(n) 已知,可用conv.m文件可求出y(n) ;若系统的H(z) 已知,可用filter可求出y(n),调用格式是:

y=filter(b, a, x);%其中x, y, a 和b都是向量。

3.impz.m在H(z) 已知情况下, 求系统的单位抽样响应h(n)。调用格式是:

h = impz(b, a, N)

[h,t]=impz(b,a,N)

N是所需的的长度。前者绘图时n从1开始,而后者从0开始。

4.freqz.m在H(z) 已知情况下, 求系统的频率响应。基本的调用格式是:

[H,w]=freqz(b,a,N,'whole',Fs)

N是频率轴的分点数,建议N为2的整次幂;w是返回频率轴座标向量,绘图用;Fs是抽样频率,若Fs=1,频率轴给出归一化频率;’whole’指定计算的频率范围是从0~FS,缺省时是从0~FS/2.

5.zplane.m文件可用来显示离散系统的极-零图。其调用格式是:

zplane(z,p), 或zplane(b,a),

前者是在已知系统零点的列向量z和极点的列向量p的情况下画出极-零图,后者是在仅已知H(Z)的A(z)、B(z) 的情况下画出极-零图。

[实验内容]

1、序列的卷积运算。下例是一个指数函数的卷积,结果如图所示。

clear all;

fs=20;

n =0:49;

x=exp(-n/fs);

subplot(211),stem(x)

y=conv(x,x);

subplot(212);stem(y);grid;

05101520253035404550

仿照上例,现在假设存在两个序列,()[,,,,,,]

h n=54321,利用计

x n=9121041215()[,,,,]

算出两者的卷积,并画出图形。

2、时域离散系统和系统响应分析。输入下列程序,观察实验结果。 N=16; n=0:N-1; %定义抽样的长度

x=sin(2*pi*n/64)+sin(20*pi*n/64);%输入序列

a=[1 -0.25]; b=[0.5 0.45 0.35]; %b 和a 分别是系统函数分子和分母多项式系数 subplot(221); zplane(b,a);%画出系统的零极点图 y=filter(b,a,x); %求系统的响应

subplot(222 );stem(n,y) ; %画出系统响应的火柴杆图 [H,w]=freqz(b,a) ; %求出系统的频率响应H MagH=abs(H); %系统的幅频特性

Subplot(223);plot(w/pi,MagH); %画出系统的幅频特性 PhaseH=angle(H); %系统的相频特性

Subplot(224);plot(w/pi,PhaseH); %画出系统的相频特性 仿照此程序,完成下面问题的编程。

(1) 已知描述两个系统的系统函数分别为

-1-2-3-4-1-2-3-4

0.001836+0.007344z +0.011016z +0.007374z +0.001836z ()1-3.0544+3.8291z -2.2925z +0.55075z H z =

1

-1-2-3-4-1-2-3-4

0.001836+0.007344z +0.011016z +0.007374z +0.001836z ()0.4-3.0544+3.8291z -2.2925z +0.55075z H z =

1

a. 确定系统的稳定性

提示:零极点是分析系统频率响应的有力工具之一,在MALAB 中用zplane( )函数画出

零点极点图,对于本例,利用零极点图分析系统是否稳定(分别画出两个系统的零极点图,说明其是否稳定)。

b. 假定输入为长度为100的矩形序列,试求出其对两系统的输出,绘出相应的图形。进一步说明输入有界,输出是否有界。

提示:对于系统求解,在MATLAB 中可以调用filter( )函数完成。 (2)一个特定的线性和时不变系统,描述它的差分方程如下:

)3()1(2)()2(25.0)1(5.0)(-+-+=-+--n x n x n x n y n y n y

a. 如果此系统的输入为)()]6.0sin(4)2.0cos(35[)(n u n n n x ππ++=。在1000≤≤n 间求出)(n y 的响应。

b. 图示系统的频率特性

提示:使用freqz()函数求解系统的频率特性,幅度响应A=abs(H),相位响应P=angle(H) 3、求下列两个序列的频谱,包括幅度谱和相位谱,分别画出相应的图形。比较这两者的区别和联系

()[,,,,,,,]()[,,,,,,,]h n h n ==124321123412344321

提示:本题按离散傅立叶变换(DFT )实现,DFT 是数字信号处理中最重要的变换之一。其MATLAB 实现方法可以根据其定义式实现,也可以采用其矩阵形式式实现(实际中均以快速算法FFT 方法实现)。下面给出其两种实现的MATLA 文件。 ①、以定义形式实现

%在此输入时域序列,可以采用直接输入的形式,也可采用在运行M 文件后在交互窗口输 %入的形式:xn=input(‘请输入序列x(n):’); N=length(xn);%获得输入序列的长度

X=zeros(1,N);%定义信号谱序列X及长度

for k=0:N-1

for n=0:N-1

X(k+1)=X(k+1)+xn(n+1)*exp(-j*2*pi*n*k/N);%按定义式计算序列的DFT

end;

end;

②、以矩阵形式实现

x n=input(‘请输入序列x(n):’);

N=length(xn);

n=0:N-1;

k=n;

nk=n’*k;

WN= exp(-j*2*pi/N).^nk;

Xk=xn*WN;

[思考题]

1、对于一个离散时间系统,如何利用零极点图分析系统是否稳定?

2、试说明DTFT的理论分析与实验运算上的区别。

3、实验2中,信号的DTFT一个周期为7个点,相当于单位圆上多远距离取一个值?如果要修改一个周期内的抽样点数,怎么实现?

实验四利用FFT和CZT对信号进行频谱分析

[实验目的]

1、加深对离散傅立叶变换(DFT)算法原理和性质的理解

2、掌握离散傅立叶变换DFT的MATLAB实现,理解DFT的频谱泄漏和分辨率问题。

3、熟悉FFT算法原理和FFT子程序的应用

4、掌握应用FFT对典型信号进行频谱分析的方法。

5、掌握应用FFT实现两个序列的线性卷积的方法。

[实验仪器]

计算机、Matlab6.5(或更高版本)软件

[实验参考书] :自编实验指导书

[原理简介]

本实验是对信号的频谱或功率谱进行分析。为了了解信号的特点和频谱分布,可以通过对信号进行谱分析,计算出信号的幅度谱、相位谱和功率谱来实现。信号的谱分析可以用DFT(FFT)来实现。

在运用DFT进行频谱分析的过程中可能产生三种误差:

(1)混叠

序列的频谱时被采样信号的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。

谱分析中的参数选择;

A 若已知信号的最高频率c f ,为防止混叠,选定采样频率s f :

c s f f 2≥ (1) B 根据实际需要,选定频率分辨f ?,一但选定后,即可确定FFT 所需的点数N

f f N s ?=/ (2)

我们希望f ?越小越好,但f ?越小,N 越大,计算量、存储量也随之增大。一般取

N 为2的整次幂,以便用FFT 计算,若已给定N ,可用补零方法便N 为2的整次幂。

C s f 和N 确定后,即可确定所需相应模拟信号)(t x 的长度

s s NT f N T ==/ (3) 分辨率f ?反比于T ,而不是N ,在给定的T 的情况下,靠减小s T 来增加N 是不能提高分辨率的,因为s NT T =为常数。

