文档库 最新最全的文档下载
当前位置:文档库 › 家用空气源热泵与太阳能热水系统比较

家用空气源热泵与太阳能热水系统比较

家用空气源热泵与太阳能热水系统比较

家用空气源热泵热水器与非承压家用太阳能热水系统比较

太阳能+空气双热源式热泵及热水系统

太阳能-空气双热源式热泵及热水系统 随着面积超过100m2的住宅和别墅的出现,以及人们对空调房间内空气品质的要求越来越高,研究开发一种经济效益和环保效益均优的户式中央空调系统(有的称家用中央空调)已经迫在眉睫。同时,研究开发和利用新能源,已经成为世界各国能源研究与开发的共同战略目标。20世纪70年代能源危机以来,太阳能作为可利用的新能源,逐步成为国内外研究的重点。最近研究表明:到2050年,核能将占第一位,太阳能占第二位;21世纪末,太阳能将取代核能占第一位。太阳能以其取之不尽、安全、无需运输、清洁无污染等特点受到人们的重视。由于太阳能受季节和天气影响较大、热流密度低,导致各种形式的太阳能直接热利用系统在应用上都受到一定的限制。随着生活水平的提高,热用户对于供热的要求也越来越高,太阳能利用的一些局限性日益显现出来:(1)在太阳辐照时间少的国家和和地区,其应用受到很大限制;(2)白天集热板板面温度的上升会导致集热效率下降;(3)在夜间或阴雨天没有足够的太阳辐射时,无法实现24h的连续供热,如采用辅助加热方式,势必又要消耗大量的其它能源;(4)加热周期较长;(5)传统的太阳集热器与建筑不易结合,在一定程度上影响了建筑的美观;(6)常规的太阳热水器需要在房顶设水箱,在夜间气温较低时,储水箱和集热器向外界散热造成大量的热量损失。为了克服太阳能利用中的上述问题,人们又提出了采用太阳能加热系统作为蒸汽压缩式热泵系统的热源。蒸汽压缩式热泵在实际应用中最大的问题是当冬天的大气温度很低时,热泵系统的效率比较低。 而太阳能热利用系统中的集热器在低温时集热效率较高,而热泵系统在其蒸发温度较高时系统效率较高,那么可以考虑采用太阳能加热系统来作为热泵系统的热源。这样既克服了太阳能加热系统的问题又解决了热泵系统冬季效率低的问题。太阳能热泵系统由于利用太阳能具有节能环保的作用而得到快速的发展[1-2]。 1 太阳能热泵系统的型式

太阳能双源热泵系统简介

太阳能双源热泵采暖系统 北京聚天华节能科技发展有限公司自主研发,拥有完全知识产权。公司对整个系统进行了可行性论证、市场调查、项目立项和研发、试制及测试,项目从2008年立项至今。系统节能性能获得了北京工业大学、清华大学和科技部的热能、节能等方面的专家充分的认可。已申报太阳能双向热泵主机、铜热管高效太阳能集热器、蓄热式余热回收换热器等七项国家专利(其中发明专利四项)和多项软件/作品著作权。 双源热泵是通过主机的双向岔流结构将两个热源(阶梯)并接起来。通过双源切换合理使用两个热源,以达成末端用能需求。 2008年11月我们便在北京市昌平区马池口镇建立了试验项目,使用太阳能为该项目提供采暖季和过度季采暖和生活热水(当时没有做制冷季空调设计)。该项目为一个小独院民居,采暖面积70平米,使用地板采暖。铺设太阳能集热器24平米,双源主机额定功率6千瓦。系统经受了08年11月~11年9月三个采暖季和三个过度季的系统运行的考验,为我们对系统的每一次改进提供了宝贵的数据依据。在试验项目运行的三年时间里,我们的系统经历了主机升级两次和控制系统改版(软件、硬件大小改动)十一次。 科技部科技创新基金得主,科技部和中关村科技园区支持的科技创新项目。2010年5月我们申报了国家科技部的创新基金,专家组经评审核议,对双源热泵采暖系统的创新性和节能性能给予了充分的肯定和一致的好评。科技部、中关村科技园区、丰台科技园给予我们一定的资金和政策支持。 双源热泵采暖系统的适用范围:低层建筑、低密度建筑,采光良好,有一定的自由空间(用来布置太阳能集热器,建设机房,放置中控机柜、蓄热水箱和双源热泵主机等)。使用地源热泵要求房子周围有空地可以打地源井;使用水源热泵要求附近有江河湖泊。系统要使用土壤源热泵,所以对地下土层土质有一定要

