文档库 最新最全的文档下载
当前位置:文档库 › 风洞综述

风洞综述

风洞综述
风洞综述

风洞文献综述

Wind Tunnels Document Summary

一、前言

风洞,是能人工产生和控制气流,以模拟飞行器或物体周围气体的流动,并可量度气流对物体的作用以及观察物理现象的一种管道状实验设备,它是进行空气动力实验最常用、最有效的工具。

风洞设备的建设发展与航空航天飞行器研制紧密相联。在航空飞行器发展早期,对空气动力问题的探究促使了风洞的诞生。1871年,英国人温霍姆建造了世界上第一座风洞。随着飞机、导弹、航天飞行器发展,20世纪30~80年代,迎来了风洞建设的高峰期,低速、跨声速、超声速、高超声速各类型风洞得到快速发展。到目前为止,我国已经拥有低速、高速、超高速以及激波、电弧等风洞。

由于实际流动的复杂性,流体力学和空气动力学中的许多课题还不能单纯依靠理论或计算方法解决,因而风洞有其特殊的重要性。二、风洞的发展简要回顾

风洞设备的发展大致经历了低速风洞发展阶段、超声速风洞发展阶段、跨声速风洞发展阶段、高超声速风洞发展阶段、风洞设备改造和稳定发展阶段、风洞设备发展适应新需求阶段、探索新概念风洞发展阶段。

20世纪90年代,随着经济全球化和型号发展数量的减少,一方面,风洞设备在数量上呈现出过剩状态;另一方面,又缺少能满足未来型号精细化发展要求的高性能风洞。

三、风洞的组成

风洞主要由洞体、驱动系统和测量控制系统组成,各部分的形式因风洞类型而不同。

根据驱动系统的不同有两类,一类是运转时间长,运转费用较低,多在低速风洞中使用的连续式风洞。另一类是工作时间可由几秒到几十秒,多用于跨声速、超声速和高超声速的暂冲式风洞。

四、风洞的种类

风洞种类繁多,有不同的分类方法。按实验段气流速度大小来区分,可以分为低速、高速和高超声速风洞。

①低速风洞

基本上有两种形式,一种是直流式风洞;另一种是回流式风洞。低速风洞实验段有开口和闭口两种形式,截面形状有矩形、圆形、八角形和椭圆形等,长度视风洞类别和实验对象而定。60年代以来,还发展出双实验段风洞,甚至三实验段风洞。

中国建成的具有柔壁喷管的三音速风洞实验段尺寸为

1.2×1.2米2,跨音速时采用部分排气在回流道内循环的下吹-

引射工作方式,超音速时为下吹工作方式。

②高速风洞

实验段内气流马赫数为0.4~4.5的风洞。按马赫数范围划分,高速风洞可分为亚声速风洞、跨声速风洞和超声速风洞。

⑴亚声速风洞

风洞的马赫数为0.4~0.7。结构形式和工作原理同低速风洞相仿,只是运转所需的功率比低速风洞大一些。

⑵跨声速风洞

风洞的马赫数为0.5~1.3。第一座跨声速风洞是美国NACA 公司在1947年建成的。此后跨声速风洞发展很快,到50年代就已建设了一大批实验段口径大于1米的模型实验风洞。

⑶超声速风洞

洞内气流马赫数为1.5~4.5的风洞。风洞中气流在进入实验段前经过一个拉瓦尔管而达到超声速。第一座超声速风洞是普朗特于1905年在德国格丁根建造的,实验马数可达到1.5。

③高超声速风洞

马赫数大于 5的超声速风洞。主要用于导弹、人造卫星、航天飞机的模型实验。实验项目通常有气动力、压力、传热测量和流场显示,还有动稳定性、低熔点模型烧蚀、质量引射和粒子侵蚀测量等。高超声速风洞主要有常规高超声速风洞、低密度风洞、激波风洞、热冲风洞等形式。