(2) 泄漏

实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT 来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。为了减少泄漏的影响,可以选择适当的窗函数使频谱的扩散减至最小。

(3) 栅栏效应

DFT 是对单位圆上Z 变换的均匀采样,所以它不可能将频谱视为一个连续函数,就一定意义上看,用DFT 来观察频谱就好像通过一个栅栏来观看一个图景一样,只能在离散点上看到真实的频谱,这样就有可能发生一些频谱的峰点或谷点被“尖桩的栅栏”所拦住,不能别我们观察到。减小栅栏效应的一个方法就是借助于在原序列的末端填补一些零值,从而变动DFT 的点数,这一方法实际上是人为地改变了对真实频谱采样的点数和位置,相当于搬动了每一根“尖桩栅栏”的位置,从而使得频谱的峰点或谷点暴露出来。 用FFT 计算线性卷积

用FFT 可以实现两个序列的圆周卷积。在一定的条件下,可以使圆周卷积等于线性卷积。一般情况,设两个序列的长度分别为N1和N2,要使圆周卷积等于线性卷积的充要条件是FFT 的长度:N ≥N1+N2-1

对于长度不足N 的两个序列,分别将他们补零延长到N 。

当两个序列中有一个序列比较长的时候,我们可以采用分段卷积的方法。有两种方法: ? 重叠相加法。将长序列分成与短序列相仿的片段,分别用FFT 对它们作线性卷积,再将分段卷积各段重叠的部分相加构成总的卷积输出。

? 重叠保留法。这种方法在长序列分段时,段与段之间保留有互相重叠的部分,在构成总的卷积输出时只需将各段线性卷积部分直接连接起来,省掉了输出段的直接相加。 [实验内容]

实验中用到的信号序列

a) Gaussian 序列

2

()

,015()0n p q d e n x n --??≤≤=???

b) 衰减正弦序列

s i n (2),0

()0

an b e fn

n x n π?≤≤?=?

??

c) 三角波序列

1,03()8470

c n n x n n n ?+≤≤?

=-≤≤???

d) 反三角波序列

403()3470

d n n x n n n -≤≤??

=-≤≤???

e )余弦序列和

()cos(0.48)cos(0.52)e x n n n ππ=+

实验例程:

1、设x(n)是由两个正弦信号及白噪声叠加而成,试用 快速傅立叶变换(FFT )对其进行频谱分析。实验程序 clear all;

% 产生两个正弦加白噪声;

N=256; f1=.1;f2=.2;fs=1; a1=5;a2=3; w=2*pi/fs;

x=a1*sin(w*f1*(0:N-1))+a2*sin(w*f2*(0:N-1))+randn(1,N); % 应用FFT 求频谱;

subplot(3,1,1); plot(x(1:N/4)); f=-0.5:1/N:0.5-1/N; X=fft(x); y=ifft(X);

subplot(3,1,2); plot(f,fftshift(abs(X))); subplot(3,1,3); plot(real(x(1:N/4))); 运行结果:

2、设x(n)是由三个实正弦信号组成,频率分别为8,8.22,9Hz Hz Hz ,抽样频率为40HZ ,时域取128点,试用DFT 和CZT 对其进行频谱分析。

实验程序:

% 构造三个不同频率的正弦信号的叠加作为试验信号

N=128; f1=8;f2=8.22;f3=9;fs=40; stepf=fs/N;

n=0:N-1;

t=2*pi*n/fs;

n1=0:stepf:fs/2-stepf;

x=sin(f1*t)+sin(f2*t)+sin(f3*t);

M=N; W=exp(-j*2*pi/M);

% A=1时的czt变换

A=1; Y1=czt(x,M,W,A);

subplot(311); plot(n1,abs(Y1(1:N/2)));grid on;

% DTFT

Y2=abs(fft(x));

subplot(312); plot(n1,abs(Y2(1:N/2)));grid on;

% 详细构造A后的czt

M=60; f0=7.2; DELf=0.05;

A=exp(j*2*pi*f0/fs);

W=exp(-j*2*pi*DELf/fs);

Y3=czt(x,M,W,A);

n2=f0:DELf:f0+(M-1)*DELf;

subplot(313);plot(n2,abs(Y3));grid on;

运行结果:

应用给定序列,根据实验例程,完成下面实验。

1.观察高斯序列的时域和幅频特性,固定信号x a(n)中参数p=8,改变q的值,使q分别等于2,4,8,观察它们的时域和幅频特性,了解当q取不同值时,对信号序列的时域幅频特性的影响;固定q=8,改变p,使p分别等于8,13,14,观察参数p变化对信号序列的时域及幅频特性的影响,观察p等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。

2.观察衰减正弦序列x b(n)的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f,使f分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现位置,有无混叠和泄漏现象?说明产生现象的原因。

3. 观察三角波和反三角波序列的时域和幅频特性。用N=8点FFT分析信号序列xc(n)和xd(n)的幅频特性,观察两者的序列形状和频谱曲线有什么异同?绘出两序列及其幅频特

性曲线。在x c (n)和x d (n)末尾补零,用N=16点FFT 分析这两个信号的幅频特性,观察幅频特性发生了什么变化?

要求:将 N=8和16时两个序列的幅度谱分别画在两个窗口中,以对比其谱的异同,进一步理解DFS 与DFT 的关系。方法是使用figure 和subplot 函数。

4.关于正弦信号抽样的实验研究。 (1)、给定正弦信号00()sin(2),50x t f t f Hz π==。现对其进行抽样,设抽样点数N=16,给定抽样频率100s f Hz =,求出()x n 并计算()X k ,观察得到的()x n 和()X k ,然后用

PARSEV AL 定理(1

1

2

2

1

|()||()|

N N n k x n X k N --===

∑∑)研究其泄漏情况,

(2)、取200,16s f Hz N ==时,在抽样点后再补N 个零,观察32点DFT 的频谱。

5. 高密度和高分辨率谱研究(栅栏效应)

(1)考虑序列()e x n ,求出它基于有限个样本的频谱。

a. 当09n ≤≤时,确定并画出x (n )的离散时间傅利叶变换。

b. 当099n ≤≤时,确定并画出x (n )的离散时间傅利叶变换。 (2)设)(~

1n x 的基本周期N=50,它的一个周期由下式给出:

?????≤≤≤≤=-49260250,)(~3.01n n ne n x n ,,

?????≤≤≤≤=-99260250,)(~3.02n n ne n x n ,

)

(~2n x 的基本周期N=100,它的一个周期由下式给出:这两个周期序列的区别在于它们的周期,但它们具有相同的非零样本。

a.求出)(~1n x 的DFS )(~1n X ,用stem 函数画出它的幅度样本。

b.求出

)(~2

n x 的DFS

)

(~2

n X ,用stem 函数画出它的幅度样本。

6.CZT 算法研究。给定信号3

1

()sin(2)i

i x t f t π==

∑,已知1

10.8f

Hz =,211.75f Hz =,

312.25f Hz =,令40s f Hz =,对()x t 抽样后得x(n),令N=64。

(1)、利用MATLAB 的FFT 和CZT 函数,求X (k )及其幅度谱,这时/0.625s f f N Hz ?==,观察三个谱峰的分辨情况。

(2)、利用MATLAB 的CZT 函数,按如下赋值:

参数:040,64,60,8,0.12s f Hz N M f Hz f Hz ====?=,

求出(),0,1,1X k k M =- ,画出幅度谱,并和(1)的结果比较,说明CZT 的特点。 7.用FFT 分别实现x a (n)(p =8,q =2)与x b (n)(a =0.1,f =0.0625)的16点圆周卷积和线性卷积。

8.用FFT 分别实现x a (n)(p =8,q =2)的自相关函数。

9.产生一个512点的随机序列,将其分成8段,分别用重叠保留法和重叠相加法实现x n作线性卷积。

与()

c

[思考题]

1、实验3中两序列在N=8时的幅频特性是否相同,为什么?N=16呢?这些变化说明了什么?