如何使空气能热泵热水器运行更节能、省钱

如何使空气能热泵热水器运行更节能、省钱 在十几年的推广应用中,商用空气能热泵热水器应用在酒店、宾馆、学校、医院等用水量大的地方突显成效,主机的工作时间多数达到总时数50%以上,性价比合理体现。在黄河流域以南地域的不完统计,一般对用户的保证为全年平均每吨水用电在13度,与其它常规能源比有明显的优势。 实际应用中主要是大循环加热方式、定温放水加热方式、直接过水加热方式和静止加热方式四种,以上四种加热方式分别就应用效果简要分析。 大循环加热方式的特点是系统简单,施工方便、投资小,适用于集中用水的场合,一箱水用完,再放满水进行加热,是节能明显的方案。如果是连续用水随时补水就会因温差加热控制主机启动长期工作在高温段40-55度,是系统工作COP值最低的温区,没有明显的节能效果,这类用户的结论是空气能不节能,等于花高价买了电锅炉。所以大循环加热方式在连续用水的工作环境,不可采用。 定温放水实际上是把加热水箱和储热水箱分开的制水和用水分开的加热系统,加热水箱可以是内置盘管的静止加热方式,也可以是循环加热方式。当加热箱小水箱的水达到了设定的温度就向储热水箱大水箱中放水;当大水箱中满水时,小水箱继续加热作补水储备,也就是说大水箱必须有容积满足小水箱的容积,同时小水箱水达到设定温度值二个条件才可以。这种加热方式充分分挥了热泵的优势,从自来水的初始水温加热到设定水温平均能效最高。我们曾多次提到空气源热泵是泳池加热的首选,泳池水要求26度,空气源热泵在标准工况下进行恒温加热,5度左右温差恒温加热能效可达到8。所以定温放水加热方式是空气能热泵热水器系统最节能的最可靠的加热方式。这种方式系统比大循环复杂,控制上要求较高、成本稍高,但高出的初投资和节能效果上比是最合理的。 直出水机在稳定的自来水压力和较高的环境中况下直出设定温度热水的空气能热水系统,一种采用电子控制电动阀变化开启度的方法变化出水量,保证出水温度的方法;另一种是通过主机系统工作变化,采样后传送给比例阀变化开启度变化出水量保证出水温度的方法,该系统对自来水的压力,环境温度敏感。气温变化对出水量影响很大,所以要按当地最低温时产水量选择热泵机组,自来水压力不稳定的地区不宜选用。这类机型多适用于我国南方。北方地区有霜冻区域不宜选用。长时间连续工作易结霜,用水温度质量要求高,管路做回水加热恒温的不宜选用。 静止加热方式类似于目前常见的家用型热水器,但是多数为开式非承压水箱,这部分可以用于定温放水的小水箱部分作加热水箱,也可以直接对储热水箱大水箱进行加热。这种方式的出现是因为有些地区水质较差或选用地下水,造成对主机加热部分换热器的堵塞,很难清洗,采用这种开式加热方式方便清洗,甚至可以更换加热器,解决了水质差,地下水区域的空气能热水器的应用难题。 以上四种方式尽管定温放水加热方式节能适用,但是如果巧妙的进行系统管理会出现节能奇迹。 工程上为了保证供水经常采用超大容量蓄水法,就是正常用水量10吨储备15-20吨。

空气源热泵热水器的原理和发展史

空气源热泵热水器的原理和发展史 追溯其渊源,空气能热水器应该算是个舶来品。空气源热泵技术1924年就已在国外发明。然而在很长的一段时间里并没有被人类充分地认识和运用。直到20世纪60年代,世界能源危机爆发以后才受到充分的重视,所以此后世界各国纷纷加大了研发力度,进一步推广了热泵技术,使得目前热泵技术已经比较广泛地使用。20世纪70年代初期,由于"能源危机"的出现,热泵又以其回收低温废热,节约能源的特点,在产品经过改进后,更受到了人们的青睐。比如美国,热泵的产量从1971年的8.2万套/年猛增至1976年的30万套/年,1977年再次跃升为50万套/年,而此时日本后来居上,年产量更超过50万套。目前热泵市场每年都在成倍增长,发展势头相当迅猛。在欧美大多数发达国家,如澳大利亚、英国、法国、北欧及南欧的一些国家,热泵产品已经进入了大多数家庭,而在我国的毗邻国家如新加坡、马来西亚等也是热泵热水器使用比较普遍的国家。 相对来说,空气源热泵热水器在我国起步则比较晚,国内厂商关注该产品也是近几年的事情。由于前期在产品的导入时,市场培育不够,因而无论是从技术还是从产品上来看均还处在初级发展阶段。而这两年来,在各方面能源紧缺的情况下,空气源热泵热水器逐渐被广大厂商重视起来,尤其是近两年来有了比较大的增长,单就生产企业也由屈指可数的几家突飞猛进爆涨到目前的几十家甚至近百家。还有一些手工作坊或者纯粹靠贴牌组装而卖产品的则更加不在少数。而04年进入的数家空调企业更加壮大了这一队伍的规模。

总体来说,就目前而言,国外的空气源热泵热水器市场已经相当成熟,在发达国家使用的比例有的高达70%,比如在新加坡、欧美的一些国家等。就是在中国的香港和台湾地区也有将近50%的推广使用力度。只是受国内消费和经济发展规律的影响,空气源热泵热水器也是在近4年才被引进并在小范围内推广使用,而且是集中在经济发达的两个三角洲地区。据市场的统计数据来看,虽然该产品在国内上市只有短短几年时间,但是增长的速度却非常快。2002年时,它的销售额还不到1000万元,但是到2003年,它已达到了3000万元,2004年则达到8000万到1个亿。按照预算估计,2005年,热泵产值会超过三个亿。可以说,就象前几年互联网接入时的发展速度一样,整个行业销售增长率将以几何基数增长,市场空间十分巨大。 四、什么是空气源热水器: “空气能”热水器是一种采用空气热能生产热水的热水器。通过电能驱动空气压缩机搬运空气中的热量,通从冷媒的膨胀和压缩实现与水的热交换。它是继燃气热水器、电热水器和太阳能热水器之后的第4代热水器,它综合电热水器和太阳能热水器的优点安全、节能、环保型热水器,可一年三百六十五天全天候运转,制造相同的热水量,使用成本只有电热水器的1/4,燃气热水器的1/3,太阳热水器的1/2。 五、空气源原理: 空气源热水器以制冷剂作为媒介,冷媒吸收了环境空气中的热量后汽化,通过压缩机压缩制热,变成高温高压气体,再经热交换器与水交换热量后,经膨胀阀释放压力,回到低温低压的液化状态,通过制冷剂的不断循环,不断吸收空气中的低品位热量,并将该部分热量转移,来制取热水。 在自然界中,水总由高处流向低处,热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温传递到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范