⑴常规高超声速风洞

它是在超声速风洞的基础上发展起来的。常规高超声速风洞的运行原理与超声速风洞相似,主要差别在于前者须给气体加热。

早期常规高超声速风洞常采用二维喷管,后期大多数高超声速风洞安装了锥形或型面轴对称喷管。

⑵低密度风洞

形成稀薄(低密度)气体流动的高超声速风洞。它为研制航天器提供高空飞行的气动环境,也是研究稀薄气体动力学的实验工具。低密度风洞主要进行滑移流态和过渡流态下的实验,主要模拟克努曾数、马赫数、物面平均温度和滞止温度之比等参数,以及高温低压下的真实气体效应。

⑶激波风洞

利用激波压缩实验气体,再用定常膨胀方法产生高超声速实验气流的风洞。激波风洞的实验时间短,通常以毫秒计。它的发展与中、远程导弹和航天器的发展密切相关。

⑷热冲风洞

利用电弧脉冲放电定容地加热和压缩实验气体,产生高超声速气流的风洞。

除上述风洞外,高超声速风洞还有氮气风洞、氦气风洞、炮风洞(轻活塞风洞)、长冲风洞(重活塞风洞)、气体活塞风洞、膨胀风洞和高超声速路德维格管风洞等。

五、特殊风洞

为了满足各种特殊实验的需要,还可采用各种专用风洞,结冰风洞供研究飞机穿过云雾飞行时飞机表面局部结冰现象。

在大气层中飞行的飞行器可能会碰到部件结冰现象。结冰影

响飞行器的飞行安全和飞行性能。纵观世界各国, 凡有能力独立

研发飞行器的国家, 大多数拥有研究、评估飞行器结冰和防冰的

试验研究平台--结冰风洞。结冰风洞的出现已有60 多年的历史了, 随着飞行器研究的发展, 结冰风洞也在发展中。

为满足不同试验对象的结冰研究要求, 国外发展了多种航空

结冰试验设备, 主要有以下4类: (1) 结冰风洞; (2) 发动机结

冰试验设备; (3) 低速结冰试验设备; (4) 飞行试验设备。此外, 国外也发展了许多用于车辆试验的气候风洞, 可以进行车辆结冰

试验研究。

在风洞中开展模型结冰试验, 只有模型表面气流、水和冰三

者之间的热力学交换、气流中小水滴轨迹和液态水含量、流场等

诸多条件满足一定的关系,即遵循一定的相似准则, 风洞结冰试

验结果的可靠性才有保证。结冰风洞采用的相似准则:(1)气动力相似; (2) 热力学相似; (3) 水滴轨迹相似; (4) 积冰相似。六、风洞试验

空气动力学实验分实物实验和模型实验两大类。空气动力学

实验按空气与模型产生相对运动的方式不同又可分为3类:①空

气运动,模型不动。②空气静止,物体或模型运动。③空气和模

型都运动。

1、实验原理

风洞一般称之为风洞试验。简单地讲,就是依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟空中各种复杂的飞行状态,获取试验数据。

2、不足之处

风洞实验既然是一种模拟实验,不可能完全准确。其不足主要有以下三个方面。与此同时,相应也发展了许多克服这些不足或修正其影响的方法。

1.边界效应或边界干扰

真实飞行时,静止大气是无边界的。而在风洞中,气流是有边界的。

2.支架干扰

风洞实验中,需要用支架把模型支撑在气流中。支架的存在,产生对模型流场的干扰,称为支架干扰。虽然可以通过试验方法修正支架的影响,但很难修正干净。

近来,正发展起一种称为"磁悬模型"的技术。在试验段内产生可控的磁场,通过磁力使模型悬浮在气流中。

3.相似准则不能满足的影响

风洞实验的理论基础是相似原理,风洞试验很难完全满足。最常见的主要相似准则不满足是亚跨声速风洞的雷诺数不够。

3、风洞观察。

①观察实验优点:

风洞实验尽管有局限性,但有如下四个优点:①能比较准确

地控制实验条件,如气流的速度、压力、温度等;②实验在室内进行,受气候条件和时间的影响小,模型和测试仪器的安装、操作、使用比较方便;③实验项目和内容多种多样,实验结果的精确度较高;④实验比较安全,而且效率高、成本低。因此,风洞实验在空气动力学的研究、各种飞行器的研制方面,以及在工业空气动力学和其他同气流或风有关的领域中,都有广泛应用。