2、结合实验中所得的给定序列的幅频特性曲线,与理论结果比较,并分析说明误差产生的原因及用FFT作谱分析时有关参数的选择方法。

3、通过试验,总结对正弦信号抽样应掌握的原则,分析补零对频谱的影响。

4、提示:用FFT作频谱分析时,分辨率主要由哪些因素决定?

5、通过试验结果说明高密度频谱与高分辨率频谱之间的区别。

6、根据实验结果,说明CZT相对于FFT更具有哪些优点?

【含源代码】北邮dsp-MATLAB实验三梳状滤波器的应用

Dsp-matlab实验 实验三:梳状滤波器的应用 设 计 报 告 课题名称:梳状滤波器的应用 学生姓名: 班级: 班内序号: 学号: 日期:2015/06/15

目录 一、实验内容········································· 二、Matlab运行结果(含分析)································· 三、Matlab源代码···························· 四、遇到的难题与解决方法···························· 参考文献·························································

一、实验内容 录制一段自己的话音,时间长度及取样频率自定;对该段声音加入一次反射、三次反射和无穷多次反射。试验报告要求: 1、对试验原理的说明; 回声往往是原始声音衰减后的多个延迟叠加而组成的,因此回声可以用延迟单元来生成。X(n)表示原始声音信号,α为衰减系数,N为延迟周期,回声信号Y(n)=X(n)α*x(n-T)+α^2*x(n-2T)+……+α^N*x(n-NT). Z变换后的系统函数H(Z)可由梳状滤波器实现。MATLAB filter函数可用来仿真差分方程,本次实验用的就是这个函数。 2、在同一张图上,绘制原声音序列() x n、加入一次反射后的声音序列 1() x n、加入三次反射后的声音序列 3() x n和加入无穷多次反射后的声音序列() I x n;

其中蓝色为原声音序列x(n),粉红色为加入一次反射后的声音序列 x1(n),绿色为加入三次反射后的声音序列x3(n),红色为加入无穷多次反射后的声音序列x ∞(n)。 二、Matlab 运行结果(含分析)· 结合上述各序列,分析延时、衰减系数对回声效果的影响(提示:定量考察序列()x n 、1()x n 、3()x n 和()I x n 之间的区别) 延时不变时,衰减系数a 从零增大到1的过程中,回声效果由差变好再变差。a 很小时几乎听不到回声,a 在0.5±0.1时回声效果最明显,a 接近1时声音变得很不清晰,几乎不可识别。衰减系数不变时延时T 从零增大的过程中回声效果由差变好再变差。T 接近0时可以听到回声,但多次回声的层次感不清晰。0.1s1s 三、Matlab 源代码· >> [x,fs]=audioread('a.wav');sound(x,fs);a=0.6;T=0.2; y1=filter([1,zeros(1,T*fs-1),a],1,x);sound(y1,fs);wavwrite(y1,fs,'echo1.wav'); y2=filter([1,zeros(1,T*fs-1),a,zeros(1,T*fs-1),a^2,zeros(1,T*fs-1),a^3],1,x); sound(y2,fs);wavwrite(y2,fs,'echo2.wav');y3=filter(1,[1,zeros(1,T*fs-1),a],x);sound(y3,fs);wavwri te(y3,fs,'echo3.wav');plot(y3,'m'); hold on;plot(y2,'r'); hold on;plot(y1,'g');hold on;plot(x,'b'); 四、遇到的难题与解决办法 最开始遇到的问题是matlab 软件安装问题,因为电脑环境的特殊性尝试了多次才成功; 在建模过程中发现对实验原理因为学习时间过长有些不熟悉,于是翻书查阅复习,熟悉实验原理; 在实验过程中因为粗心,忘记保存,没有打符号等等之类问题使系统开始报错,细心调试之后成功建模

互换性与技术测量实验报告

《互换性与技术测量》实验报告 机械工程基础实验室 技术测量室编 年级 班级 姓名 实验名称及目录: 实验一、尺寸测量 实验1—1、轴的测量 实验1—2、孔的测量 实验二、形位误差测量 实验2—1、直线度误差的测量 实验2—2、平行度误差、平面度误差测量 实验三、表面粗糙度测量、螺纹测量 实验3—1、表面粗糙度的测量 实验3—2、螺纹中径、螺距及牙形半角的测量实验四、齿轮测量 实验4—1、直齿圆柱齿轮公法线的测量 实验4—2、直齿圆柱齿轮齿厚偏差的测量

一、实验目的 三、被测零件: 四、测量示意图: 七、测量数据分析并判断被测零件是否合格; 八、思考题: 1、用立式光学计测量塞规属于什么测量方法? 2、绝对测量和相对测量各有什么特点? 3、什么是分度值?刻度间距? 4、仪器的测量范围和刻度尺的示值范围有何不同?

一、实验目的 三、被测零件: 四、测量示意图:六、测量数据记录:(单位:mm) 七、测量数据分析并判断被测零件是否合格; 八、思考题: 1、用内径千分尺和内径量表测量孔的直径是,各属于哪种测量方法? 2、内径量表测量孔时“转折点”意味着什么?一旦“零位”确定,百分表指针超过“零 位”发生转折,示值为正还是负?百分表指针不过“零位”发生转折,示值为正还是负? 3、组合量块组的原则是什么?

实验报告:直线度误差的测量(形状公差的测量) 一、实验目的: 二、实验仪器: 四、测量示意图:(要求画出简单的仪器的测量原理图和被测面的测量截面图) 六、作图:分别用最小区域法和两端点连线法求直线度误差值,并作出合格性结论。 七、思考题: 1、以本实验为例,试比较按最小区域法和两端点连线法评定的直线度误差值何者更合理? 2、用作图法求直线度误差值时,如前所述,总是按平行于纵坐标计量,而不是按垂直于两条平行包容直线的距离计量,原因何在?