空气源热泵热水器国家标准全文

空气源热泵热水器国家标准 中华人民共和国国家质量监督检验检疫总局发布 中国国家标准化管理委员会 前言 本标准附录B为规范性附录、附录A为资料性附录。 本标准由中国机械工业联合会提出。 本标准由全国冷冻空调设备标准化技术委员会(SAC/TC 238)归口。 本标准主要起草单位:广州中宇冷气科技发展有限公司、合肥通用机械研究院、江苏天舒电器有限公司、、广东美的商用空调设备有限公司、合肥通用环境控制技术有限公司。 本标准准参加起草单位:大连冰山集团有限公司、重庆九龙韵新能源发展有限公司、北京同方洁净技术有限公司、广州恒星冷冻机械制造有限公司、艾欧史密斯(中国)热水器有限公司、浙江正理电子电气有限公司、北京华清融利空调科技有限公司、佛山市伊雷斯制冷科技有限公司、劳特斯空调(江苏)有限公司、浙江星星中央空调设备有限公司、泰豪科技股份有限公司、广东申菱空调设备有限公司、上海富田空调冷冻设备有限公司、艾默生环境优化技术(苏州)研发有限公司、(中外合资)滁州扬子必威中央空调有限公司、宁波博浪热能设备有限公司。 本标准主要起草人:覃志成、张秀平、张明圣、王天舒、舒卫民、李柏。 本标准参加起草人:俞乔力、朱勇、刘耀斌、袁博洪、邱步、凌拥军、黄国琦、区志强、丁伟、沙凤岐、黄晓儒、易新文、姚宏雷、文茂华、谢勇、王磊、钟瑜、王玉军、汪吉平。 本标准由全国冷冻空调设备标准化技术委员会负责解释。 本标准是首次制定。 商业或工业用及类似用途的热泵热水机 1、范围 本标准规定了商业或工业用及类似用途的热泵热水机(简称“热水机”)的术语和定义、型式与基本参数、要求、试验方法、检验规则、标志、包装、运输和贮存等。 本标准适用于采用电动机驱动,蒸汽压缩制冷循环,名义制热能力3000W以上,以空气、水为热源,以提供热水为目的热泵热水机,其他用途的热泵热水机也可参照使用。 2、规范性引用文件 下列文件中的条款通过本标准的引用而构成本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 191包装储运图示标志(GB/T191—2000,eqv ISO 780:1997) GB/T 1720 漆膜附着力测定法 GB/T 2423.17电工电子产品基本环境试验规程试验Ka:盐雾试验方法(GB/T 2423.17---1999,eqv IEC60068-2-11:1981) GB/T2828.1计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T 2828.1—2003,ISO 2859:1999 IDT) GB/T 6388 运输包装收发货标志 GB 8624建筑材料燃烧性能分级方法 GB/T 10870—2001容积式和离心式冷水(热泵)机组性能试验方法 GB/T 13306 标牌 GB/T 13384 机电产品包装通用技术条件 GB/T 17758单元式空气调节机 GB/T 18430.1蒸汽压缩循环冷水(热泵)机组第1部分:工商业用和类似用途的冷水(热泵)机组

太阳能+锅炉(热泵)热水系统

太阳能+锅炉(或热泵)双能源生活热水系统 一、设备选用原则 1、太阳能集热器: 宜选用集热效率高,承压能力强,安装维护方便的产品,如金属吸热体的热管真空管式集热器、平板式集热器等。 太阳能集热器的面积应因地制宜,根据资金状况和用热需求尽可能安装足够的集热面积,但太阳能供热能力不能超过每日均供热需求,以免影响投资的经济性,并且在实际使用中出现供热富裕造成浪费。 2、锅炉(或热泵) 根据当地能源状况可选用燃气、燃油或电热锅炉。 为减少投资,便于安装,锅炉宜选用常压热水锅炉。 热泵可选用空气源热泵或地源热泵。 为保证水质,应选用内置换热器的间接加热式常压热水锅炉或直接加热式锅炉外单独设置换热设备加热热水。 锅炉功率应按满足最大日供热需求或设计最大小时耗热量确定,保证在阴雨天气没有太阳能资源时的热水正常供应。 3、储热水箱 储热水箱应采用成品水箱或现场拼装的保温水箱。 为保证水质,水箱内胆宜采用不锈钢材质。 水箱容量按太阳能集热系统每日所能加热的热水量确定,但不应低于热水系统最大小时热水用量。 二、系统安装方案及工作原理 1、太阳能和锅炉并联 工作原理: (1)太阳能集热系统 太阳能系统为强制循环系统,集热循环泵由集热器和水箱的温差控制,当集热内温度于水箱温度之差达到设定启动值时,循环泵运转,当二者温差小于设定停止值时,循环本停止。如此循环往复,将集热器所获取的太阳能热量源源不断

输送到储热水箱。 (2)锅炉 管理人员根据供应热水时间设定锅炉运行时段,在供热水时间到来之前,锅炉自动进入工作状态,此时锅炉控制系统根据水箱温度状况确定是否点火运行,保证热水用水时间内供水温度不低于设计温度。 (3)冷水补水 冷水直接补入储热水箱。水箱内设有液位控制传感器,通过太阳能控制系统可设置多级水位。在太阳能系统运行之前,水箱注水至最低水位,当太阳能系统运行,水温升高至设定温度时,补水电动阀打开,将水箱水位补充至高一级水位。如此逐级加热,直至将水箱注满水。 (4)方案原理示意图 本方案适用于定时供应热水的场所,锅炉定时启动,最大限度利用太阳能。 2、太阳能和锅炉串联 (1)太阳能集热系统 太阳能系统为强制循环系统,集热循环泵由集热器和水箱的温差控制,当集热内温度于水箱温度之差达到设定启动值时,循环泵运转,当二者温差小于设定停止值时,循环本停止。如此循环往复,将集热器所获取的太阳能热量源源不断输送到储热水箱。

