文档库 最新最全的文档下载
当前位置:文档库 › 空气压缩机热能回收改造实践

空气压缩机热能回收改造实践

空气压缩机热能回收改造实践
空气压缩机热能回收改造实践

132KW空压机热回收

洛阳X X有限公司 空压机热水机回收60% 可产55℃热水40吨 132KW空压机 方 案 设 计 公司名称:东莞启邦机电设备有限公司 日期: 2016年06月23日

目录 一:空压机热水机节能效果统计表 (3) 二:空压机热水机10大技术特点 (5) 三:空压机散热及热水机回收原理 (8) 四:空压机热水机热水方案设计 (10) 五:热水工艺流程图.... . (13) 六:空压机热水系统运行描述 (14) 七:经济效益和运行费用计算. (15) 八:各种供热方式运行费用比较. (16) 九:输送热水系统工程 (17) 十:质量保证标准程序和维护保养. ............ (19) 十一:空压机热水机电控原理 (21) 十二:报价单 . (23) 十三:客户案例 . (23) 十四:现场设备和水垢照片 . ... . (24) 十五:专利证书和公司资料 ... . (30)

1、全方位除垢技术:全自动干烧除垢、酸洗除垢,可彻底清除水垢,还有除 垢提醒功能,解决你的后顾之忧。 干烧除垢是通过压缩气体把换热器的水吹出机体,在水和气混合时,有冲涮旋转功能,能有效的剥离附着在管路表面的水垢,之后没有水的机体受热后,由于金属和水垢的膨胀系数不一样,水垢会膨胀开裂脱离,再冲水进去,水垢就会被带走,可以设定除垢时间和间隔时间,水垢更多的原因是长时间不清洗越积越多,到最后无法清洗。本系统自动除垢,正常设置为每天清洗一次,每次5分钟,根据各地的水质情况可调整。 经过多年的实验总结,水垢即使采用以上除垢,时间久了,在水质硬度较高的地区特别是东北、华北、西北、西南、山东等地区,水垢还是会产生,会影响的换热器的换热效果,水垢的最终解决方案只有一个,就是酸洗除垢,所有锅炉系统除垢都是酸洗除垢,因此选择特殊的换热器,采用某种特殊酸性材料,其酸性不会腐蚀换热器,而只对水垢进行反应,这可以有效的保护换热器同时又把水垢清除。 通过PLC自控技术和参考各种参数进行复杂运算,可达成除垢提醒功能,热水机的水垢达到一定程度,触摸屏有水垢报警提醒,提示需酸洗除垢,此时酸性除垢,可以很简单清洗换热器内的水垢,而不至于等到结垢很严重时才发现,影响换热效果。 只有通过以上方式的除垢,才能保护换热器,使其寿命延长,使换热寿命达到8~10年。

空压机余热回收装置现场安装规范及标准

空压机余热回收项目 现场安装验收标 准 河南蓝海节能技术服务有限公司

目录 一、空压机余热回收设备现场验收标准 ........ 错误!未定义书签。 1、主机验收 (3) 2、油路验收 (3) 3、水路验收 (3) 4. 控制系统验收 (3) 5. 不锈钢水箱验收 (4) 二、空压机余热回收系统验收标准 (4)

、空压机余热回收设备现场验收标准 1、主机验收 1.1每台余热回收设备的安装场地尺寸至少有4m K 2m距离,保证设备有足够的安装空间和检修空间。 1.2安装位置空间高度要比安装后设备高0.5m左右。 1.3地面平整、硬化。 1.4进水温度表、出水温度表、进水压力表、出水压力表等安装位置及安装方法显示正确无误。 1.5余热回收装置主机无渗漏现象。 2、油路验收 2.1油路管道组件与空压机余热回收主机连接完好,无漏油现象。 2.2安装完毕后保证空压机内部油位在正常刻度线。 3、水路验收 3.1进水球阀、过滤器、电磁阀、自力式温控阀按照顺序安装方法、位置正确。 3.2单台设备的进出水管道与循环管道干管以及水泵与水箱连接正确。 3.3管网必须进行水压试验,试验压力为工作压力的1.5 倍,但不得小于 0.6Mpa。 3.4给水管道在竣工后,必须对管道进行冲洗,饮用水管道还要在冲洗后进行消毒,满足饮用水卫生要求。

4、控制系统验收 4.1控制柜安装位置正确合理,方便柜门的开启。 4.2电线走向合理清楚明了。 4.3各项控制功能符合设计要求。 4.4箱体外部无掉漆,磕碰现象。 4.5控制箱面部显示控制元器件布局合理、美观、固定牢靠,标签整齐 4.6箱内布线排列整齐,避免交叉,接线编号清晰,工整,不易脱色。 4.7接线端子压接牢固,可靠,外围无导线毛刺及导线裸露部分,压线处导线 无损伤。 4.8随箱配有原理图,接线图各一份。 4.9控制箱门锁有效无松动。 5、不锈钢保温水箱验收标准 5.1 水箱满水实验,24 小时无渗漏现象。 5.2 管道连接处、阀门及相关附件有无渗漏水现象。 5.3水箱底座符合技术要求。 5.4水箱保温符合技术要求,外表美观。 5.5水箱爬梯焊接位置准确。 5.6水箱安装完成后清洗干净。 二、空压机余热回收系统验收标准 1、控制系统保证空压机余热回收系统与对应的空压机启停联动,保证空压机回油温度正常。