DSP实验报告

一、综合实验内容和目的 1、实验目的 (1) 通过实验学习掌握TMS320F28335的浮点处理; (2) 学习并掌握A/D模块的使用方法; (3) 学习并掌握中断方式和查询方式的相关知识及其相互之间的转换; (4) 学习信号时域分析的方法,了解相关电量参数的计算方法; (5) 了解数字滤波的一些基本方法。 2、实验内容 要求1:对给定的波形信号,采用TMS320F28335的浮点功能计算该信号的以下时域参数:信号的周期T,信号的均方根大小V rms、平均值V avg、峰-峰值V pp。 其中,均方根V rms的计算公式如下: V= rms 式中N为采样点数,()u i为采样序列中的第i个采样点。 要求2:所设计软件需要计算采样的波形周期个数,并控制采样点数大于1个波形周期,且小于3个波形周期大小。 要求3:对采集的数据需要加一定的数字滤波。 二、硬件电路 相关硬件:TMS320F28335DSP实验箱,仿真器。

硬件结构图 三、程序流程图 1、主程序流程图 程序的主流程图2、子程序流程图

参数计算的流程图 四、实验结果和分析 1、实验过程分析 (1) 使用的函数原型声明 对ADC模件相关参数进行定义:ADC时钟预定标,使外设时钟HSPCLK 为25MHz,ADC模块时钟为12.5MHz,采样保持周期为16个ADC时钟。 (2) 定义全局变量 根据程序需要,定义相关变量。主要有:ConversionCount、Voltage[1024]、Voltage1[1024]、Voltage2[1024]、filter_buf[N]、filter_i、Max、Min、T、temp、temp1、temp2、temp3、Num、V、Vav、Vpp、Vrm、fre。这些变量的声明请见报告后所附的源程序。 (3) 编写主函数 完成系统寄存器及GPIO初始化;清除所有中断,初始化PIE向量表,将程

DSP实验报告

实验0 实验设备安装才CCS调试环境 实验目的: 按照实验讲义操作步骤,打开CCS软件,熟悉软件工作环境,了解整个工作环境内容,有助于提高以后实验的操作性和正确性。 实验步骤: 以演示实验一为例: 1.使用配送的并口电缆线连接好计算机并口与实验箱并口,打开实验箱电源; 2.启动CCS,点击主菜单“Project->Open”在目录“C5000QuickStart\sinewave\”下打开工程文件sinewave.pjt,然后点击主菜单“Project->Build”编译,然后点击主菜单“File->Load Program”装载debug目录下的程序sinewave.out; 3.打开源文件exer3.asm,在注释行“set breakpoint in CCS !!!”语句的NOP处单击右键弹出菜单,选择“Toggle breakpoint”加入红色的断点,如下图所示; 4.点击主菜单“View->Graph->Time/Frequency…”,屏幕会出现图形窗口设置对话框 5.双击Start Address,将其改为y0;双击Acquisition Buffer Size,将其改为1; DSP Data Type设置成16-bit signed integer,如下图所示; 6.点击主菜单“Windows->Tile Horizontally”,排列好窗口,便于观察 7.点击主菜单“Debug->Animate”或按F12键动画运行程序,即可观察到实验结果: 心得体会: 通过对演示实验的练习,让自己更进一步对CCS软件的运行环境、编译过程、装载过程、属性设置、动画演示、实验结果的观察有一个醒目的了解和熟悉的操作方法。熟悉了DSP实验箱基本模块。让我对DSP课程产生了浓厚的学习兴趣,课程学习和实验操作结合为一体的学习体系,使我更好的领悟到DSP课程的实用性和趣味性。

互换性与技术测量实验报告

实验一量块的使用 一、实验目的 1、能正确进行量块组合,并掌握量块的正确使用方法; 2、加深对量值传递系统的理解; 3、进一步理解不同等级量块的区别; 二、实验仪器设备 量块;千分表;测量平板;千分尺校正棒。 三、实验原理 1量块的测量平面十分光洁和平整,当用力推合两块量块使它们的测量平面互相紧密接触时,两块量块便能粘合在一起,量块的这种特性称为研合性。利用量块的研合性,就可以把各种尺寸不同的量块组合成量块组。 四、实验内容与步骤 (一)实验内容 采用合理的量块组合,测量千分尺校正棒。 (二)实验步骤 1 用千分表测量千分尺校正棒 2 据所需要的测量尺寸,自量块盒中挑选出最少块数的量块。(每一个尺寸所拼凑的量块数目不得超过 4~5 块,因为量块本身也具有一定程度的误差,量块的块数越多,便会积累成较大的误差。) 3量块使用时应研合,将量块沿着它的测量面的长度反向,先将端缘部分测量面接触,使初步产生粘合力,然后将任一量块沿着另一个量块的测量面按平行方向推滑前进,最后达到两测量面彼此全部

研合在一起。 4正常情况下,在研合过程中,手指能感到研合力,两量块不必用力就能贴附在一起。如研合立力不大,可在推进研合时稍加一些力使其研合。推合时用力要适当,不得使用强力特别在使用小尺寸的量块时更应该注意,以免使量块扭弯和变形。 5如果量块的研合性不好,以致研合有困难时,可以将任意一量块的测量面上滴一点汽油,使量块测量面上沾有一层油膜,来加强它的黏结力,但不可使用汗手擦拭量块测量面,量块使用完毕后应立即用煤油清洗。 6量块研合的顺序是:先将小尺寸量块研合,再将研合好的量块与中等尺寸量块研合,最后与大尺寸量块研合。 7. 记录数据; 六思考题 量块按“等”测量与按“级”测量哪个精度比较高?

互换性实验报告(注意这个不打印)

实验报告:轴的测量 一、实验目的 1、了解立式光学计的侧量原理及使用方法 2、加深理解测量仪器和测量方法的常用术语 四、测量示意图: ⅠⅡⅢ ⅠⅡⅢ 五、测量步骤: 1、根据基本尺寸选择量块 2、立式光学计调零 3、把被测轴放上工作台前后推动,读取最大值 4、把被测轴转动90度,用同样的方法测同一截面数值 5、以同样的步骤测另外两个截面的数值 6、取以上六个数值的平均值作为被测轴的实际尺寸

八、思考题: 1、用立式光学计测量塞规属于什么测量方法? 2、绝对测量和相对测量各有什么特点? 3、什么是分度值?刻度间距? 4、仪器的测量范围和刻度尺的示值范围有何不同? 注:该注明无需抄在实验报告中,仅做说明用。 1、留空处需要同学自行测量、计算、填写。 2、N/A表示不需要填写,留空即可。 3、其它需抄写到实验报告对应位置,不能打印。 4、思考题的完成程度也会影响实验报告的最终成绩,有些没有讲过的内容同学 需自学,或者度娘。。

实验报告:孔的测量 一、实验目的 1、掌握内径千分尺的测量方法 2、加深对内径千分尺测量特点的了解 四、测量示意图: ⅠⅡⅢ ⅠⅡⅢ 五、测量步骤: 1、内径千分尺调零 2、测量第一个截面数值 3、把被测孔转动90度,用同样的方法测同一截面数值 4、测量第二、三个截面两个方向(90度)值 4、取平均值作为被测孔的实际值

七、测量数据分析并判断被测零件是否合格; 八、思考题: 1、用内径千分尺和内径量表测量孔的直径是,各属于哪种测量方法? 2、内径量表测量孔时“转折点”意味着什么?一旦“零位”确定,百分表指针 超过“零位”发生转折,示值为正还是负?百分表指针不过“零位”发生转折,示值为正还是负? 3、组合量块组的原则是什么? 注:该注明无需抄在实验报告中,仅做说明用。 1、二.实验仪器中的型号和测量范围按实际情况填写,除了11~14的内径千 分尺外,还有14~17的,17~20的。 2、三.被测零件中的公差标注按实际情况填写,除了12±0.5外,还有15 ±0.5,18±0.5。 3、留空处需要同学自行测量、计算、填写。 4、N/A表示不需要填写,留空即可。 5、其它需抄写到实验报告对应位置,不能打印。 6、思考题的完成程度也会影响实验报告的最终成绩,有些没有讲过的内容同学 需自学,或者度娘。。

