文档库 最新最全的文档下载
当前位置:文档库 › ansys显示轴力

ansys显示轴力

ansys显示轴力
ansys显示轴力

轴力图

先建一个表

=========

=

=

轴强度校核

1?轴I的强度校合 (1)求作用在齿轮上的力 F ri F t1tan20 3381.3 tan 20 1230.69N (2)求轴承上的支反力 (1)画受力简图与弯矩图 V 根据第四强度理论且忽略键槽影响 M 70MPa F ti 2T i d i 2 138633 82 3381.30N 垂直面内:F NV1 917N F NV2314N 水平面内:F NH1 2518N F NH2 863N 1

9.2 10 6 F a F t tan 9967 tan 14 2485N (2)求轴承上的支反力 水平面内: F NV 1 (85 118 97) F r3 97 F 「2 (118 97) F a3 号 求得 F NV 1 162N F NV2 (85 118 97) F r3 (118 85) F a F r2 85 W 3 旦) 32 (M M 2 °.7叮 2 , (1)求作用在齿轮上的力 F t2 F t1 3381.30N F r2 F r1 1230.69N F t3 2T n 2 588023 9967N d 3 118 F r3 F tan a . cos 9967 tan 20 cos14.6 所以轴的强度足够 2.校合轴II 的强度 3739N cal 1.93 105 10 3 9.2 10 6 25.69Mpa 1 70MPa ca2 2.34 105 10 3 3 0.1 0.045 20.69Mpa 1 70MPa

32 F NHI (85 118 97) F t2 (118 97) F t3 97 求得 F NH 1 =5646N F NH 2 (85 118 97) F t3 (85 118) F t 2 85 求得 F NH 2 =7700N (2) 画受力简图与弯矩图 I MV I (4)按弯扭合成应力校核轴的强度 在两个轴承处弯矩有最大值,所以校核这两处的强度 求得F N V2 垂直面内: -2670N 51 % t ------------------------- 1 t3 「r~3 J “ r ■皂 F L : f TT*r I H I 1 N “ iHt .................... mu R t ^r-TrrrnTfH iE ■mi F t3 [irnrrmTrnrr ^ f 卜 NHff NHi? F" NV1 M 2 ( T)2 ca 70MP a 3

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3 =[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

ansys查轴力弯矩新版

查轴力:首先定义单元表grneralpostproc>element table >define table add 左侧选by sequence num,右侧选择smisc, 在下面输入smisc,1 然后在plot results>contour plot》line elem res 查看 弯矩 1.绘制弯矩图 建立弯矩单元表。例如梁单元 i节点单元表名称为imom,j节点单元表名称为jmom, ETABLE,NI,SMISC,1 !单元I点轴力 ETABLE,NJ,SMISC,7 !单元J点轴力 ETABLE,QI,SMISC,2 !单元I点剪力 ETABLE,QJ,SMISC,8 !单元J点剪力 ETABLE,MI,SMISC,6 !单元I点弯矩 ETABLE,MJ,SMISC,12 !单元J点弯矩 plls,MI,MJ 2.标注弯矩图 PLOTCTRLS>>NUMBERING>>SVAL ON即可在画出弯矩图的同时在图上标出弯矩值的大小 3.调整弯矩图 如果弯矩图方向错误,则绘制弯矩图命令为 plls,imom,jmom,-1 同一个节点处两边的单元内力有细微差别, 导致内力数字标注出现重影。观察上面整体轴力图也可以发现, 一段一段的,好像马赛克,其实上面整体弯矩图也是,不过不是 很明显罢了。这是EULER-BEONOULI梁理论以及ANSYS输出定义造成 的(详细原因就不展开了,看看梁理论的书和ANSYS的说明吧)。 为了修正重影和节点两边内力值不一样的问题,遍制了宏文件ITFAVG.MAC 命令文件内容如下: !--------------------------------------------------------------------- !宏:ITFAVG.MAC(INTERNAL FORCE AVERAGE MACRO) !获取线性单元内力,并对单元边界处的内力进行平衡 !输入信息 !内力类型:MFORX,MFORY,MFORZ,MMOMX,MMOMY,MMOMZ *ASK,ITFTYPE,'PLEASE INPUT THE TYPE OF INTERNAL FORCE','MMOMY' !需处理的单元包 *ASK,EASSEMBLY,'PLEASE INPUT THE COMPONENT NAME OF ELEMENTS TO BE PROCESSED!', 'EOUTER' !需处理的节点包