空压机热回收计算

空压机冷却器余热回收应用案例分析 作者:西安工程大学邓泽民 文章来源:本站原创 点击次数:44 时间:2014/12/24 14:01:50 摘要:在纺织厂中,由于无油螺杆空压机制得的压缩空气洁净无油,因此被大量应用,但是高温压缩空气中大量余热通过冷却塔被排放到大气中,不仅造成了能源的极大浪费而且产生了废热污染大气。为此,提出合理的改造方案来回收这部分余热,对其可行性和经济性进行分析,并对中间冷却器进行改造设计。此设计方案是在原有中间冷却器的基础上进行的合理改造,只需要投资4.75万元,每年就可以为该纺织厂节约洗浴用水所需要的8.03万元燃煤费,而且杜绝了燃煤产生的污染物。该方案可为空气压缩机余热回收利用技术在纺织厂的应用提供参考。 关键词:中间冷却器热回收改造节能 引言 纺织厂中,空压机作为动力源,用于气动加压、气动输送、气动引纬等方面。空压机将电动机的部分机械能转化成空气的压力能,在此过程中,会产生大量的热能。美国能源局的一项统计显示:压缩机运行过程中真正用于增加空气势能而消耗的电量仅占其总电耗的15%,其余的几乎都转化为热量[1]。为了保证空压机的正常运行,这部分热量主要通过空气冷却或水冷却排到大气中去,这样造成了能源的极大浪费而且产生了废热污染大气。当前,纺织工业“十二五”发展规划要求加快绿色环保、资源循环利用及节能减排等先进适用技术和装备的研发和推广应用。组织实施节能、降耗、减排的共性、关键技术开发和产业化应用示范[2]。为了响应国家节能减排的方针政策,对西安某纺织厂空压站提出可行的方法和合理的方案,对热量进行回收利用,达到节能减排的目的,提出了一种纺织厂余热回收的方案。 无油螺杆空压机工作原理 目前,该纺织厂采用的是AtlasZR5-53型无油螺杆空压机。冷却方式采用的是水冷却,

空压机余热回收方案

空压机余热利用中央热水系统设计案 致: 根据贵员工宿舍中央热水系统工程项目的邀请,设计施工市森茂节能环保工程有限公司,按贵要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水式为不定时不定量,热水温度在55℃以上。 1.2 工程总案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管

道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 在管路上水箱、水泵、换热器两头及各预留检修处,均安装铜制优质阀门,另在保暖水箱出口及换热器出口处安装水过滤器各1个。 1.2.2保暖水塔 贵司安装两个50吨保暖水箱,即可满足贵公司员工的用水要求。水箱材质为双层不锈钢,50mm厚聚脂泡沫保溫层,24小时温降5℃以。 1.2.3 换热装置 本工程将对13台螺杆式空压机加装余热利用装置,分两套系统,每小时分别可产水800L以上,10小时可产水160吨,完全可以满足员工的用水要求。 1.2.4 补水系统 补水系统使用水位开关、电磁阀、温度控制器控制

空压机热能回收数据

空压机热能回收数据 空压机消耗的电源以以下几种形式消耗 1、75%的电能转化成热能存在于热油之中,通过冷 却器冷却带走; 2、10%的电能转化为热能存在压缩空气中,通过冷 却器冷却带走; 3、10%的电能转化成热能后辐射损失及不可控的压 缩内耗损失; 4、5%的电能转化成马达热量损耗 空压机运行的油温度越高,浪费的有用功就越大,大约有75%的热能存储在热油回路中,所设计的热能回收装置正是为了在对压缩机性能不产生任何负面影响的前提下,以热交换产生热水的形式回收以上绝大部分的热能,回收率可达实际输入轴功率的65%~75%。我公司空压机运行的油温在80-90°c之间,热水温度可达50-80°C之间 我司目前安装了热能回收装置的空压机共有三台,总功率300KW,日常运行的有两台(两用一备),总功率200KW,按70%回收率、负荷率80%计算有112KW,共112×860=96320千卡(1KW=860千卡)。假如自来水温度按年平均15°C计算,热水温度按60°C计算,回收的热量每小时可以产生96320÷(60-15)=2140公斤的热水(一公斤水升高1°C需要1千卡的热量),每天可以产生2140×24=51371公斤温度达60°C的热水,按每人明天30公斤热水计算,可以满足1712个人的需要。另公司还安装了300平方米的太阳能热水设备,可以满足300-400人的热水需要,所以目前我们公司的热水设备共可以满足两千多人的需要。 明年杨丰公司即将搬迁进入科彩工业园,杨丰公司同样有一台装有热能回收设备的空压机,总功率为50KW,每天可以产生近13000公斤的热水,可以满足400人的需要(计算方法同上),由于杨丰的厂房靠近新的综合楼,所以我司已计划将这套热能回收设备用于新的综合楼。 锅炉热能回收数据 我司四号厂房新配置了一台2000000千卡的锅炉,这台锅炉的烟囱上也安装了烟气热能回收装置,正常生产时,每月大概需要消耗18000立方米的天然气(根据1号厂房锅炉的数据),平均每天600立方米,每立方米的天然气可以产生8500千卡的热量,600立方米的天然气可以产生600*8500=5100000千卡的热量,烟气热能回收装置的回收效率一般能达到1-3%,假如按平均2%计算,每天也可以