北邮dsp软件实验报告

Matlab仿真实验 实验报告 学院:电子工程学院 专业:电子信息科学与技术 班级: 学号: 姓名:

时间:2015年12月23日 实验一:数字信号的FFT分析 1.实验目的 通过本次试验,应该掌握: (a)用傅里叶变换进行信号分析时基本参数的选择 (b)经过离散时间傅里叶变换和有限长度离散傅里叶变换后信号频谱上的区别,前者DTFT时间域是离散信号,频率域还是连续的,而DFT在两个域中都是离散的。(c)离散傅里叶变化的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d)获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。(e)建立DFT从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用时数字音频压缩中的分析滤波器,例如DVD AC3和MPEG Audio。 2.实验容、要求及结果。 (1)离散信号的频谱分析: 设信号x(n)=0.001*cos(0.45n)+sin(0.3n)-cos(0.302n-) 此信号的0.3谱线相距很近,谱线0.45的幅度很小,请选择合适的序列长度N和窗函数,用DFT分析其频谱,要求得到清楚的三根谱线。 【实验代码】:

k=2000; n=[1:1:k]; x=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4); subplot(2,1,1); stem(n,x,'.'); title(‘时域序列'); xlabel('n'); ylabel('x(n)'); xk=fft(x,k); w=2*pi/k*[0:1:k-1]; subplot(2,1,2); stem(w/pi,abs(xk)); axis([0 0.5 0 2]); title('1000点DFT'); xlabel('数字频率'); ylabel('|xk(k)|'); 【实验结果图】:

《互换性与技术测量》实验指导书(三个实验,前两个必做,最后一个演示和选做)

实验一直线度误差的测量 一、实验目的 掌握按“节距法”测量直线度误差的方法。 二、测量原理及数据处理 对于很小表面的直线度误差的测量常按“节距法”,应是将被测平面分为若干段,用小角度度量仪(水平仪、自准直仪)测出各段对水平线的倾斜角度,然后通过计算或图解来求得轮廓线的直线度误差。本实验用合像水平仪。 具体测量方法如下: 将被测表面全长分为n段,每段长l=L/N应是桥板的跨距。将桥板置于第一段,桥板的两支承点放在分段点处,并把水平仪放在桥板上,使两者相对固定(用橡皮泥粘住)记下读数a1(单位为格)。然后将桥板沿放测表面移动,逐段测量下去,直至最后一段(第n段)。如图1每次移l,并要使支承点首尾相接,记下每段读数(单位为格)a1、a2、……a n。最后按下列步骤(见例)列表计算出各测量点对两端点连线的直线度偏差Δh i,并取最大负偏差的绝对值之和作为所求之直线度误差。 [例]设有一机床导轨,长2米(L=2000mm),采用桥板跨距l=250mm,用分度值c=0.02mm/m的水平仪,按节距法测得各点的读数a i(格)如表1。 表1

也可用作图法求出直线度误差,如图2。 作图法是在坐标纸上,以导轨长度为微坐标,各点读数累积为纵坐标,将测量得到的各点读数累积后标在坐标上,并将这些坐标点连成折线,以两端点连线作为评定基准,取最大正偏差与最大负偏差的绝对值之和,再换算为线值(μ),即为所求之直线度误差。 测量导轨直线度误差时,数据处理的根据,可由下图看出:(图3) A i — 导轨实际轮廓上的被测量点(i =0、1、2、……、n ); a i — 各段上水平仪的读数(格); Y i — 前后两测量点(i -1,i )的高度差; h i — 各测点(A i )到水平线(通过首点A 0)的距离(μ),显然 1 'i n i i h y == ∑

DSP实验报告

DSP实验报告 软件实验 1无限冲激响应滤波器(IIR) 算法 一.实验目的 1 .掌握设计IIR 数字滤波器的原理和方法。 2 .熟悉IIR 数字滤波器特性。 3 .了解IIR 数字滤波器的设计方法。 二.实验设备 PC 兼容机一台,操作系统为Windows2000( 或Windows98 ,WindowsXP ,以下默认为Windows2000) ,安装Code Composer Studio 2.21 软件。 三.实验原理 1 .无限冲激响应数字滤波器的基础理论。 2 .模拟滤波器原理(巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器、贝塞尔滤波器)。 3 .数字滤波器系数的确定方法。 4 .根据要求设计低通IIR 滤波器: 要求:低通巴特沃斯滤波器在其通带边缘1kHz 处的增益为-3dB ,12kHz 处的阻带衰减为30dB ,采样频率25kHz 。设计: - 确定待求通带边缘频率fp1Hz 、待求阻带边缘频率fs1Hz 和待求阻带衰减-20log δsdB 。 模拟边缘频率为:fp1=1000Hz ,fs1=12000Hz 阻带边缘衰减为:-20log δs=30dB - 用Ω= 2πf/fs 把由Hz 表示的待求边缘频率转换成弧度表示的数字频率,得到Ωp1 和Ωs1 。 Ωp1=2 πfp1/fs=2 π1000/25000=0.08 π弧度 Ωs1=2 πfs1/fs=2 π12000/25000=0.96 π弧度 - 计算预扭曲模拟频率以避免双线性变换带来的失真。 由w=2fs tan( Ω/2) 求得wp1 和ws1 ,单位为弧度/ 秒。 wp1=2fs tan( Ωp1/2)=6316.5 弧度/ 秒 ws1=2fs tan( Ωs1/2)=794727.2 弧度/ 秒 - 由已给定的阻带衰减-20log δs 确定阻带边缘增益δs 。

北邮DSP实验报告

北京邮电大学 数字信号处理硬件实验 实验名称:dsp硬件操作实验姓名:刘梦颉班级: 2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 实验一常用指令实验 一、实验目的 了解dsp开发系统的组成和结构,熟悉dsp开发系统的连接,熟悉dsp的开发界面,熟 悉c54x系列的寻址系统,熟悉常用c54x系列指令的用法。 二、实验设备 计算机,ccs 2.0版软件,dsp仿真器,实验箱。 三、实验操作方法 1、系统连接 进行dsp实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示: 1)上电复位 在硬件安装完成后,接通仿真器电源或启动计算机,此时,仿真盒上的“红色小灯”应 点亮,否则dsp开发系统与计算机连接有问题。 2)运行ccs程序 先实验箱上电,然后启动ccs,此时仿真器上的“绿色小灯”应点亮,并且ccs正常启 动,表明系统连接正常;否则仿真器的连接、jtag接口或ccs相关设置存在问题,掉电,检 查仿真器的连接、jtag接口连接,或检查ccs相关设置是否正确。 四、实验步骤与内容 1、实验使用资源 实验通过实验箱上的xf指示灯观察程序运行结果 2、实验过程 启动ccs 2.0,并加载“exp01.out”;加载完毕后,单击“run”运行程序; 五、实验结果 可见xf灯以一定频率闪烁;单击“halt”暂停程序运行,则xf灯停止闪烁,如再单击 “run”,则“xf”灯又开始闪烁; 关闭所有窗口,本实验完毕。 六、源程序代码及注释流程图: 实验二资料存储实验 一、实验目的 掌握tms320c54的程序空间的分配;掌握tms320c54的数据空间的分配;熟悉操作 tms320c54数据空间的指令。 二、实验设备 计算机,ccs3.3版软件,dsp仿真器,实验箱。 三、实验系统相关资源介绍 本实验指导书是以tms32ovc5410为例,介绍相关的内部和外部内存资源。对于其它类型 的cpu请参考查阅相关的资料手册。下面给出tms32ovc5410的内存分配表: 对于存储空间而言,映像表相对固定。值得注意的是内部寄存器与存储空间的映像关系。 因此在编程应用时这些特定的空间不能作其它用途。对于篇二:31北邮dsp软件实验报告北京邮电大学 dsp软件

互换性与技术测量实验指导书.