太阳能热泵原理及技术分析

太阳能热泵原理及技术分析 热泵技术是一种新型的节能制冷供热技术,长期以来主要应用于建筑物的采暖空调领域。因热泵制热在节能降耗及环保方面的良好表现,卫生热水供应系统也越来越多的采用热泵设备作为热源[2]。其中以室外空气为热源的空气源热泵,结构简单,不需要专用机房,安装使用方便,在卫生热水供应方面具有不可替代的优势,除了比较大型的空气源热泵热水系统外,现在已有多个品牌的小型的家用空气源热泵热水器也投放市场。但空气源热泵的一个主要缺点是供热能力和供热性能系数随着室外气温的降低而降低,所以它的使用受到环境温度的限制,一般适用于最低温度-10℃以上的地区[3]。 将热泵技术与太阳能结合供应生活热水,国内外进行了许多这方面的研究,主要有两种方式,一种是直接以空气源热泵作为太阳能系统的辅助加热设备,另一种是利用太阳能热水为低温热源或将太阳能集热器作为热泵的蒸发器的太阳能热泵系统。前者以太阳能直接加热为主以空气源热泵为辅,解决太阳能供热的连续性问题,但仍旧无法摆脱环境温度对热泵制热性能的影响;后者完全以太阳能作为热泵热源,大大提高了太阳能的利用效率,但太阳能资源不足时仍需要增加其它辅助热源,并且热泵供热能力受太阳能集热量的限制,规模一般比较小。 在大型的太阳能中央热水系统中,空气源热泵无疑是一种比较理想的辅助加热设备,为了改善空气源热泵在低温环境下制热运行的性能,扩大它的使用区域,结合国内外太阳能热泵研究中的先进经验,我们研制了一种适合于低温环境中工作的太阳能—热泵中央热水系统。该系统采用一种新型的采用低温太阳能辅助的空气源热泵机组和太阳能集热系统结合,太阳能和热泵互为辅助热源,最大限度的利用太阳能,解决阴雨天气及冬季环境温度较低太阳能资源不足时热水供应保证率,做到全年、全天候供应热水。 1太阳能—热泵中央热水系统组成 1.1太阳能—热泵中央热水系统基本组成 太阳能—热泵中央热水系统的主要组成部分为太阳能集热器和太阳能辅助加热空气源热泵机组,其他辅助设备与常规的中央热水系统相同,包括太阳能循环泵、热水加热环泵、换热器、热水箱及控制器等。 1.2太阳能辅助加热空气源热泵机组 1.2.1太阳能辅助加热空气源热泵机组工作原理 为使空气源热泵在低温环境中高效、稳定、可靠的运行,国内外众多科研单位和生产企业进行了研发和改进,归纳起来主要有三种方式。一是依靠外界辅助热源来提高热泵低温制热性能,比如通过电加热提高热泵制热出水温度、采用燃烧器辅助加热室外换热器、在压缩机周围敷设相变蓄热材料以增加低温条件下制热运行出力等等;二是通过改善制冷剂循环系统来提高热泵的低温制热性能,比如采用双级压缩的空气源热泵,设中间补气回路的空气源热泵等;三是采用变频系统,低温工况下让压缩机高速工作增加工质循环量,同时向压缩机工作腔喷液以防止其过热,从而使热泵机组能够正常运行。 太阳能辅助加热空气源热泵机组是基于上述第一种方式而产生的,如图2所示。在机组的蒸发器上增加了一辅助换热器。热泵在低温环境下制热运行时,高于环境温度的太阳能热水流经该辅助换热器,与将进入蒸发器的室外空气进行热量交换提高其温度,从而使制冷剂在

太阳能热水系统控制及原理

太阳能热水系统控制及原理 一、智能型太阳能、热泵互补热水系统原理说明: 注:进水在集热器入口,集热循环水泵出口,集热水箱底部出水供用户使用。 太阳能供水系统原理说明 新能源太阳能中央热水器由以下四大部分组成: 太阳能集热器:吸收太阳能,将光能转化为热能,使冷水在集热器内被加热; 保温水箱:储存热水,可保温3天,内胆为不锈钢,外包8厘米保温层,最外层是铝合金外壳; 热泵辅助加热系统:用于阴雨天辅助加热;

供热水管道:将经过增压泵加压后的热水引向各用水点,主管道有保温层,未端有回水管。 晴天,当太阳能把集热器内的冷水加热至55℃时(该温度可调),冷水管上的电磁阀门自动打开,冷水被自来水压力压入集热器内,集热器内的热水被挤出,然后进入到保温水箱中储存待用,当冷水到达集热器出口处的温度探头时,探头温度底于55℃,电磁阀门就立刻关闭,冷水停留在集热器内继续被太阳能加热,2-5分钟后,水温又达到55℃时,电磁阀门再次打开,集热器内的热水又被挤到保温水箱中,按此规律,一次又一次的产生热水进入水箱,水箱内热水逐渐增加,一直增加到水箱水满为止。水箱水满后,就停止进水,如果还有太阳,为了充分利用太阳能,循环泵会自动启动,把水箱内55℃的热水抽出来,经过太阳能集热器循环加热,使水温进一步升高至60-70℃,当水温达到70℃时,就停止循环加热,限制水温不要超过70℃,以免烫伤人,又可防止结水垢(产生水垢的温度条件是水温超过80℃)。 热泵加热系统只有在太阳能光照不足时才启动,为最大限度地利用太阳能,减少电能的消耗,我们将设定3个时间段检测保温水箱的水位。在上午10:30~11:30,如果保温水箱内热水水位还不到40%的位置,则自动启动热泵加热系统,往保温水箱补充50℃的热水,如果水位达到设定值,则热泵系统停止工作。

空气源热泵热水器简介

空气源热泵热水器简介 一、空气源热泵技术发展史 随着工业革命的发展,19世纪初,人们对能否将热量从温度较低的介质“泵”送到温度较高的介质中这一问题发生了浓厚的兴趣。英国物理学家J.P.Joule提出了“通过改变可压缩流体的压力就能够使其温度发生变化”的原理。1854年,W.Thomson教授(即Lord Kelvin 勋爵)发表论文,提出了热量倍增器(Heat Multiplier)的概念,首次描述了热泵的设想吸收空气中的低能热量,经过中间介质的热交换,并压缩成高温气体,通过管道循环系统对水加热,耗电只有电热水器的1/4。该新产品避免了太阳能热水器依靠阳光采热和安装不便的缺点。 按目前而言,国外的空气源热泵热水器市场已经相当成熟,在发达国家使用的比例有的高达70%,比如在新加坡、欧美的一些国家等。就是在中国的香港和台湾地区也有将近50%的推广使用力度。只是受国内消费和经济发展规律的影响,空气源热泵热水器也是在近4年才被引进并在小范围内推广使用,而且是集中在经济发达的两个三角洲地区。据市场的统计数据来看,虽然该产品在国内上市只有短短几年时间,但是增长的速度却非常快。2002年时,它的销售额还不到1000万元,但是到2003年,它已达到了3000万元,2004年则达到8000万到1个亿。按照预算估计,2005年,热泵产值会超过三个亿。可以说,就象前几年互联网接入时的发展速度一样,整个行业销售增长率将以几何基数增长,市场空间十分巨大。 二、空气源热泵热水器的特点 空气源热泵热水器是新型的绿色能源产业,与传统的燃气、电热水器产品相比,它不仅安全而且节能环保,即使与太阳能相比,也有明显的优势。它一改传统太阳能产品只依赖太阳光直射或辐射来收取能源的方式,利用设备内的冷媒从自然环境空气中采集热能并通过热交换器使冷水升温。其特点包括: (1)高效节能:空气源热水器是通过大量获取空气中免费热能,消耗的电能仅仅是压缩机用来搬运空气能源所用的能量,因此热效率高达380%—600%,制造相同的热水量,空气源热水器的使用成本只有电热水器的1/4,燃气热水器的1/3,太阳能热水器的1/2。高热效率是空气源热水器最大的特点和优势,在能源问题成为世界问题时,这是空气源热水器成为“第四代热水器”的最重要的法宝之一。 (2)绿色环保、安全可靠:空气源热水器独特的使用原理,实现其在工作过程中彻底水电分离,从根本上杜绝漏电事故;并且由于其在使用过程中无需任何燃料输送管道,没有燃料泄露等引起火灾、爆炸、中毒等危险;同时,空气源热水器在工作过程中没有任何有毒气体、温室气体和酸雨气体排放,也没有费热污染。这些也成为空气源快速发展铺垫了宽阔的道路。 (3)全天候方便使用:空气源热水器由于体积相对较小,可以安装在浴室、阳台和外墙等处,实现使用的无限制性;并且空气源热水器由微电脑控制自动运行,无需专人职守,保证全天候热水供应,同时结合其定时开关功能实现低谷用电,实现更节约的使用效果。(如图2所示)