空压机余热回收技术方案

XXXX有限公司 XXX系统技术方案 一、概述 节能减排,降耗增效是当今每个企业所必须面对的话题,是关系到企业生存和发展的重中之重。能源的危机对于高能耗的企业,面临着严峻的考验和巨大的生存压力,现如今激烈的市场竞争,导致企业的利润空间已经大幅度下浮。只有在企业内部挖潜,在节能降耗上下功夫,不然企业无法生存。作为节能设备的制造企业,我们针对市场开发了适合于各种行业的空压机热能回收系列产品。本系统设计主要是提取空压机运行过程中浪费的热能,在回收热能的同时对空压机进行保护作用。从而达到节约能源与环保的作用。系统采用智能数字自动化控制,自动化程度高,可以完全不需要专人操作。 二、工程实施的意义 1、利用原本浪费的空压机热能进行回收,避免空压机房温度过高,空压机排气温度保持在750C到850C最好温度运行。 2.使空压机更省电,风扇不用开启,以贵公司76千瓦螺杆机为例风机为2.2千瓦,每小时可省约2.2度电,二十四小时可省52.8度电。 3、无需任何费用回收460C~480C热水,用于办公室或者车间供暖热源。 4、完全清洁无污染,安装方便,无需改变原有压缩机结构。 5、提高员工待遇(硬件设施),减少电费支出。

三、系统特点 系统采用全自动智能化控制, 无需专人看管。 回收热水温度可调 循环水箱自动补水 扬程水泵自动送水(达到设定的温度) 循环水箱水位控制 保温水箱水位控制 电脑检测循环水箱水位显示 电脑检测保温水箱水位显示 循环水自动循环加热 电脑系统自动检测故障源并显示在显示屏上

四、系统设计方案 (一)、根据贵公司提供的有关数据可以计算出供暖的面积:针对贵公司x台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收): 第一部分:空压机加载吸收的热量可转化中央空调供暖的功率为: 76×8×80%×80%=389千瓦 第二部分:空压机卸载吸收的热量可转化中央空调供暖的功率为: 76×8×20%×40%×80%=38.9千瓦 总共可以转化成中央空调供暖的功率为: 389+38.9=427.9千瓦 经过保温处理并考虑热量损失10%计算,可供中央空调供暖的总功率为:385千瓦 按照生活供暖加热到23摄氏度为例,每平方米面积所需供暖的功率为180W~200W左右,所以: 压缩机总体可以供暖的面积大致在2000个平方左右。(二)设计方案如下: 针对贵公司8台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收);

空压机余热回收方案设计

空压机余热利用中央热水系统设计方案 致: 根据贵方员工宿舍中央热水系统工程项目的邀请,设计施工方市森茂节能环保工程,按贵方要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计方案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计方案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单 1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计方案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。 1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造方式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水方式为不定时不定量,热水温度在55℃以上。 1.2 工程总方案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个周转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水

空压机热回收-制热水方案

空压机热回收-制热水方案作者:admin 日期:2011-04-30 点击数:278次1、现状 用水情况:员工人数800人,现为热泵加热水,冬天不够用,水箱10T两个,3T和2T各一个.水温50度。 设备情况:现有美国寿力空压机3台,24小时运行,75KW 两台(型号:LS16-100H,)37KW一台(型号:WS37080) 改造建议:改造一台37KW空压机,用于加热生产用纯水,现为电热管加热,纯水需加热到90度,每天用量约为3吨,改造后回收水温越高越好(接近90度),每天有3吨水即可.需加新的热水箱,用水点距离机房距离约100米。另外,改造一台75KW,用于员工生活用水,水温60度,现为热泵加热,但冷天不够用,机房距离突舍距离约400米。 2、概述 目前贵公司有寿力牌微油100hP空压机2台,利用一台节能改造,做热能回收利用于生产车间用热水,另外,改造一台75KW,用于员工生活用水;我们向贵公司推介“高效热回收器”,先利用现有的螺杆空压机,将空压机热能全部余热利用,转换成≥60℃热水,回收热能≥100%空压机作功功率。水温在55℃~80℃可调,不受白天黑夜影响、提升空压机运作能力、延长空压站各设备寿命、并能提升空压机产气量,为往后贵公司增添设备扩大生产供气有了更富余的空间。 3、节能分析 1、空压机产热水折合电能耗能情况: 寿力100HP/75KW空压机有两台,寿力50HP一台,并且3台中也会有卸载的可能性,我们以3台主用满负荷作功计算。 本地年均气温约23℃,平均水温以20℃计,产热水60℃温升40℃,1L水温升1℃需要1kcal(大卡)热能,1kw 热焓为860kcal,电热水器热效率80%(20%为损耗费),1kw工业电费1元计算; “高效热回收”器所回收热效率根据环境温度变化而变化(环境温度≥30℃,热能回收可≥110%,空压机环境温不同,热回收效率也不同,造热水量多少也不同),1L水从20℃温升40℃,需热能40kcal,按空压机90%有效功率计;以年均环境温度23℃计算,热能回收可≥100%。 75KW×100%×90%×860kcal×24h÷40kcal(1L温升)=34830L/天/台=34.8m3/天/台 34.8m3/天÷24天=1.45m3/台/h