互换性实验指导书 机械工程学院

实验一量块的使用 一、实验目的 1、能正确进行量块组合,并掌握量块的正确使用方法; 2、加深对量值传递系统的理解; 3、进一步理解不同等级量块的区别; 二、实验仪器设备 量块;千分表;测量平板;被测件。 三、实验原理 量块的测量平面十分光洁和平整,当用力推合两块量块使它们的测量平面互相紧密接触时,两块量块便能粘合在一起,量块的这种特性称为研合性。利用量块的研合性,就可以把各种尺寸不同的量块组合成量块组。 四、实验内容与步骤 (一)实验内容 采用合理的量块组合,测量被测零件尺寸高度。 (二)实验步骤 1.用游标卡尺测量被测件 2.据所需要的测量尺寸,自量块盒中挑选出最少块数的量块。(每一个尺寸所拼凑的量块数目不得超过 4块,因为量块本身也具有一定程度的误差,量块的块数越多,便会积累成较大的误差。) 3.量块使用时应研合,将量块沿着它的测量面的长度反向,先将端缘部分测量面接触,使初步产生粘合力,然后将任一量块沿着另一个量块的测量面按平行方向推滑前进,最后达到两测量面彼此全部研合在一起。

4.将研合后的量块与被测件同时放到测量平板上,在测量平板上移动指示表的测量架,使指示表的测头与量块上工作表面相接触,转动指示表的刻度盘,调整指示表示值零位。 5.抬起指示表测头,将被测件放在指示表测头下,取下量块,记录下指示表的读数。 6.量块的尺寸与指示表的读数之和就是被测件的尺寸。 7. 记录数据; 五、思考题 量块按“等”测量与按“级”测量哪个精度比较高?

实验二常用量具的使用 一、实验目的 1、正确掌握千分尺、内径百分表、游标卡尺的正确使用方法; 2、掌握对测量数据的处理方法; 3、对比不同量具之间测量精度的区别。 二、实验仪器设备 外径千分尺;内径百分表;游标卡尺;轴承等。 三、实验原理 分度值的大小反映仪器的精密程度。一般来说,分度值越小,仪器越精密,仪器本身的“允许误差”(尺寸偏差)相应也越小。学习使用这些仪器,要注意掌握它们的构造特点、规格性能、读数原理、使用方法以及维护知识等,并注意要以后的实验中恰当地选择使用。 四、实验内容及实验步骤 (一)实验内容 1、熟悉仪器的结构原理及操作使用方法。 2、用外径千分尺、内径百分表、游标卡尺测量轴承内、外径。 3、对所测数据进行误差处理,得出最终测量结果。 (二)实验步骤 1、用游标卡尺测量轴承外径的同一部位5次(等精度测量),将测量值记入下表中,并完成后面的计算: ⑴平均值:将5次测量值相加后除以5,作为该测量点的实际值。 ⑵变化量:测量值中的最大值与最小值之差。 入上表中,并完成后面的计算: ⑴平均值:将5次测量值相加后除以5,作为该测量点的实际值。 ⑵变化量:测量值中的最大值与最小值之差。 ⑶测量结果:按规范的测量结果表达式写出测量结果。 3、内径百分表测量步骤: (1)内径百分表在每次使用前,首先要用标准环规、夹持的量块或外径千分尺对零,环规、夹持的量块和外径千分尺的尺寸与被测工件的基本尺寸相等。 (2)内径百分表在对零时,用手拿着隔热手柄,使测头进入测量面内,摆动直管,测头在X方向和Y方向(仅在量块夹中使用)上下摆动。观察百分表的示

DSP运行实验报告

DSP运行实验报告 一、实验目的 熟悉CCS软件仿真下,DSP程序的下载和运行;熟悉借助单片机的DSP程序下载和运行; 熟悉借助仿真器的DSP程序下载和运行;熟悉与DSP程序下载运行相关的CCS编程环境。 二、实验原理 CCS软件仿真下,借用计算机的资源仿真DSP的内部结构,可以模拟DSP程序的下载和运行。 如果要让程序在实验板的DSP中运行、调试和仿真,可以用仿真器进行DSP程序下载和运行。初学者也可以不用仿真器来使用这款实验板,只是不能进行程序调试和仿真。 在本实验板的作用中,单片机既是串口下载程序的载体,又是充当DSP 的片外存储器(相对于FLASH),用于固化程序。 三、实验设备、仪器及材料 安装有WINDOWS XP操作系统和CCS3.3的计算机。 四、实验步骤(按照实际操作过程) 1、CCS软件仿真下,DSP程序的下载和运行。 第一步:安装CCS,如果不使用仿真器,CCS 的运行环境要设置成一个模拟仿真器(软仿真)。

第二步:运行CCS,进入CCS 开发环境。 第三步:打开一个工程。 将实验目录下的EXP01目录拷到D:\shiyan下(目录路径不能有中文),用[Project]\[Open]菜单打开工程,在“Project Open”对话框中选 EXP01\CPUtimer\CpuTimer.pjt,选“打开”, 第四步:编译工程。 在[Project]菜单中选“Rebuild All”,生成CpuTimer.out文件。 第五步:装载程序。 用[File]\[Load Program]菜单装载第四步生成CpuTimer.out文件,在当前工程目录中的Debug 文件夹中找到CpuTimer.out文件,选中,鼠标左键单击“打开”。

2015年北邮数字信号处理软件实验报告

数字信号处理软件实验 MATLAB 仿真 2015年12月16日

实验一:数字信号的 FFT 分析 ● 实验目的 通过本次实验,应该掌握: (a) 用傅立叶变换进行信号分析时基本参数的选择。 (b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT )后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。 (c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。 (e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。 ● 实验内容及要求 ? 离散信号的频谱分析 设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。 ? DTMF 信号频谱分析 用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。 00010450303024().*cos(.)sin(.)cos(.)x n n n n ππππ=+--

●MATLAB代码及结果 ?离散信号的频谱分析 clf; close all; N=1000; n=1:1:N; x=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4); y=fft(x,N); mag=abs(y); w=2*pi/N*[0:1:N-1]; stem(w/pi,mag); axis([0.25 0.5 0 2]); xlabel('频率'); ylabel('X(k)'); grid on;