②观察方法:

风洞中流态观察方法大致为分两类:第一类是示踪方法;第二类是光学方法。

⑴示踪方法

在流场中添加物质,通过照相或肉眼观察添加物随流体运动的图形。常用的有丝线法、烟流法、油流法、升华法、蒸汽屏法和液晶显示法等六种。

⑵光学方法

根据光束在气体中的折射率随气流密度不同而改变的原理制造出来的光学仪器。这种方法不在流场中添加其他物质,不会干扰气体流动,而且可以在短时间内采集大量的空间数据。它是一种直接显示方法,特别适合于观察可压缩流动和非定常流动。

除了以上两大类方法外,还有一种向流场中注入能量的方法。如在低密度风洞中向气流发射电子束,使气体分子激发出荧光,荧光的光通量与气流密度大小有关。根据光通量的变化,就可以显示出气流密度的变化,这种方法可以显示高超声速稀薄气体流

动的激波位置和形状以及用于定量测量流场密度。

七、结束语

现在建设的许多风洞,往往突破了亚声速、跨声速和超声速单一速度的范围,可以在一个风洞内进行亚声速、跨声速和超声速实验,即三声速风洞。

由于航空和其它工业的迅猛发展, 需要进行全尺寸范围实验研究, 风洞将向更大型化方向发展。风洞的形式也将越来越复杂,种类越来越多。

未来飞行器精细化设计的发展需求以及等离子体、磁流体动力学等技术在未来飞行器上的应用需求,对现有风洞模拟的真实性和试验能力提出了挑战,促使各国致力于新概念风洞的研究,透过各国关于新概念风洞的研发,可以想象和展望未来飞行器的发展及追求。

参考文献:

[1] 战培国, 赵昕.风洞发展现状及趋势研究【期刊】航空科学技术,2010.08.15

[2] 战培国.结冰风洞研究综述【期刊】实验流体力学 ,2007.09.15

[3] 黄志澄. 高超声速风洞发展述评【期刊】力学与实践, 1980.04.30

[4] 周勇为, 易仕和. 高超声速静风洞特点和发展概述【期刊】实验

力学,2010.04.15

[5]R.D.梅塔,P.布雷德肖,胡宗雄 ,龙斯仁.小型低速风洞设计原则【期刊】煤矿安全技术,1983.03.02

跨音速动态风洞

解决方案-跨音速动态风洞 位于美国弗吉尼亚州汉普顿市美国宇航局(NASA)兰利研究中心的跨音速动态风洞是一座用于研究固定翼和旋转翼飞机的气动弹性力学的连续式跨音速风洞。跨音速动态风洞的测试区域截面积约为1.5平方米,长约2.5米。跨音速动态风洞被广泛运用于各种试验,包括推进系统测试、自由飞试验、颤振试验、抖振试验、空气声学试验,以及需要振颤抑制等实时主动控制的试验。自1960年以来,几乎所有美国建造的运载工具、高性能军用飞机和商业运输飞机都在跨音速动态风洞进行了测试。 跨音速动态风洞的测试需要进行256个通道静态和动态信号的实时采集和显示,要求同步进行数据的采集、显示、存储、分析,并传输数据给实时控制系统进行模型控制。该系统采用应变计、硅膜压力传感器、压阻式加速度计、热膜风速计等多种传感器来测量模型响应,并在需要时采用执行机构对模型进行控制。 传感器数据的时间相关性往往对研究模型动态响应至关重要,特别是在需要计算两个传感器数据相干特性的情况下。即使在不同的程控增益下,测量系统也必须有出色的通道匹配性能,以避免在相干分析中引入误差。在跨音速动态风洞进行的测试种类众多,涵盖从稳态流体测量到高速瞬态的颤振、抖振、空气声学测量模式。测量系统的传递函数必须同时满足瞬态和稳态测试要求。 对于一套具有256个传感器的测试系统,在每次测试前,必须要能够自动验证测量系统的性能,最好还能检查传感器和电缆的健康状态。长时间测试时,最好能连续监视传感器的激励电压或电流、传感器电阻来验证传感器的健康状态。此外,全自动、可溯源的年度校准系统也是必不可少的。 解决方案: 为了比较各个信号调理系统供应商,美国宇航局购买了多套小型系统进行试用评估,并对硬件进行一系列严格的认证测试。测试包括直流和交流增益精度、直流激励精度、直流稳定性、宽带和频谱噪声、全带宽/滤波频响、瞬态响应、通带平坦度、幅度、相位匹配。 美国宇航局最终选取了PFI28000信号调理系统对安装在测试模型上的256个传感器进行模拟信号调理。此系统采用PFI28124四通道传感器调理插卡,共有256通道,安装在42英寸高的机柜中,28124插卡的输出连接到NI的PXI数据采集系统。传感器和数据采集系统的连接布线通过28000的背板完成。在不断开输出电缆的情况下,28124插卡可在28000机箱中灵活插拔。