空压机余热回收

空压机余热回收 空压机余热回收又叫空压机热能回收,该方式实现废热循环利用,有利于节能减排,保护环境,大幅降低企业消耗成本,为企业带来可观的经济效益! 空压机余热回收简介 空压机热能回收系统是通过空压机内部改造,增加热能回收器,将空压机运行的过程中产生的大量热量,通过CHR高效热能回收器进行回收利用,从而用于生活、生产。如,顺高余热回收系统将回收的热量用于液体介质的加热、锅炉补水的预加热、中央空调系统使用、生活用水及地暖用水、工业清洗和卫生设施清洁等方面。 余热回收特点 1、全优设计,高效节能 独特、新颖、高效的设计,延长空压机冷干机的“使用寿命” 2、零运行费用经济效益显著 不需要任何费用,可提高空压机的运行效率,节省空压机冷却风扇用电。

3、冷水直热、智能控制 采用独特、专利设计的直热方式可保持出水温度恒定,水位高低自动控制。 4简单、可靠、安全、维护少 延长空压机的“消耗品”的更换周期。 余热回收系统配置高端 1、专业的换热器设计 高效热能回收换热器,采用低阻力、高效率、高导热性技术设计,具有体积小、重量轻、阻力小、导热性强等特点。例,顺高余热回收时候的高效换热器采用不锈钢板材质,具有耐腐蚀、耐高温、耐高压等性能,极大地保障热能回收器效率同时保证了空压机系统的正常稳定的运行。 CHR高效热能回收换热器图示 2、高效热能回收器采用先进的智能化电气控制系统: 1.可与空压机实际运行情况进行联动工作. 2.可实现全天候无人值守. 3.可全面监控热回收系统各个物理参数 4.可在线统计热回收量,直观反映回收热量的经济效益 5.可控制冷却风扇运行以达到控制油温的目的

空压机余热回收装置的工作原理

空压机余热回收装置的工作原理 洛阳中懋环保设备有限公司,通过深入研究解决了工业余热浪费的问题,空压机余热回收装置可以为工厂节约大量的成本,变废为宝,充分利用资源。备受社会工业人士的欢迎。下面为大家剖析空压机的内部工作及空压机余热回收装置的工作原理。 现行螺杆式空气压缩机里的空气通过进气过滤器将大气中的灰尘或杂质滤除后,由进气控制阀进入压缩机主机,在压缩过程中与喷入的冷却润滑油混合,经压缩后的混合气体从压缩腔排入油气分离罐,从而分别得到高温高压的油、气。由于机器工作温度的要求,这些高温高压的油、气必须送入各自的冷却系统,其中压缩空气经冷却器冷却后,最后送入使用系统;而高温高压的润滑油经冷却器冷却后,返回油路进入下一轮循环。 在以上过程中,高温高压的油、气所携带的热量大致相当于空气压缩机功率的1/4,其温度通常在80℃—100℃之间。螺杆式空气压缩机通过其自身的散热系统来给高温高压的油、气降温的过程中,大量的热能就被无端的浪费了。 为了充分利用螺杆式空压机所产生的余热,空压机热泵热水器提供了一种余热利用技术,利用该技术对螺杆式空气压缩机所产生的高温高压的气体进行冷却,不仅可以提高空气压缩机的产气效率,而且可使企业获得生产和生活所需的热水,严冬可加热到≥50℃,夏秋季节≥65℃,从而解决了企业主为福利生活热水长期经济支付的沉重负担。 现行企业的生活热水大多都采用燃油锅炉供应热水,而且必须是限量定时供给。从调查三十几家企业的供水资料显示:就是采用节能型的燃油锅炉烧水,人均每天的热水费用是:冬天0.8元/人,夏天0.5元/人,平均为:0.65元/人,月支付19.5元/人,一名职员的年供热费用是:234.00元/人,一个1000人的企业光热水一项经济支付就达234000元。使用我们的余热利用装置,就可以得到方便可观的经济实用价值。 空压机热回收是一种新型高效的余热回收设备,设备靠吸收空压机产生的废热来把冷水加热的,没有能源消耗。作为一种新型高效的余热利用设备,主要用于解决员工的生活、工业用热水等问题,因为企业本身就现在用螺杆式空压机,只是增加了螺杆空压机的功用,为企业节省能源的消耗,从而节省大量的成本。 空压机产生的热能被热能热水机充分吸收并对冷水进行加热,同时空压机得以降温。充份利用这些浪费的热能有利于节能减排,降低工厂的运营成本,同时改善空压机的运行状态,提高产气量,节约空压机的耗电费用。因此,利用这一浪费的能源,已经成为越来越多企业的共识。 热能热水机组,是利用压缩中的高温油气热能,通过热交换将热能传递给常温热水,实现热能利用。电动机带动螺杆机旋转,空气经过滤器,被吸入螺杆压缩机中压缩成高压空气,并与循环油混合形成高压高温油气混合气体,进入油气分离器。油气混合气被分离成油气和空气后,其中的压缩空气经后冷却器散热后供给用户;而循环油气在油气分离器中被分离,凝结成液态后,再经前冷却器散热及过滤器过滤,回到压缩机,完成一个循环过程。压缩机热能热水机组是将高温循环油(和高温压缩气体)引入热能热水机组内,空压机运行过程中所产生的热能被热能热水机充分吸收,同时压缩机得以降温。 喷油螺杆压缩机热能热水机组,是一种利用压缩机高温油气热能,通过热交换将热能充分利用的节能设备。它通过能量交换和节电控制,收集空压机运行过程中产生的热能,同时改善空压机的运行工况,是一种高效废热利用、零成本运行的节能设备。 洛阳中懋环保设备有限公司专业致力于节能产品和技术应用及推广。公司结合近年来广大企业能耗设备的现实需求和保护我们地球的共同社会责 任,公司引进国外先进节能技术和产品,自主研发了高效热能利用节能设备。公司采用世界先进的合同能源管 理(EMC)模式,为企业节能降耗找到一种新的融资途径。