互换性与技术测量实验指导

互换性与技术测量实验指导书 刘惠娟 桂林电子工业学院 2004

学生实验须知 1.在规定时间准时进入实验室,入室前必须更换拖鞋, 除有关书籍和文具外,其它物品一侓不准带入实验室。 2.进入实验室后,严禁随地吐痰;严禁吸烟和乱抛纸屑, 保持室内清洁和安静。 3.凡与本实验无关的仪器均不得乱动。 4.实验前,首先预习实验指导书,在指导老师的同意下 方可使用仪器。 5.严格遵守仪器的使用规则,操作要细心。仪器的光学 镜头严禁用手模或用手帕檫模。 6.实验时如仪器发生故障应立即告诉指导老师,不得自 行拆修。 7.实验完毕,将仪器、被测工件整理好,认真填写实验 报告,并将实验报告交指导老师审阅后才可离室。 8.实验成绩为期终考查之一,必须保存全部实验报告。 9.凡遇不遵守实验规则时,指导教师可随时停止其实验。

目录 1实验二用光切法测量表面粗糙度 2实验三形状误差的测量 2实验四位置误差的测量 3实验五在工具显微镜上测量外螺纹的各项参数4实验六齿轮齿圈径向跳动的测量 4实验七齿轮公法线长度及其变动的测量 4实验八齿轮周节偏差及周节累积误差的测量 4实验九在双啮仪上对齿轮的综合测量 5实验十产品质量检验设计性实验

实验二用光切法测量表面粗糙度 一、实验目的: 1.掌握应用光切法测量表面粗糙度的基本原理。 2.练习用9J光切显微镜测量Rz、Ry及S的方法。 二、仪器及其工作原理 应用光切原理设计而成的测量表面粗糙度的仪器称为光切显微镜(或双管显微镜)。我国生产的光切显微镜有JSG—I型和9J型,光切显微镜适于测量微观不平度+点高度Rz 、轮廓的最大高度 Ry,以及较规则表面(如车、下、铣、刨等)的轮廓单峰平均间距S和轮廓微观不平度的平均间距Sm值。 9J型光切显微镜的外型如图3—1所示,仪器测量的微观不平高度范围为(0.8—63)um,其工作原理如图3—2所示。

AD590实验报告

ad590温度传感器 1. 原理: ad590 是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下: 1、流过器件的电流等于器件所处环境的热力学温度(开尔文)度数,即:μa/k 2、ad590 的测温范围为-55℃~+150℃。 3、ad590 的电源电压范围为4v~30v。电源电压可在4v~6v 范围变化,电流 i 变化1ua,相当于温度变化1k。ad590 可以承受44v 正向电压和20v 反向电压,因而器件反接也不会被损坏。 ad590的功能及特性 ad590是电流型温度传感器,通过对电流的测量可得到所需要的温度值。其电路外形如 图1所示,它采用金属壳3脚封装,其中1脚为电源正端v+;2脚为电流输出端;3脚为管 壳,一般不用。集成温度传感器的电路符号如图2所示。 在被测温度一定时,ad590相当于一个恒流源,把它和5~30v的直流电源相连,并在输 出端串接一个10kω的恒值电阻,那么,此电阻上流过的电流将和被测温度成正比,此时电 阻两端将会有10mv/k的电压信号。 2数字显示温度计的设计 ad590具有线性优良、性能稳定、灵敏度高、无需补偿、热容量小、抗干扰能力强、可 远距离测温且使用方便等优点。可广泛应用于各种冰箱、空调器、粮仓、冰库、工业仪器配 套和各种温度的测量和控制等领域。 下面给出用ad590构成数字显示温度计的设计过程。 2.1 测温电路的设计 在设计测温电路时,首先应将电流转换成电压。由于ad590为电流输出元件,它的温度 每升高1k,电流就增加1μa。当ad590的电流通过一个10kω的电阻时,这个电阻上的压降 为10mv,即转换成10mv/k,为了使此电阻精确(0.1%),可用一个9.6kω的电阻与一个 1kω电位器串联,然后通过调节电位器来获得精确的10kω。图5所示是一个电流/电压转 换电路,其中运算放大器a1被接成电压跟随器形式,以增加信号的输入阻抗。考虑到设计要 求中没有要求显示的是摄氏温度,故可以不用加上算术运算电路来实现摄氏温度的显示。这 样我们最终得到的电压数值是热力学温度。这里再说明一下,若要显示的是摄氏温度,只需 将v加上-2.73v即可,可利用运放来实现算术运算电路。 2.2 a/d转换和显示电路的设计 用a/d转换器mc14433实现 首先将ad590的输出电流转换成电压,由于此信号为模拟信号,因此,要进行数码显示, 还需将此信号转换成数字信号。采用mc14433的转换电路如图6所示。此电路的作用是通过 a/d转换器mc14433将模拟信号转换成数字信号,以控制显示电路。其中mc14511为译码/ 锁存/驱动电路,它的输入为bcd码,输出为七段译码。led数码显示由mc14433的位选信 号ds1~ds4通过达林顿阵列mc1413来驱动4位数码管的引脚图如图7. 图6 a/d转换和数 码显示电路框图 其中1y,2y,3y和4y为片选端,用以控制哪位数码管亮,将他们分别和mc14433的ds0, ds1,ds2,ds3连接即可。 考虑到mc14433工作时需要参考电压,我们这里选取了1403作为vref,用作参考电压, 通过一个滑动变阻器可以方便的控制输入vref的大小。电路图如图8 图7 3461as数码管 引脚图 图8 最后:

北邮dsp软件matlab仿真实验报告

题目: 数字信号处理MATLAB仿真实验 姓名 学院 专业 班级 学号 班内序号

实验一:数字信号的 FFT 分析 1、实验内容及要求 (1) 离散信号的频谱分析: 设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。 (2) DTMF 信号频谱分析 用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。 2、实验目的 通过本次实验,应该掌握: (a) 用傅立叶变换进行信号分析时基本参数的选择。 (b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT ) 后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。 (c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。 (e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。 3、程序代码 (1) N=5000; n=1:1:N; x=0.001*cos(0.45*pi*n)+sin(0.3*pi*n)-cos(0.302*pi*n-pi/4); y=fft(x,N); magy=abs(y(1:1:N/2+1)); k=0:1:N/2; w=2*pi/N*k; stem(w/pi,magy) axis([0.25,0.5,0,50]) (2) column=[1209,1336,1477,1633]; line=[697,770,852,941]; fs=10000; N=1024; 00010450303024().*cos(.)sin(.)cos(.)x n n n n ππππ=+--