CARDC2_4m引射式跨声速风洞设计与运行调试_董谊信

第15卷 第3期2001年09月 流 体 力 学 实 验 与 测 量 Experiments and Measurements in Fluid Mechanics V ol .15N o .3Sep .,2001 收稿日期:2001-04-27 作者简介:董谊信(1939-),男,福建福州市人,中国空气动力研究与发展中心研究员. 文章编号:1007-3124(2001)03-0054-08 CARDC 2.4m 引射式跨声速风洞 设计与运行调试 董谊信,陈章云,周 平,罗宇轩,王维新 (中国空气动力研究与发展中心,四川绵阳621000) 摘要:中国空气动力研究与发展中心研制了可更换喷嘴的中压气体引射器,利用现有中压气源驱动,建成一座增压回流引射式跨声速风洞。试验段截面尺寸2.4m ×2.4m ,M =0.3~1.2。稳定段最高工作压力为0.45M P a ,最高模型试验雷诺数Re c =15×106(M =0.90,C =0.24m ),稳定吹风时间≥15s 。风洞气动回路上分别配置有多喷管引射器、栅指扩散段、跨声速试验段驻室抽气系统及特殊的主排气系统等装置。采用智能自适应解耦控制技术,实现总压和M 数独立、快速、精确地控制。该气动布局与部段配置及其功能设计,在国内跨声速风洞中均是首次采用。 关 键 词:引射式跨声速风洞;风洞设计与研究;测控系统;风洞调试;增压试验中图分类号:V 211.74+1 文献标识码:A CARDC 2.4m injector powered transonic wind tunnel design and operation DONG Yi -xin ,CHEN Zhang -yun ,ZHOU Ping ,LUO Yu -xuan ,WANG Wei -xin (China Aerody namics Research &Development Center ,M iany ang 621000,China )A bstract :This paper provides a technical overview of CARDC 2.4m ×2.4m injector pow -ered transonic w ind tunnel .2.4m wind tunnel is successful in operation debugging tests in december ,1998.It can operate over a Mach number range of 0.3~1.2,the maximum pres -sure of flow is 0.45M Pa ,the maximum Re c available is 15×106(M =0.9,c =0.24m ).The simulating capability of model testing Rey nolds number is advanced and superior than the fo reig n conventional pressurized transonic w ind tunnel .The overall perfo rmance and technologies are in leading place in domestic and can be compared to foreign advanced w ind tunnel .The successful development of 2.4m w ind tunnel fills in the gaps in the area of large -size transonic wind tunnels and relative technologies .The history of lacking wo rld -class tran -sonic wind tunnel in China comes to an end .