太阳能热泵热水系统方案设计

实用标准文档 文案大全目录 一、太阳能集热器技术参数 (1) 二、空气源热泵机组技术参数 (2) 三、设计方案 (3) 四、工程报价汇总表 (6) 五、工程项目和造价明细表 (7) 六、售后服务 (11)

一、太阳能集热器技术参数 主要功能特点(多项国家专利): 优中选优的材料: ●外壳材料:高品质不锈钢板 ●内胆材料:进口SUS304 2B食品级不锈钢 ●防漏:“O”形翻边 ●保温层:机械聚胺脂整体发泡 50㎜ ●配套的支架:高品质不锈钢方管、全不锈钢紧固件 独特实用的设计: ●水槽内胆独有椭圆形封头设计:完全采用高频焊机和自动焊机自动焊接,杜绝手工焊的粗糙和渗漏的可能性,极大的增强封头的抗拉抗剪性——寿命更长; ●水嘴〖进口SUS304 2B食品级不锈钢材质〗与独有椭圆形封头高强度的连接:完全采用高频焊机机械焊接,杜绝手工焊的粗糙和渗漏的可能性,极大的增强水嘴的抗拉抗剪性——寿命更长; ●超宽的孔距、加长的水嘴、加宽的水槽——更利于现场施工和安装; ●“O”形翻边设计更利于防漏、数控冲床配套复合模具生产精确度更高;

二、空气源热泵机组技术参数

三、设计方案 残疾人康复中心安装节能热水系统,方案设计如下: 1 2、系统功能配置 1)太阳能中央热水系统构成设计: 太阳能中央热水系统工程包括太阳能主体加热系统和辅助加热系统:主体工程主要由集热器矩阵、不锈钢保温水箱、水箱底座、集热器支架等组成;辅助加热系统主要由热泵热水机组、自动供热水装置、自动控制装置、管道及保温等组成。 根据各楼层建筑结构,为保证产水和供水质量,同时便于今后太阳能系统规范检修,采用温差式强制循环方式受热。

家用空气能热水器说明书指南

凯立信:空气能热水器使用说明书 安装注意事项 一、必须使用220V50Hz交流电源; 二、电器插头、插座必须连接牢固,接地良好; 三、安装室外机必须可靠接地; 四、勿安装在有使用或者存储汽油、化学溶剂等易燃、易爆炸物质的场所,以免发生火灾和爆炸事故。也勿安装在有腐蚀气体或液体的场所,以免影响热水器的使用寿命; 五、必须使用厂家提供的专业电源线,电源软线损坏,、必须由专业人员更换; 六、水箱和室外机安装在墙体和楼面必须能够承受两倍于热水器的重量; 七、清洗保养前,必须切断电源; 八、电源插座的额定电流量应比所选购的热水器的最大电流量大30%以上; 九、必须有专业人员进行安装、维修和保养。 重要提示 一、在搬运过程中,室外机严禁倒置,并尽量避免倾斜搬运,如需倾斜搬运时,倾斜角度必须〈30度; 二、本热水器必须使用自来水,其他水质会影响机组使用寿命,如需使用其他水质可向公司定制; 三、水箱在首次使用或排空后再使用时,必须先注满水,才能通电加热,注水时,须打开热水阀(如装有混水阀,把混水阀调向高温位置)以排出空气,待热水阀有水正常流出时,方可关闭热水阀; 四、在热水器工作期间,安全阀可能会有水珠滴下,这属于正常现象。千万不能将此泄压口堵塞,以免造成水箱内胆胀裂以致损坏; 五、控制面板应注意防晒、防潮,应尽量安装在室内的墙壁上; 六、控制面板已按用水要求设定好,一般不必重新设置,必须要更改出厂设定时请参照控制面板操作说明; 七、不要随意设置高水温,水温设置在45℃-55℃之间最节能,水温设置越高热水器工作效率越低,并且会影响到设备的使用寿命; 八、冬天,在寒冷的结冻地区,长时间不使用,应将水箱内的水排空,以免水

空气能热水器及方案

. 目录 一、重庆丰都中学学生公寓基本情况 (2) 二、技术方案设计说明书 (2) 2.1工程概况 (2) 2.2设计依据和参数 (2) 2.2.1设计依据 (2) 2.2.2设计参数 (2) 2.3设计说明 (3) 2.3.1热水用量计算 (3) 2.3.2热水负荷计算 (3) 2.3.3设备选型计算 (4) 2.4保温水箱容量计算 (4) 2.5用电负荷说明(甲供) (4) 2.6水源说明(甲供) (5) 三、前期投资预算 (6) 四、项目合作方式 (7) 五、校方配合 (8) 六、售后保证 (8) 七、公司基本情况介绍 (9) 八、美的空气源热泵介绍 (13) 8.1. 美的空气源热泵机组介绍 (13) 8.1.1. 概述 (13) 8.1.2. 机组种类 (15) 8.1.3. 系统原理图 (16) 8.1.4. 热水系统简图 (17) 8.1.5. 热水机组参数表 (17) 8.1.6. 热水机组卓越的性能 (19)