(优秀教学)互换性与技术测量实验

实验一外螺纹中径的测量 一、实验目的 熟悉测量外螺纹中径的原理和方法。 二、实验内容 1. 用螺纹千分尺测量外螺纹中径。 2. 用三针测量外螺纹中径。 三、测量原理及计量器具说明 1. 用螺纹千分尺测量外螺纹中径 图1为螺纹千分尺的外形图。它的构造与外径千分尺基本相同,只是在测量砧和测量头上装有特殊的测量头1和2,用它来直接测量外螺纹的中径。螺纹千分尺的分度值为0.01毫米。测量前,用尺寸样板3来调整零位。每对测量头只能测量一定螺距范围内的螺纹,使用时根据被测螺纹的螺距大小,按螺纹千分尺附表来选择,测量时由螺纹千分尺直接读出螺纹中径的实际尺寸。 图1 2. 用三针测量外螺纹中径 图2为用三针测量外螺纹中径的原理图,这是一种间接测量螺纹中径的方法。测量时,将三根精度很高、直径相同的量针放在被测螺纹的牙凹中,用测量外尺寸的计量器具如千分尺、机械比较仪、光较仪、测长仪等测量出尺寸M。再根据被测螺纹的螺距p、牙形半角 2 α 和量针直径 m d,计算出螺纹中径 2 d。由图2可知: ) (2 2 2 CD AD M AC M d- - = - = 而 2 sin 2 2α m m d d BD AB AD+ = + == ? ? ? ? ? ? ? ? + 2 sin 1 1 2α m d

4 2α Pctg CD = 将AD 和CD 值代入上式,得: 22 2sin 1 12ααctg P d M d m +????? ? ? ?+ -= 对于公制螺纹,0 60=α,则 P d M d 866.032+-= 图 2 为了减少螺纹牙形半角偏差对测量结果的影响,应选择 合适的量针直径,该量针与螺纹牙形的切点恰好位于螺纹中径处。此时所选择的量针直径m d 为最佳量针直径。由图3可知: 2 cos 2α P d m = 对于公制螺纹,0 60=α,则 P d m 577.0= 在实际工作中,如果成套的三针中没有所需的最佳量针直径时,可选择与最佳量针直径相近的三针来测量。 量针的精度分成0级和1级两种:0级用于测量中径公差为4—8μm 的螺纹塞规;1级用于测量中径公差大于8μm 的螺纹塞规或螺纹工件。 测量M 值所用的计量器具的种类很多,通常根据工件的精度要求来选择。本实验采用杠千分尺来测量(见图4)。杠杆千分尺的测量范围有0—25,25—50,50—75,75—100mm 图 3 图 4 四种,分度值为0.002mm 。它有一个活动量砧1,其移动量由指示表7读出。测量前将尺体5装在尺座上,然后校对千分尺的零位,使刻度套筒管3、微分筒4和指示表7的示值都分别对准零位。测量时,当被测螺纹放入或退出两个量砧之间时,必须按下右侧的按钮8使量

dsp实验报告4

实验2.4 外中断 一.实验目的 1.通过实验熟悉VC5509A的中断响应过程。 2.学会C语言中断程序设计,以及运用中断程序控制程序流程。 二.实验设备 计算机,ICETEK-VC5509-A实验箱及电源。 三.实验原理 1.中断及中断处理过程: ⑴中断简介:中断是一种由硬件或软件驱动的信号,DSP在接到此信号时,将当前程序悬挂起来,转去执行另外一个任务,这个任务我们称为中断服务程序(ISR)。TMS320C55x DSP 可支持32个ISR,可由硬件或软件触发。 ⑵DSP处理中断的步骤: ①接收中断请求:由软件或硬件发出。 ②响应中断请求:对于可屏蔽中断,需要满足若干条件,才发生响应;而对于不可屏蔽中断,则立即响应。 ③准备执行中断服务程序。 - 完成当前正在执行的指令;将进入流水线但还未解码的指令清除。 - 自动保存若干寄存器的值到数据堆栈和系统堆栈。 - 取得用户定义的中断向量表中当前中断向量,中断向量指向中断服务程序入口。 ④执行中断服务程序。中断服务程序包含中断返回指令,这样返回时可以出栈以前保存的关键寄存器数据,从而恢复中断服务程序执行前的现场。 ⑶中断向量表: 中断向量表的构成请参见TI的文档sprs295d.pdf之3.11节。 中断向量表的地址可以由用户指定。 ⑷外中断: TMS320C5509可以响应INT0-INT4五个外中断。 2.ICETEK-CTR板的键盘接口: 显示/控制模块ICETEK-CTR通过接口P8连接小键盘,接收小键盘传送的扫描码,并在每个扫描码结束后保存,同时向DSP的INT2发送中断信号;当DSP读键盘时将扫描码送到数据总线上。小键盘上每次按下一个键将产生2个扫描码,2次中断。 3.程序编制 由一个不含中断处理程序的工程通过改写加入中断处理程序部分大致需要如下操作(假设使用INT2): ⑴编制中断服务程序:参见实验程序,编写单独的一个函数XINT,此函数使用interrupt 修饰,没有参数和返回值。 ⑵构造中断向量表:可以用汇编语言构造,编写一个汇编语言模块程序vector.asm。 ⑶修改链接命令文件:在MEMORY小节中开辟单独的地址段用以存放中断向量表;在SECTIONS小节中指定.vectors段到前步开设的内存段中。 ⑷主程序中进行初始化设置:定位中断向量表、使能中断、清中断等。 4.实验程序流程图:

互换性测量实验报告

上海第二工业大学 实训实习报告 项目名称互换性及测量技术实践 所属学院机电工程学院 专业班级 09 机自 A2 班 学生姓名黄金驹 指导教师刘唯、吴站雷 实训实习地点:机电楼(14#楼)408实验室实训实习日期:2011 年 9 月– 12 月 6 日

实训实习任务书

目录 实验任务书 (1) 游标量具的使用及零件的测绘 (3) 平面度误差的测量 (7) 圆度误差的测量 (10) 准直仪测量直线度 (13) 立式光学计测量塞规 (15) 垂直度误差的测量 (17) 用电动轮廓仪测量表面粗糙度 (18) 标准样块比较法测量表面粗糙度 (19) 螺距的测量 (20) 螺纹中径的测量 (21) 螺纹牙型半角的测量 (22) 万能角尺的使用 (23) 测量齿轮的模数 (24) 齿轮齿厚的测量 (26) 齿轮公法线的测量 (27) 齿轮径向综合跳动的测量 (28) 齿圈径向跳动的测量 (30)

实验一游标量具的使用及零件的测绘 一、实验目的 1、了解游标量具的读数原理; 2、熟练掌握各种游标量具的使用方法; 3、运用游标量具对零件进行测量,并绘制零件图。 二、实验原理 1、游标的读数原理 将两根直尺相互重叠,其中一根固定不动,另一根沿着它相对滑动。固定不动的直尺称为主尺,沿主尺滑动的直尺称为游标尺。 设a为主尺每格的宽度,b为游标尺每格的宽度。I为游标刻度值,n为游标的刻线格数。 当主尺(n-1)格的长度正好等于游标n格的长度时,游标尺每格的宽度b为b=(n-1)*a/n 游标的分度值i为主尺每格的宽度与游标尺每格的宽度只差即i=a-b=a/n n=a/i b=a-i 当主尺(2n-1)格的长度正好等于游标n格的长度时,游标尺每格的宽度为 b=(2n-1)*a/n 游标的分度值i为主尺r格的宽度与游标尺1格的宽度之差即 i=r*a-b=a/n n=a/i b=r*a-i 式中:r—游标模数 游标模数为正整数,一般取r=1或r=2 游标刻线的总长l为

相关文档
相关文档 最新文档