无油螺杆空压机热回收

Z系列空气压缩机的日常保养 一、每天 运行前 1、检查油面高度; 2、关上中间冷却器后冷却器的手动排水阀; 3、打开冷却水进出口阀门; 4、打开送气阀门。 运行中 1、检查运行数据; 2、检查空气过渡器指数器; 3、检查加卸载压力; 4、检查中间冷却器和后冷却器自动排水是否正常排放; 5、手动排放中间冷却器和后冷却器冷凝水; 6、记录运行数据。 停机后 1、关闭送气阀门; 2、打开中间冷却器和后冷却器手动排水阀门; 3、10分钟左右后关闭冷却水阀门。 二、每周 1、清洁机器; 2、如装有储气罐,排放冷凝水; 3、检查有否漏油或漏水,检查全部的空气管道,旋紧泄漏处接头,更换损坏的 垫子或管子; 4、如果是风冷机组,吹净冷却器。 三、每月保养工作 电动机部分: 1、经常清洁电机的散热翅片和冷却风扇的通道; 2、检查并旋紧电机支承螺钉,电源线接头螺母; 3、推荐电机润滑脂牌号 SIEMENS(西门子)马达: SHELL(壳牌)ALV ANIA GREASE(爱万利R3) ABB马达:ESSO(埃索)UNIREX N2 4、每次加油脂重量和时间根据标签数据,不同牌号级别的油脂不可混合使用。

电器部分: 请有经验的电工检查测试以下部分 1、机组运行时加/卸载时的电压和电流; 2、主线路和控制线路保险丝; 3、电动机过载保护; 4、交流接触器触点表面熔蚀程度; 5、时间继电器; 6、温度保护; 7、仪表型检查指示灯; 8、电脑型检查面板指示; 同时检查电源线无割伤断裂烧焦处,并将各接头处的螺钉和螺栓旋紧。 自动排水装置: 检查自动排水装置(中冷和后冷)是否有冷凝水排出,潮湿天气水量特别多,否则需清洗浮球阀,检查装置中孔眼是否堵塞。 四、每六个月 1、卸下空气过滤器部件,用压缩机空气吹净并检查一下; 2、清洁油呼吸器。 五、每一年 1、更换润滑油和油过滤器; 2、拆卸清洗自动排水阀; 3、更换空气过滤器; 4、拆卸并更换卸载组合件部件; 5、更换平衡膜片 6、拆卸卸载活塞的帽型膜片; 7、拆卸并检查单向阀门; 8、测试安全阀; 9、检查中间冷却哭和后冷却器的冷却效果,并加压试验(ZR机); 10、检测空气压缩机压缩比(ZR机); 11、由电工检测电气的联锁装置,马达断路器等的工作情况; 12、检查按1型安装的马达安装情况; 13、检查按E型安装的联轴节的橡胶垫圈。

空压机余热回收案例

空压机余热回收案例: 某公司空压机余热回收节能改造 项目背景 1.改造前用能系统状况 某造船公司在生产中使用多台离心式空压机来制造压缩空气(空压机共3台,其额定功率2台974kW,1台662kW),合计容量为2610kW。 2.改造前用能系统存在的问题 空压机在运行时会产生大量的压缩热,通过油冷方式进行冷却并将热量排放到环境中。而与此同时,在生产生活中又需要用60℃热水,采用一台燃煤锅炉生产蒸汽以满足需要,造成了一定程度的能源浪费。 技术方案 1.技术原理 (1)叙述采用的技术的原理; (2)叙述采用节能技术及原因; (3)叙述电能替代技术的关键能效指标(设备效率、能效比或产品单耗); (4)叙述该技术使用条件和技术优势。 技术的原理:空压机压缩空气的过程中,由于空气分子间的摩擦,将产生大的热能,其热能总量接近于空压机的100%轴功率,其中70-90%的热能是可以被回收利用。在空压机系统中串