风洞试验

风洞实验 科技名词定义 中文名称:风洞实验 英文名称:wind tunnel testing 定义:在风洞中进行模拟飞行器在大气中运动时的空气动力学现象。 应用学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 流体力学方面的风洞实验指在风洞中安置飞行器或其他物体模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其他物体的空气动力学特性的一种空气动力实验方法;而在昆虫化学生态学方面则是在一个有流通空气的矩形空间中,观察活体虫子对气味物质的行为反应的实验。 目录

编辑本段原理 风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止 风洞实验 空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。[1] 编辑本段优点 风洞实验尽管有局限性,但有如下四个优点:①能比较准确地控制实验条 风洞实验 件,如气流的速度、压力、温度等;②实验在室内进行,受气候条件和时间的影响小,模型和测试仪器的安装、操作、使用比较方便;③实验项目和内容多种多样,实验结果的精确度较高;④实验比较安全,而且效率高、成本低。因此,风洞实验在空气动力学的研究、各种飞行器的研制方面,以及在工业空气动力学和其他同气流或风有关的领域中,都有广泛应用。 编辑本段要求

风洞试验

A.风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止风洞实验 空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。[1] B.风洞实验原理及实验仪器 一、实验目的 通过参观,让学生了解风洞实验装置的构造、作用,常用的风洞实验仪器及作用,风洞实验的过程和风洞实验的原理。 二、风洞系统简介 风洞作为一套完整的空气动力实验装备,其构造是较为复杂的。按风洞实验段气流速度的大小,一般可分为:低速风洞(M≤0.3),高亚音速风洞(0.3≤M≤0.8),跨音速风洞(0.8≤M≤1.5)。超音速风洞(1.5≤M≤4.5)。高超音速风动(4.5≤M≤10),极高速风洞(M>10)。 1.以805实验室HG-4号超音速风洞为例,它主要由以下几部分组成: l 气源系统:由大型空气压缩机提供清洁干燥的高压空气; l 风洞本体:由高压管道、紧闭阀、快速阀、调压阀、稳定段、喷管、试验段、攻角机构、可调节超音速扩散、亚音速扩散段等组成;

l 控制系统:控制系统及模型状态等; l 测量系统:测量系统系数、模型空气动力及模型转速,并作为纹影显示及摄影等, l 消音系统:降低噪音。 实验过程:空气压缩机把压缩空气打进储气瓶储存起来,压缩空气经管道流向风洞。实验时,预给调压阀一开度,开启紧闭阀至完全打开后,开启快速阀,压缩空气经稳定段至喷管,到达试验段时已获得所需超音速流场,待稳定后测量系统工作。最后气流经扩压段扩压向出口消音塔排去。 2.低速风洞构造、作用:低速风洞的动力由风机提供、风速可通过调整风机的转速来调节。低速风洞有稳定段、实验段和扩压段,没有喷管。为了节约能源和降低噪音,低速风洞常做成环流式的。 3.常用仪器:风洞的常用仪器有压力传感器和天平,测温传感器、压力传感器和温度传感器是监测风洞流场必不可少的仪器。而天平则是用来测量实验模型在风洞中受力情况的一种多元传感器,它是通过受力产生形变,给出形变电信号经换算求出受力的一种精密仪器。 三、思考题 1.超音速流动是如何建立的? 2.超音速流场建立的条件如何? 3.风洞实验是如何测得模型气动力的? C.优点