一、重庆丰都中学学生公寓基本情况 重庆丰都中学学生公寓目前有学生公寓三栋:其中高中部公寓两栋,初中部公寓一栋。目前学生公寓内仅提供冷水。 二、技术方案设计说明书 2.1工程概况 学生宿舍热水系统设计采用空气源热泵热水系统。初步建议将机组与保温水箱安装在宿舍楼顶(宿舍屋顶承重经原房屋设计单位校核,若无法满足承重再考虑安装于地面)。 2.2设计依据和参数 2.2.1设计依据 现场情况及重庆市历史气候资料 GB50015-2003 《建筑给水排水设计规范》 GB/T50106-2001 《给水排水制图标准》 2.2.2设计参数 重庆冬季最冷月室外平均气温7℃ 冬季最冷月平均冷水水温:5℃ 主机设备配置设计标准:额定工况条件下(环境温度20℃,进水温

家用空气源热泵热水器设计经验总结

家用空气源热泵热水器设计经验总结 原理:压缩机将冷媒压缩成高压高温气态→经过换热器高压液态→经过毛细管或膨胀阀,低压气态和液态共存→经过蒸发器成低压气态 计算公式: 热量Q=4.2x M xΔT(千焦耳) 焦耳定律Q=I2x R x t(焦耳) 能效比=( 4.2x M xΔT)/(3600x用电度数) 加热时间=( 4.2x M xΔT)/(3600x额定功率) 1度电=1千瓦时=3600千焦 1千卡=1大卡= 4.187千焦耳 1.供热类型: a.循环储热式:商用、家用 b.直接加热式:家用 c.直供即热式:家用 d.相变即热式:商用 2.结构型式: a.一体式热水器:圆柱形水箱,占用空间较大 b.分体式热水器:圆柱形水箱,占用空间较大 c.分体式热水器:壁挂式水箱,占用空间较大,相对前两者占用空间小 3.水垢: a.循环储热式:容易在盘管处形成水垢,影响热量交换,进而影响能效比COP b.直接加热式、直供即热式:不容易形成水垢,水流直接贴冷媒管流动,可冲刷水垢 4.压缩机: 现在众多厂商都直接借用家用空调压缩机:其特点: a.家用选择功率:1~3P,运行时间2~3小时/每天,滚动转子式压缩机 b.商用选择功率:>3P,运行时间10小时/每天,涡旋式机组 c.家用压缩机冷媒R22压力值: 夏天低压是0.4MP~0.6MP 冬天是0.2MP~0.4MP 夏天高压(风冷)1.8MP~2.4MP,(水冷)1.4MP~1.8MP 冬天(风冷)1.6MP~2.0MP,(水冷)1.4MP~1.8MP

d.压缩机过压力:低压过低使汽缸或轴衬过热压缩机回油减少长时间运转使活动部位集碳由于冷热不均产生抱轴或卡死不利于长期使用。高压过高使压缩机工作在高温状态减少冷循环量使电机工作在超荷状态容易烧毁电机而且也不经济。 5.提高空调能效比的三种主要技术解决方案是: a.增加热交换表面积。有关资料的数据表明:空调能效比的增加基本上与两器(蒸发器和冷凝器)换热面积的增加成正比。因此采用多折式高效蒸发器和冷凝器、优质的铜管及铝箔来增加空调产品的热交换表面积及换热效率,可大幅提高空调的制冷果,达到节能的目的。 b.采用高效变频压缩机。我国空调厂家的产品目前主要采用定频定速压缩机,而由于运行状态和环境温度适应性的不同,采用变频压缩机的变频空调比同等能效比的传统定频定速空调节能30%左右。 c.采用节能环保的新制冷剂。据检测,在室外温度不超过35℃时,R410A空调系统的能效比较R22空调系统高,并且R410A制冷剂为近共沸混合物,温度滑移微小,对臭氧层破坏系数近乎为零,是R22的理想替代物。在美国和日本,R410A已成为房间空调和组合空调系统中R22的主要替代物。 6.换热器套管盘管:(如何计算传递热量Q值,内管尺寸及长度,外管尺寸及长度) 7.热泵冷媒R22剂量计算:(注入量的计算) 8.蒸发器面积: 9.冬季除霜: a.解决除霜问题主要从以下三个方面着手(1)改进换热器,延缓结霜或降低结霜对热泵性能的影响。(2)除霜方法的研究。(3)除霜控制方法的研究。下面主要讨论一下空气源热泵热水器的除霜方法及其除霜控制方法。 b.除霜方法 目前比较常见的空气源热泵的除霜方法有两种:四通阀换向除霜和热气旁通除霜。 四通阀换向除霜即:采用四通阀换向,将室外换热器转换成冷凝器来进行。故除霜系统比较简单。除霜所需的热量是从室内环境的吸热量、室内换热器蓄热量、压缩机消耗电力和压缩机蓄热量这四部分热量之和。 热气旁通除霜是指利用压缩机排气管和室外换热器与毛细管之间的旁通回路,将压缩机的高温排气直接引入室外换热器中,通过蒸汽液化放出的大量热将换热器外侧的霜层融化的除霜方法。在除霜时,四通阀不需换向,室内外换热器风扇停止运行。

空气源热泵热水器控制器设计.doc

空气源热泵热水器控制器设计 空气源热泵热水器控制器设计 摘要本文介绍了一种基于单片机的空气源热泵热水器控制器。该控制器以智能化简单操作来达到空气源热泵热水器的精确控制。论文概述了热泵技术、空气源热泵技术历史和技术优势。并且在介绍空气源热泵热水器工作原理以及蒸汽压缩式制冷循环原理的基础上,提出了控制器设计总体方案。在软件设计方面,本文详细介绍了空气源热泵热水器控制器的设计。文章最后通过大量的流程图来说明控制器的具体结构和可实现的操作。 该空气源热泵热水器控制器设计完善,实现方案简单易行。采用软件设计来控制,可以实现智能化简单精确控制,并且提高了整机的可靠性及准确性。 关键词空气源热泵控制器设计