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

轴的强度计算

轴的强度计算 一、按扭转强度初步设计阶梯轴外伸端直径 由实心圆轴扭转强度条件 τ= 33102.09550?=n d P W T ρ≤[τ] 式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。 对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。将上式改写为设计公式 d ≥ []3 33 32.0109550n P A n P =?τ (16.1) 式中,A 是由轴的材料和承载情况确定的常数。见表16.7;P 为轴传递的功率,KW ; n 为轴的转速,r/min ;d 为轴径,mm 。 注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。 2.用Q235、3SiMn 时,取较大的A 值。 3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。 可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。 二、按弯扭组合强度计算 轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。 分别考虑力P 与力偶m 的作用,画出弯矩图(图16.39(f))和扭矩图(图16.39(g)),其危险截面上的弯矩和扭矩值分别为 l Pab M = T =PR m = 危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于C 、D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故为危险点,其正应力和剪应力分别为 σ=W M τ= ρ W T

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

轴的强度校核方法

轴的强度校核方法 摘要 轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、结构、强度和刚度。其中对于轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。 本文根据轴的受载及应力情况采取相应的计算方法,对于1、仅受扭矩的轴2、仅受弯矩的轴3、既承受弯矩又承受扭矩的轴三种受载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安全系数做了具体的简绍。 校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 轴的强度校核方法可分为四种: 1)按扭矩估算 2)按弯矩估算 3)按弯扭合成力矩近视计算 4)精确计算(安全系数校核) 关键词:安全系数;弯矩;扭矩

目录 第一章引言--------------------------------------- 1 1.1轴的特点---------------------------------------------1 1.2轴的种类---------------------------------------------1 1.3轴的设计重点-----------------------------------------1 第二章轴的强度校核方法----------------------------4 2.1强度校核的定义-------------------------------------4 2.2轴的强度校核计算-----------------------------------4 2.3几种常用的计算方-----------------------------------5 2. 3.1按扭转强度条件计算-------------------------------5 2.3.2按弯曲强度条件计算-------------------------------6 2.3.3按弯扭合成强度条件计算---------------------------7 2.3.4精确计算(安全系数校核计算)----------------------9 2.4 提高轴的疲劳强度和刚度的措施---------------------12 第三章总结------------------------------------------13参考文献--------------------------------------------14

实体单元弯矩轴力提取

实体单元弯矩和轴力的提取 对于一个实体梁 长10m,宽0.6m,高1.0m 程序代码 finish$/clear finish$/prep7 blc4,0,0,10,0.6,1 ET,1,SOLID45$MP,EX,1,200e6$MP,PRXY,1,0.3!定义单元类型、材料特性 ESIZE,0.5$VMESH,ALL FINISH$/SOLU asel,s,loc,x,0 nsla,s,1$d,all,all nsel,s,loc,x,10 *get,Nnode,node,0,count f,all,fx,100/Nnode