风洞试验

什么是风洞 风洞一般称之为风洞试验。简单地讲,就是依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟空中各种复杂的飞行状态,获取试验数据。这是现代飞机、导弹、火箭等研制定型和生产的“绿色通道”。简单的说,风洞就是在地面上人为地创造一个“天空”。至于我们国家的风洞为什么会选择建在大山深处,那是历史原因造成的。 发达国家如何发展空气动力学 空气动力学是目前世界科学领域里最为活跃、最具有发展潜力的学科之一。世界各发达国家对空气动力学的发展都给予了高度重视,不惜花费巨额资金建设空气动力试验设施并开展研究工作。 美国早在80年代中期出台的震撼全球的超级跨世纪工程——“星球大战”计划中,就曾把作为基础学科的空气动力学放在非常突出的重要位置上。的确,如果不先在空气动力学上获得重大突破,这个将耗资1万亿美元的超级工程,很多关键技术将无法解决。紧接着在1985年发表的“美国航空航天2000年”中,也把空气动力学列为需要解决的七个问题中的第一个。而剩下的六个问题中还有四个与空气动力学有关。这使美国花费巨额投资研制了每秒20亿次的超级计算机专门为空气动力学研究服务。 前苏联在“十月革命”胜利后的第二年,列宁就下令组建了国家空气动力研究机构——中央流体动力研究院,并任命“俄罗斯航空之父”茹可夫斯基担任院长,这一决策为前苏联成为世界上另一个航天大国奠定了坚实的基础。二次大战之前,斯大林曾下令建造了世界上第一座可用于进行整架飞机试验的全尺寸风洞。与美国相比,前苏联在空气动力学的整体水平上毫不逊色,甚至在许多方面都领先于美国,它在航空航天领域取得的一系列成就足以说明这一点。 英、法两国在二次大战前均为名列前茅的老牌航空先进国家,然而战后他们突然发现自己比美、苏等国落后了一截,于是两国重振旗鼓、奋起直追。在战后第二年,法国政府便决定把因战争和被占领分散到全国各地的研究机构组织到一起,组建了国家空气动力研究机构,并在阿尔卑斯山腹地开始创建莫当试验中心,堪称世界一流的大功率空气动力试验风洞设备。曾经发明了世界上第一座风洞的英国人更是不甘落后,除了政府加强对空气动力学的领导规划之外,充分利用大学进行基础学科的研究。据有关资料透露,在英国的46所大学里,至少有30个以上高水平的空气动力研究试验室。 日本在战后受到限制的情况下,航空工业曾有过长达8年的空白。但在此期间,其基础研究——空气动力学则进展神速。仅60年代,就先后仿制出11种飞机,自行设计8种飞机。

风洞试验与数值模拟

风洞试验与数值模拟 ――北京大学在数值模拟方面的技术进展 一.科学研究的方法: 人类在认识自然、认识科学的过程中,曾经创造出了两种方法,即:理论研究和实验研究。理论研究得出的结论,要经过严格的论证,这是十分必要的,但在工程实践中却难以应用。实验研究,结论清晰、直观,也就是俗话说的“看得见,摸的着”,但它的局限性太大,因而应用范围有限。 上世纪四十年代,电子计算机的横空出世,改变了人类的生活和思想。随着近年来计算机软硬件技术的突飞猛进,以前大量无法解决的工程实际问题,已经可以用新的计算方法来加以解决了。因此,第三种科学研究的方法发展出来了,那就是计算科学的方法(或称为数值模拟、数值计算)。它不仅具有理论研究的严谨性,又具有实验研究的直观性,更加具备极其广泛的应用范围。如今,计算科学在科学研究中所占的比重越来越大,并必将成为今后科学技术发展的主流。 二.什么是“风洞试验”: 风洞,从外观上看酷似一座洞,它是通过产生出可人工控制的气流,对试验模型周围的气体的流动进行模拟,并可量度气

流对物体的作用,以及观察流动现象的一种管道状试验设备。 而风洞试验,是实验研究工程问题的一种方法。它是依据运动的相对性原理,将试验原型同比缩小的模型固定在风洞中,人为制造气流流过,获取各测试点的试验数据,并以此寻找出工程问题的解决方案。 风洞试验主要针对相似模型进行测力试验、测压试验和布局选型试验。 三.风洞试验在“挡风抑尘墙”工程实践中的局限性: “挡风抑尘墙”的作用就是降低露天堆场上方的风速,以达到抑尘效果。这是属于流体力学范畴的一类问题。流体力学是物理学的一个分支,是主要研究流体(包括气体和液体)与其中的物体相互作用的一门科学。 研究流体力学的方法同样有理论研究和实验研究。 在理论研究中,以理论流体力学的基本控制方程组和基本定律为出发点,采用适当的前提假设(如空气的不可压缩性假定),经过严格的数学推导,求解出方程中的未知量(如压力,速度等)。 鉴于理论流体动力学的基本控制方程组及其边界条件的强烈的非线性特性,只能在几种简单的情况下得到方程组的解析解,在复杂的情况下(如三维流场,复杂外形等)就无法获得解析解,这就决定了理论研究方法在“挡风抑尘墙”研究中具有很多的局限性,工程实践中很难采用这种方法。