引言 (1) 第一章空气源热泵的概述 (3) 1.1 热泵 (3) 1.2空气源热泵 (3) 第二章空气源热泵的发展 (4) 2.1空气源热泵的历史 (4) 2.2空气源热泵的优势 (4) 第三章热泵热水器系统运行原理 (5) 3.1 蒸汽压缩式制冷循环原理 (5) 3.2 空气源热泵热水器工作原理 (6) 3.2.1系统介绍 (6) 第四章热泵热水器控制器设计 (7) 4.1 相关控制点 (7) 4.2 控制器设计总体方案 (8) 第五章系统软件设计 (10) 5.1系统主要功能设计 (10) 5.2系统设定功能设计 (11) 5.3系统时间设定功能设计 (13) 5.4运转状况设定功能设计 (14) 5.5工作总流程设计 (16) 5.6数据采集及模数转换模块设计 (18) 5.7液晶显示模块设计 (20) 5.8 按键模块设计 (21) 5.9 时钟模块设计 (22) 5.10 通讯模块设计 (23) 结论 (24) 致谢 (25) 参考文献 (26)

太阳能系统与地源热泵系统联合供热

太阳能系统与地源热泵系统联合供热 太阳能系统与地源热泵系统联合供热的原则是;以地源热泵系统为主,太阳能系统为辅助热源,但在运行控制上要优先采用太阳能,并加以充分利用。在供热运行模式下,北区试验区域采用的散热器采暖系统与办公区域采用的地面辐射采暖系统串联运行,以提高太阳能的利用率。 (一)太阳集热系统 北区采用140m2平板型太阳集热器,采用太阳能与建筑一体化技术,使太阳集热器与建筑完美结合。本示范工程将太阳集热器设置在建筑的南立面上,与玻璃幕墙融为一体,这样既丰富了建筑的立面效果,又起到了利用太阳能的作用。北区冬季热负荷大于夏季冷负荷,可以采用太阳能辅助供热,解决地下的热量不平衡问题,提高地源热泵系统的运行效率。 在北区,太阳能除冬季与地源热泵系统联合供热外,其它季节,在不供热时,采用季节性蓄热技术将热量储存在蓄热水池中,供冬季采暖使用。 (二)联合供热方案比较 太阳能系统与地源热泵系统联合供热的方式有两种:并联和串联方式。并联方式示意图如图1所示: 图1 太阳能系统与地源热泵系统并联供热方式 串联方式示意图如图2所示: 并联运行模式与串联运行模式相比,存在以下弊端: (1)当太阳能系统与地源热泵系统同时运行时,系统的循环水量为两者之和,太阳能系统能否直接供热,直接影响系统的循环水量,进而影响热泵机组的可靠性。 (2)在并联运行模式下,当T g温度低于50℃时,太阳能不能被直接利用,只能去加热土壤,提高热泵机组蒸发器侧的温度。而在串联模式下,当T g温度低于50℃,而 高于40℃时,可以与地源热泵机组串联运行,充分提高地源热泵机组的COP值。 基于串联运行模式的优点,本示范工程采用串联运行模式。其运行策略为:在供暖初始时,由于采用了季节性蓄热的技术,同时,在室外温度较高的情况下,采暖负荷较小,此时,经过太阳能加热后的供水温度T g较高,若温度高于50℃,则利用太阳能直接采暖;若供水温

空气源热泵热水机供热水系统工程设计

空气源热泵热水机组中央供热水系统工程 设计方案 一、工程概况及甲方要求: 1.工程概况 贵校柳州南亚、冠亚校区综合楼入住师生约700人,其中南亚校区400人,冠亚校区300人,人均用热水按30kg/天计算,总量为: 21000 kg/天(55℃) 2.甲方要求: A、要求在两栋楼天面安装空气热泵热水机组中央供热水工程,解决师生冲凉用热 水的问题。 B、要求安装电辅助加热装置,以防冬天极端最冷(气温<0℃时)辅助热泵加热。 C、要求定时供应热水。 D、要求安装回水系统,以方便学生用热水。 E、要求设备自动化,以方便管理。 二、设计依据: 1.B12021.3-2000《空气调节机能源效率限定值及能源等级》 2.GB19577-2004《冷水机组能效限定值及能源效率等级》 3.GB50015-2003《建筑给水排水设计规范》 4.GB50268-97《给水排水管道工程施工及验收规范》 5.JGJ116-98《建筑抗震加固技术规程》 6.GB50057-94《建筑物防雷设计规范》 7.JGJ/T16-92《民用建筑电气设计规范》 8. GB4272-92《设备及管道保温技术通则》 9.甲方要求 三、设计方案:

我公司根据国家规范、标准和本公司一贯秉承的“安全、实用、节能、美观”八字设计思想,体现设备实用性、合理性和技术先进性,结合贵校楼面的基本情况,设计空气源热泵中央供热水系统方案,具体如下: (一)、南亚校区 1.在综合楼天面安装“金星牌”KRS-15A空气热泵热水机组壹台,组成一套空气热泵中央供热水系统。系统在标况下每小时产55℃热水1283kg,机组运行9.5小时就能满足该楼师生日用热水的要求。 2.在综合楼天面安装10m3、2m3储热水箱各一个,另在地上安装2m3储热水箱一个(供给负一楼教师及饭堂用热水),水箱内胆采用:δ=1.5mm SUS304/2B食品级不锈钢,水箱外壳采用不锈钢、保温层采用聚氨酯整体发泡填充,厚度为50MM。 3.在空气热泵热水机组与储热水箱之间安装一套ISG40-100加热循环系统。当储热水箱中的热水未达到设定温度时,加热循环泵启动将储热水箱中的水抽至热泵热水机组进行循环加热,直至水温达到设定要求,确保热水的温度恒定。 4.在天面及地上水箱中各安装12KW电辅助加热壹套,以便冬天极端最冷时辅助加热。5.在供热水主管上安装一套ISG40-100加压回水系统。该系统有两个作用:第一,在设定的供水时间段内,开启向管网内供水,以保证供热水管网压力;第二,该系统受温度控制,当供热水管网中水温达不到冲凉的温度时,将管网中的低温水抽回储热水箱二次加热,这样既可以保证打开花洒就有热水可用,又不浪费水源,节约开支。6.在补冷水管安装DF32补水电磁阀一台,DN32电子除垢器一套(净化水质)。该电磁阀受时间和水箱的水位控制,在设定的时间段内当储热水箱水位降至设定水位下限时,电磁阀开启补水;当水位达到客户设定的上限要求时,电磁阀关闭停止补水。7.天面热水管道均采用PPR管(室内管网由土建方负责),并用橡塑保温材料,外用铝皮包装。 8.供热水管采用浮球取水装置,该装置在浮力的作用下,始终浮在水箱的上部,取得的都是水箱中较高温度的热水。