接换热设备,将被排放的热量交换于水、油等储热介质中加以综合利用。 采用节能技术及原因: 节能:改造原有系统,不仅利用了主产品,而且将副产品进行回收利用,节能效果明显。 易控制:回收空压机余热后生产热水后存入蓄热水箱供生产生活需要,补水、供水全部采用自动控制。 适用条件和技术优势: 目前空压机余热回收广泛应用于造船、钢铁、水泥等大量使用空压机且有生产生活用热需求的行业。技术优势:作为空压机来讲,它的主产品为压缩空气,热量为副产品,通常情况下,我们仅利用主产品,浪费副产品,不仅仅是浪费,利用该技术将空压机的热能进行回收利用,投入小产出高,优越性明显。 2.技术方案 (1)节能改造方案:本项目采用在空压机房中安装一台热交换器对其进行节能改造。

空压机余热回收系统(小论文)

学号:201114230305 毕业设计翻译文档GRADUATE DESIGN TRANSLATION DOCUMENT 设计题目:空压机余热回收方案设计 学生姓名:王赶强 专业班级:11装备3班 学院:机械工程学院 指导教师:陈丽文讲师 2015年06月10日

空压机余热回收系统方案设计 王赶强 1.背景 随着工业和经济的迅速发展,人们对于能源的索取也与日俱增。伴随人类无休止的开采,世界能源危机也与日俱增,化石燃料的储量日益减少,随之,能源的合理利用,能源的高效利用以及能源的重复利用、回收利用得到了人们的广泛关注。中国是世界能源生产的大国,然而,限制国民经济发展的主要问题还是能源,面对能源生产不能高速发展又急需经济上的快速发展唯有两条路可行:一是尽可能的增加能源的生产量,二是能源的节约利用。中国是世界上能源利用率最低的国家之一,节能的潜力巨大,特别是在工业热能的转换和利用之中有很大的节能空间。 2.研究方向 工业余热的回收和利用是提高能源利用率和环境保护的有效途径,对提高国民经济的发展、能源的二次利用以及环境的保护具有重要的意义,因此,工业余热的回收利用受到了极大的关注。现设计一套空压机余热回收方案,利用余热回收系统对公司现有的6台阿特拉斯空压机进行余热回收再利用。本文采用两套系统分别对空压机产生的高温气体和机油进行余热回收,通过工艺计算和设计要求选用合适的换热器,采用PLC和PID模块进行水量的自动添加控制,最后综合此套系统的消费和收益进行可行性分析,对国内余热回收领域有很大参考价值。 3.研究内容 热回收系统包含动力装置、空压机设备、换热设备、存储设备、输送装置及管道。 动力装置采用电机提供动力,电机与空压机之间用联轴器连接,其特点是主机与电动机之间为柔性联结,联结可靠,便于对电机进行注油保养,而且单件重量较轻,现场维护方便。 空压机设备采用阿特拉斯螺杆空压机,阿特拉斯螺杆空压机拥有世界上最高的单级压缩比,最高单级压缩比可至18,所以阿特拉斯螺杆空压机的工作压力可至1.5MPa。低含油量螺杆空压机中最关键的是油气分离装置,阿特拉斯螺杆空压机所采用的是德国MANN公司的产品,技术指标可靠,油含量的大小可控制于

空压机余热回收系统原理

●空压机余热回收系统节能原理: 螺杆空压机的工作原理是由一对相互平行啮合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,从而实现空压机的吸气、压缩和排气的全过程。螺杆空气压缩机在长期连续的运行过程中,把电能转换为机械能,机械能转换为风能,在机械能转换为风能过程中,空气得到强烈的高压压缩,使之温度骤升,这是普通物理学机械能量转换现象,机械螺杆的高速旋转,同时也摩擦发热,这些产生的高热由空压机润滑油的加入混合成油、气蒸汽排出机体,这部分高温油、气的热量相当于空压机输入功率的25-30%,它的温度通常在80℃(冬季)—100℃(夏秋季)。由于机器运行温度的要求,这些热能通过空压机的散热系统做为废热排往大气中。 螺杆空压机节能系统就是利用热能转换原理,把空压机散发的热量回收转换到水里,水吸收了热量后,水温就会升高。使空压机组的运行温度降低,不仅提高了空压机运行效率,延长空压机润滑油使用寿命,回收的热水还可用于员工热水洗澡、办公室及生产车间采暖、锅炉补充水、金属涂装清洁处理、无尘室恒温恒湿车间及其他需要使用热水的地方,从而降低了企业为福利生活用热水、工业用热水而长期支付的经营成本。 ●安装空压机余热回收系统的好处: 1、安全、卫生、方便 螺杆空压机余热回收系统与燃油锅炉比较,无一氧化碳、二氧化硫、黑烟和噪音、油污等对大气环境的污染。一旦安装投入使用,只要空压机在运行,企业就随时可以提取到热水使用。 2、提高空压机的运行效率,实现空压机的经济运转 螺杆空压机的产气量会随着机组运行温度的升高而降低。在实际使用中,空压机的机械效率不会稳定在80℃标定的产气量上工作。温度每上升1℃,产气量就下降0.5%,温度升高10℃,产气量就下降5%。一般风冷散热的空压机都在88—96℃间运行,其降幅都在4—8%,夏天更甚。安装螺杆空压机余热回收系统的空压机组,可以使空压机油温控制在80—86℃之间,可提高产气量8%~10%,大大提高了空压机的运行效率。 ●空压机余热回收系统特点: 1、空压机原有冷却系统与空压机余热回收系统是两套完全独立的系统,使用者无须担心由于空压机余热回收系统的原因而影响空压机的运行。两套系统的切换自动控制,在空压机余1 / 3 热回收系统未启用时,空压机使用机身自带冷却系统;当余热回收系统启动时,系统可自动切换至余热回收系统。 2、全自动控制系统,无需人为操作,控制系统会根据温度、水位的情况做出判断,自行决定换热方式。 ●螺杆空压机余热回收系统产热水量参数表: (空压机运行压力大于7.6kg/cm2) 可回收热时m3/h时m3/h时m3/h时m3/h机型功kca2050205520602065 13500.450.30.315kw0. 0440.519800.660.522kw 0.60.9270000.680.7630kw 03330741.110.937kw0.8