实验8:风洞实验段速度和压力测定

实验八:风洞实验段速度和压力测定 一、实验目的 测定一座风洞实验段的速度和压力。二、实验仪器与设备 1. 直流式下吹低速风洞,稳定段界面500mm ×200mm ,出口矩形界面500mm ×200mm 。最高出口流速≤40m/s 。 2. 皮托管,修正系数k (已知修正系数),排管压力计,其修正系数为1, 工作液为酒精,比重取0.8,斜角为30°。 三、实验标定原理 风洞试验中,试验段的来流速度是一基本流动参数,必须给出。开口风洞中,一般用风洞出口截面中心位置处的流速指示来流速度。根据不可压缩伯努利方程: 02 2 1P V P =+ ρ (1) p k V ?=ρ 2 (2) 皮托管 图1:开口风洞实验段 其中:Δp 为皮托管测得的总压0p 与静压p 之差,为风洞实验段动压。可以由排管压力计读出,k 为皮托管标定系数,ρ为工况下气体密度。由此可以得出风洞实验段的工作压力和速度。 图2:皮托管结构示意图 图3:皮托管测速示意图 四、实验操作步骤 1. 实验前制定实验步骤,确定数据处理的方法。

2.在教师指导下把皮托管安装在低速风洞实验段内,皮托管总压孔应对准 来流方向,不要偏斜。 3.用导管连接皮托管和排管压力计,注意检查导管,不得有破漏或堵塞。 注意斜管压力计的初始读数。 4.启动风洞,调节风洞变频器频率(不小于10Hz为宜),记录排管压力计 的读数。 5.改变风速(变频器频率),重复步骤4,记下10~15组数据。 6.关闭风洞,记录大气压强和室内温度。 7.整理仪器,实验数据交老师签字后离开实验室。 五、实验结果 实验原始数据就是酒精柱长度测量值,由排管酒精压力计测量,并填于表1。 排管压力计初始读数: mm 表1:压差测量值(毫米酒精柱)变频器工作频率:f= Hz

循环风洞干燥实验讲解

循环风洞干燥实验装置 说明书 天津大学化工基础实验中心

2011.10 一. 实验装置的基本功能和特点: 本装置为学生学习干燥曲线、干燥速率曲线及临界湿含量测定方法提供了实验平台,同时,可练习被干燥物料与热空气之间对流传热系数的测定方法,通过实验,加深学生对干燥过程及干燥机理的理解,并通过操作实物干燥过程,了解干燥操作中废气循环的流程和概念。本说明书还列举了一个由气体流量计读数求指定截面处气体流速的实际例子,介绍数据的处理和计算方法。本实验装置还可以为研究恒速干燥速率,临界湿含量,平衡湿含量等参数随其影响因素的变化规律提供平台。整套装置具有结构紧凑,占地面积小,干燥介质空气流量调节范围大,耗能量小,操作方便等特点。可以方便地测得常见的、典型的干燥曲线、干燥速率曲线和恒速段热空气与被干燥物表面之间的对流传热系数。 1. 用途: (1)供学生做实验,学习干燥曲线和干燥速率曲线及临界湿含量的实验测定方法,加深对干燥操作过程及其机理的理解。 (2)供学生学习干湿球温度湿度计的使用方法,学习被干燥物料与热空气之间对流传热系数的测定方法。 (3)供学生通过实物了解干燥操作中废气循环的流程和概念。 (4)为学生提供一个由气体流量计读数求指定截面处气体流速的实际例子,以便掌握其计算方法。 (5)实验研究恒速干燥速率,临界湿含量,平衡湿含量随其影响因素的变化规律。 2.特点: (1)结构紧凑,占地面积小。 (2)干燥介质空气流量的调节范围大。 (3)耗能量小。 (4)实验操作十分方便。 (5)可以很容易地测得常见的典型的干燥曲线,干燥速率曲线和恒速段热空气与被干燥物表面之间的对流传热系数。 二. 实验装置简介:

相关文档