空气源热泵工作原理

主讲人:刘海棠 职务:技术部部长 课题:空气源工作原理

㈠空气源热水器工作原理 一、空气源热水器的定义 空气源热泵热水器又称热泵热水器,由热泵吸收空气热源制取热水。空气源热水器就是通过热泵用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能,通过压缩机的压缩变为高温热能,传输至水箱,加热热水,这种通过热泵运动来获得加热的热水器叫做空气源热水器。 目前,空气能热泵热水生产厂家和市场集中分布在长江以南。主要生产厂家集中在珠江三角洲的佛山、东莞、深圳、珠海以及长江三角洲的杭州、宁波地区。消费市场主要分布在长江以南的广东、广西、福建、江西、上海、浙江、安徽等省区,并逐步从长江以南向长江以北扩展。 二、空气源热水器的组成部分 热泵热水装置,主要由蒸发器、压缩机、冷凝器、膨胀阀、风机五大部件组成,通过让工质(制冷剂)不断完成蒸发(吸取环境中的热量)→压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热量转移到水中。 蒸发器直接从空气中吸取热量,将节流后的制冷剂吸热气化达到预期效果的设备。 压缩机是空气源热水器的心脏,把制冷剂从低压提升为高压,并使制冷剂不断循环流动。 冷凝器就是将压缩机排出的高温高压气体释放出热量后冷凝成低温高压液体的换热设备。 膨胀阀是一种节流装置,控制制冷剂的流量,可提高系统的能效比和可靠性。 风机主要是起加强气体流通量的作用,是依靠输入的机械能,提高气体压力并排送气体的设备。 制冷剂是热泵系统中实现制热循环的工作介质,也称冷媒。作为一种特殊的物质,制冷剂的物质状态在热泵循环过程中不断发生变化:在蒸发器中,制冷剂在较低的压力状态下吸收热能由液态变为气态;压缩机将此低压的气态制冷剂压缩升温为高压气态制冷剂;在冷凝器中,制冷剂在较高压力状态下放出热能由气态便为液态。 三、空气源热水器的基本工作原理 热泵技术是基于逆卡诺循环原理实现的;如同在自然界中水总是由高处流向低处一样,热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温热源传递到高温热源,所以热泵实质上是一种热

空气源热泵使用说明书

空气源热泵原理 由生活中的常识中我们可以知道,热水可以自己慢慢向空气中放热,冷却成凉水,这表明热量可以从温度高的物体——热水自动的传递到温度低的物体——空气。那么可不可以将这个过程反过来进行,将温度较低的空气中的能量向热水中转移呢?热力学第二定律指出:不可能把热从低温物体传到高温物体而不引起其他变化。这就是说,热量能自发的从高温物体传向低温物体,而不能自发地从低温物体传向高温物体。但这并不是说热量就不能从低温物体传向高温物体,就向水泵能够使水从低处流向高处一样,热泵通过消耗一部分电能,也能够使热量从低温物体传到高温物体。空气源热泵热水器就是根据这样一个原理来工作的,通过消耗少量的电能驱动压缩机,使制冷剂吸收空气里的热量来加热生活用热水的,其制热效果比传统热水器高出3倍,而消耗的电能仅为普通热水器的三分之一,并能从根本上杜绝了漏电、一氧化碳中毒的危险 热泵热水器的工作过程如下:如上图所示,压缩机通过消耗一部分电能,将低温低压的制冷剂气体压缩成高温高压的气体,高温高压的气体在冷凝器中放出热量将水加热,自己温度被降低,经过膨胀阀节流降压后,变成低温低压的气液混合物,在蒸发器中制冷剂吸收其他介质(如空气、井水)中的热量,变成低温低压的气体,然后再被压缩机吸收,压缩成高温高压的气体加热热水。 与其他形式的热水器相比,热泵热水器主要有安全、节能、环保的特点。 安全性: 传统热水器以燃气、电和太阳能为主,三分天下,燃气热水器安全性较差,燃烧不充分和水压不稳定易造成燃气中毒和烫伤事件,电热水器的漏电隐患和住宅接地不良也对消费者的生命安全造成严重威胁,太阳能热水器储水式的特点决定了其在晴天时,水温可能很高,造成烫伤,阴雨天的电辅助加热却留下安全隐患,与以上热水器不同,热泵热水器制热过程是通过压缩机排出的高温高压制冷剂气体加热水罐中的水,电主要用于压缩机,制热后的气体通过外盘式的盘管与搪瓷水罐中的水交换热量,水电完全分离,这样,既不存在漏电隐患,省去了防漏电的烦恼,也避免了电加热管表面温度高,易结垢并影响加热效率的弊端,真正作到绝对安全。 节能性: 由于采用热泵技术,可将大量低品位的热源(空气中的热量)通过压缩机和制冷剂,转变为高品位的可利用的热能,热泵热水器由于吸收了大量空气中的热量,能效比平均在3以上,即热泵热水器的压缩机每耗一度电,可产生电加热消耗3度电产生的热水,极大的节省了能源。 ; 以120升热泵热水器为例,压缩机功率为500瓦,热效率值为370%(标准工况环境温度为20℃),是普通电热水器的四倍左右(电热水器热效率为95%),大大节省了电能,同样120升水从15℃升到55℃,普通电热水器需要6Kw,康特姆热泵热水器仅需Kw,不仅仅节省了费用,大面积推广也可极大的缓和电力紧张情况,具有很大的现实意义。

相关文档
相关文档 最新文档