空压机余热回收方案

空压机余热回收方案 设 计 方 案

目录 一:产品简介 (3) 二:工程概况 (8) 三:空压机余热回收热量分析. (9) 四:空压机余热回收设计方案.. ...... ...... (12) 五:产品技术参数 (13) 六:空压机热水系统控制说明 (15) 七:空压机热水系统材料说明 (16) 八:经济效益和运行费用计算. (17) 九:各种供热方式运行费用比较. ........ .. (19) 十:输送热水系统工程设计依据 (20) 十一:质量保证和售后服务 (21) 十二:施工进度计划表 (22) 十三:施工安全...... (23) 十四:空压机热水系统报价 (23) 十五:空压机热水器工程案例 (25)

一、产品简介: 宇博牌空压机热能转换机(也叫做空压机余热回收机、或空压机热能热水机),主要适用于螺杆式空压机、滑片式空压机、涡旋式空压机、发电机组和大型螺杆中央空调的余热回收,其材质选用了耐高温、耐腐蚀、高导热复合新型材料,先进独特的设计和一流的技术制作,使其最大化回收空压机的剩余热能。 1. 空压机在工作时机油温度通常在80~95℃之间,产生大量的余热,以往都被散热器和 散热风扇排往空气中没有利用此热能,反而造成运营成本高和环境污染……现空压机热能转换机将余热回收利用于加热,成为企业:工业用水、恒温用水、锅炉预热水、员工冲凉用水、热水空调……从而解决了企业为使用热水的长期经济负担。 其热回收原理是: 空气压缩机长期连续的运行过程中,把电能转换机械能,机械能转换为风能,在机械能转换为风能过程中,空气得到强烈的高压压缩,使之温度聚升,这里普通物理学机械能量转换现象,机械螺杆的高速旋转,同时也摩擦发热,这些产生的高热由空压机润滑油的加入混合成油/气蒸汽排出机体,螺杆空压机热能转换机组就是利用热能转换原理,把空压机散发的热量回收转换到水里,水吸收了热量后水温就会升高。空压机组的运行温度就会降低。 2. 宇博牌热能转换机由于充分利用空压机工作时的余热,空压机风冷或水冷部分散热风 机/散热器(因油温、气温降低在75~85℃合适的条件下)故自动停用,同时可冷却空压机产生出来的气体,减少了干燥机的工作负荷,从而达到空压机、干燥机省电、节能、环保、减排、降低磨损、延长寿命、安全可靠的目的。

空压机热能回收与空压机余热回收

空压机热能回收与空压机余热回收 信息由:余热回收https://www.wendangku.net/doc/1117254233.html,/huishou.aspx提供 压缩空气能耗及费用分析 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用组成:系统的初期设备投资及设备维护费用占到总费用的23%,而电能消耗(电费)占到77%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪费约15—30%。这部分损失,是可以通过全面的系同解决方案来消除的。 在不断提高系统效率的同时,我们发现空压机运行时会产生大量的压缩热,压缩热消耗的能量占机组运行功率的85%,通常这部分能量通过机组的风冷或水冷系统交换到大气当中。所以压缩机的热回收是持续降低空气系统损耗,提高客户生产力的必要手段。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计开始。现代化的压缩空气系统运行时所碰到的疑难和低效问题总是让人觉得很复杂和无从下手。其实对压缩空气系统进行正确的能源审计就可以为用户的整个压缩空气系统提供全面的解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析,采取适合实际的解决方案,能够实现为客户的压缩空气系统降低10%—50%的电力消耗,为客户带来新的利润空间。 压缩空气系统余热分析 根据美国能源署统计。压缩机在运行时,真正用于增加空气势能所消耗的电能,在总耗电量中只占很小的一部分15%,大约85%的电能转化为热量,通过风冷或者水冷的方式排放到空气中。 这些“多余”热量被排放到空气中,这使得这些热量被浪费,对于这些被浪费的热量,其中有50%是可以被利用的,折合压缩机的轴功率的40%。

离心压缩机余热回收工程技术方案教材

离心压缩机余热回收工程技术方案 编制单位: 编制日期:

、项目概况 (1) 、项目建设的必要性 (1) 三、项目建设内容 (2) (一)项目设计原则 (2) (二)建设内容 (3) (三)工艺流程简述 (4) (四)产品特点......... 错误!未定义书签 四、热工计算 (6) (一) .......................... 基本参数 6 (二) .......................... 设计计算书 6 (三) .......................... 主要设备7 五、经济效益分析 (10) 、项目概况 有限公司现有三台空压机常年运行,空压机采用离心式两级

压缩工艺,提供总容量为800NmVmin,0.35MPa的压缩空气供生产 使用,根据工艺和设备的要求,二级入口风温不可高于65C。空 压机压缩空气二级出口温度为夏季140 C,现生产工艺是将风温降 到60C以下。 有四台三级离心压缩空压机,提供总容量为730NmVmin,0.75MPa的压缩空气供生产使用,根据工艺和设备的要求,二、三级入口风温不可高于65 C,空压机压缩空气三级出 口温度夏季为140 C,现在的运行方式是将三级出口风温降到60 C 以下外供。 二、项目建设的必要性 国民经济和社会发展第“十二五”规划纲要提出:“面对日趋强化的资源环境约束,必须增强危机意识,树立绿色、低碳发展理念,以节能减排为重点,健全激励和约束机制,加快构建资源节约、环境友好的生产方式和消费模式,增强可持续发展能力。” “十二五”期间的节能指标为:单位GDP能耗降低率为17% 在能源费用日趋增高的今天,节能降耗也是企业降低运行成本,提高经济效益的一个有效途径。 本项目中,空压机作为压缩空气的生产设备,在制取压缩空气的过程中,不可避免的要产生大量热量,受生产工艺的制约,压缩空气必须降温后才能使用,因此要消耗大量的电能驱动循环冷却水、制造低温冷冻水来给压缩空气降温。而在此过程中被冷却掉的热量有约50%是60 C以上常

空压机余热回收系统

空压机余热回收系统 1.背景 随着工业和经济的迅速发展,人们对于能源的索取也与日俱增。伴随人类无休止的开采,世界能源危机也与日俱增,化石燃料的储量日益减少,随之,能源的合理利用,能源的高效利用以及能源的重复利用、回收利用得到了人们的广泛关注。中国是世界能源生产的大国,然而,限制国民经济发展的主要问题还是能源,面对能源生产不能高速发展又急需经济上的快速发展唯有两条路可行:一是尽可能的增加能源的生产量,二是能源的节约利用。中国是世界上能源利用率最低的国家之一,节能的潜力巨大,特别是在工业热能的转换和利用之中有很大的节能空间。 2.研究方向 工业余热的回收和利用是提高能源利用率和环境保护的有效途径,对提高国民经济的发展、能源的二次利用以及环境的保护具有重要的意义,因此,工业余热的回收利用受到了极大的关注。现设计一套空压机余热回收方案,利用余热回收系统对公司现有的6台阿特拉斯空压机进行余热回收再利用。本文采用两套系统分别对空压机产生的高温气体和机油进行余热回收,通过工艺计算和设计要求选用合适的换热器,采用PLC和PID模块进行水量的自动添加控制,最后综合此套系统的消费和收益进行可行性分析,对国内余热回收领域有很大参考价值。 3.研究内容 热回收系统包含动力装置、空压机设备、换热设备、存储设备、输送装置及管道。

动力装置采用电机提供动力,电机与空压机之间用联轴器连接,其特点是主机与电动机之间为柔性联结,联结可靠,便于对电机进行注油保养,而且单件重量较轻,现场维护方便。 空压机设备采用阿特拉斯螺杆空压机,阿特拉斯螺杆空压机拥有世界上最高的单级压缩比,最高单级压缩比可至18,所以阿特拉斯螺杆空压机的工作压力可至1.5MPa。低含油量螺杆空压机中最关键的是油气分离装置,阿特拉斯螺杆空压机所采用的是德国MANN公司的产品,技术指标可靠,油含量的大小可控制于 3ppm以下,且阿特拉斯螺杆式空气压缩机易损件少,连续运转时间长。空气压缩机的工作循环,分为进气、压缩和排气三个过程,随着转子的转动,每对相互啮合的齿相继完成相同的工作循环。 空压机的结构:螺杆式空压机主要包括三大部分驱动部分,机体部分和底座;空压机的工作原理:随着空压机转子的转动,每对相互啮合的齿轮相继完成进气、压缩和排气三个过程的工作循环。 由于空压机产生的气体为高温高压蒸汽,我们用管壳式换热器对空压机产生的高温气体的热量进行换热,回收一部分热量用于对工艺用水进行加热。之后制作不锈钢水箱来储存换热热之后的热水,换热器连接循环保温水,所需温度通过温控系统进行调节,由输送系统送到供给水的保温水箱进行连接使用。 管壳式换热器的优点:结构简单、牢固,操作弹性大,应用材料广。列管式换热器多种多样有固定管板式、浮头式、U形管式和填料函式等类型,本设计采用U形管式换热器,采用单壳程双管程设计有效增大了换热面积和换热效率。U形管式换热器的工作原理是热量从高温流体传热至低温流体,U型管式换热器管程每根管子都弯成U形,管子的两端分别安装在同一固定管

相关文档
相关文档 最新文档