f,all,fy,30/Nnode f,all,fz,50/Nnode SOLVE finish$/post1 ! define surface wpcsys,-1 wpoffs,5,0.3,0.5$wprota,0,0,90 sucr,xsurf1,cplane,3$!supl,xsurf1 !define varible needed sumap,sx,s,x$!supl,xsurf1,sx sumap,sy,s,y$!supl,xsurf1,sy sumap,sz,s,z$!supl,xsurf1,sz sumap,sxy,s,xy$!supl,xsurf1,sxy sumap,syz,s,yz$!supl,xsurf1,syz sumap,sxz,s,xz$!supl,xsurf1,sxz !--------The following code varies in the normal direction of section definded------ !------------------------This is for the direction of x aixs------------------ ! get section force: Ax SFy SFz sueval,Ax,sx,intg sueval,SFy,sxy,intg sueval,SFz,sxz,intg ! get section center sueval,A,DA,sum! GCX, GCY, GCZ---global Cartesian coordinates at each point on the surface. sueval,Sx,GCx,intg$dx=Sx/A sueval,Sy,GCy,intg$dy=Sy/A sueval,Sz,GCz,intg$dz=Sz/A ! get the section moment: Mz,My,TOR

主轴的强度校核

主轴的强度校核 根据通风机的轴向尺寸和带轮的大小以及结构上的要求,确定主轴的形状和尺寸如图所示 图5-5 主轴 由参考文献[7]图5-57得本设计中离心通风机的传动方式为C 式传动。主轴在运转过程中,同时承受弯矩和转矩,所以在设计过程中要分别计算出主轴的最大弯矩和转矩,然后计算出合成应力。 主轴承受的负荷 如图5-5所示,主轴承受的负荷如下 由于悬臂端轴的直径是节段式的,为了简化起见,视为等直径轴。 估算叶轮质量kg m 4501= 带轮直径m D 56.0=,估算带轮质量kg m 502=。 两支承间轴的重量 )(36.59381.91085.7]036.011.04 6.0125.04[32244N g m G =?????+??==ππ 叶轮端悬臂轴的重量 )(37.22181.91085.7366.01.043255N g m G =?????==π 叶轮重量与不平衡力之和由参考文献[7]式(5-30)得

)(60.4503450])2135 950(81.9[])2135([2121N m n g G =?+=+= 带轮重量与带拉力之和由参考文献[7]式(5-32)得 )(08.248310950 56.037865.281.950865.2422N Dn N g m G =???+?=+= 带轮端悬臂轴的重力 )(28.9881.91085.71625.01.043266N g m G =?????==π 计算弯矩和扭矩 支撑A 的反作用力为 )(19.7081636 .01625.0)28.9808.2483(318.036.593)366.0636.0()37.22160.4503()())((2 6244151N l l G G l G l l G G F A =?+-?++?+=+-+++= 支撑B 的反作用力为 ) (50.81819.708128.9837.22136.59308.248360.450365421N F G G G G G F A B =-++++=-++++= 截面A 上的弯矩 )(34.1729366.0)37.2216.4503()(151m N l G G M A ?=?+=+= 截面B 上的弯矩 )(47.4191625.0)28.9808.2483()(262m N l G G M B ?=?+=+= AB 段轴的扭矩由参考文献[7]式(5-18)得 )(99.371950 3795519551m N n P M t ?=?== 计算轴的最大应力和材料选用 最大弯矩值为 m N M ?=89.1842max 最大弯矩发生在A 截面,故最大合成应力也发生在A 截面。合成应力值由参考文献[7]式(5-33)得 W M n n =σ 式中,n M 由参考文献[1]式(9-6)得 )(70.176899.37134.17292222max m N M M M t n ?=+=+=

轴强度校核

. . . 1.轴I 的强度校合 (1)求作用在齿轮上的力 111221386333381.3082 t T F N d ?=== 11tan 203381.3tan 201230.69r t F F N =?=??= (2)求轴承上的支反力 垂直面:NV1F 917=N NV2F 314=N 水平面:12518NH F N = NH2F 863N = (1) 画受力简图与弯矩图 根据第四强度理论且忽略键槽影响 []170M MPa W σσ-==?=

(M =3 32W d π=) 69.210W -=? []531161.93101025.69709.210ca M Mpa MPa W σσ---??===?=? ()[]53132 2.34101020.69700.10.045ca M Mpa MPa W σσ--??===?=? 所以轴的强度足够 2.校合轴II 的强度 (1)求作用在齿轮上的力 21t t F F == 3381.30N 21r r F F ==1230.69N 33225880239967118 t T F N d ?===Ⅱ 3tan tan 2099673739cos cos14.6n r t a F F N β?==?=? tan 9967tan142485a t F F N β==??= (2)求轴承上的支反力 水平面: 31323(8511897)97(11897)2NV r r a d F F F F ?+++?=?++? 求得1NV F =162N 3232(8511897)(11885)852NV r a r d F F F F ?+++?++?=?

轴的强度计算与设计A

§11—4-1 轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条 : Mpa (11-1) 件 设计公式:mm (11-2) 轴上有键槽需要按一定比例修正:一个键槽轴径加大3~5%;二个键槽轴径加大7~11%。 ——许用扭转剪应力(N/mm2) C——轴的材料系数,与轴的材料和载荷情况有关。 对于空心轴:(mm)(11-3) ,d1—空心轴的内径(mm) 二、按弯扭合成强度条件计算: 条件:已知支点、扭距,弯距可求时 步骤: 1、作轴的空间受力简图(将分布力看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力; 2、求水平面支反力R H1、R H2作水平内弯矩图; 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图; 4、作合成弯矩图;

5、作扭矩图; 6、作当量弯矩图; ——为将扭矩折算为等效弯矩的折算系数。 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴与扭矩变化情况有关: ——扭矩对称循环变化 ——扭矩脉动循环变化 ——不变的扭矩 ,,分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。 7、校核轴的强度——M emax处;M e较大,轴径d较小处。 Mpa (11-4) W——抗弯截面模量mm3,见附表11不同截面的W。 设计公式:(mm)(11-5) 如果计算所得d大于轴的结构设计d结构,则应重新设计轴的结构。 对于心轴:T=0,Me=M:转动心轴,许用应力用; 固定心轴,许用应力用——弯曲应力为脉动循环。 三、轴的安全系数校核计算 1、疲劳强度校核——精确计算(比较重要的轴) 要考虑载荷性质、应力集中、尺寸因素和表面质量及强化等因素的影响。根据结构设计选择Me较大,并有应力集中的几个截面,计算疲劳强度安全系数

ansys查轴力弯矩新版

查轴力:首先定义单元表 grneral postproc>element table >define table add 左侧选by sequence num,右侧选择smisc, 在下面输入smisc,1 然后在plot results>contour plot》line elem res 查看 弯矩 1.绘制弯矩图 建立弯矩单元表。例如梁单元 i节点单元表名称为imom,j节点单元表名称为jmom, ETABLE,NI,SMISC,1 !单元I点轴力 ETABLE,NJ,SMISC,7 !单元J点轴力 ETABLE,QI,SMISC,2 !单元I点剪力 ETABLE,QJ,SMISC,8 !单元J点剪力 ETABLE,MI,SMISC,6 !单元I点弯矩 ETABLE,MJ,SMISC,12 !单元J点弯矩 plls,MI,MJ 2.标注弯矩图 PLOTCTRLS>>NUMBERING>>SVAL ON即可在画出弯矩图的同时在图上标出弯矩值的大小 3.调整弯矩图 如果弯矩图方向错误,则绘制弯矩图命令为 plls,imom,jmom,-1 同一个节点处两边的单元力有细微差别, 导致力数字标注出现重影。观察上面整体轴力图也可以发现, 一段一段的,好像马赛克,其实上面整体弯矩图也是,不过不是 很明显罢了。这是EULER-BEONOULI梁理论以及ANSYS输出定义造成 的(详细原因就不展开了,看看梁理论的书和ANSYS的说明吧)。 为了修正重影和节点两边力值不一样的问题,遍制了宏文件ITFAVG.MAC 命令文件容如下: !--------------------------------------------------------------------- !宏:ITFAVG.MAC(INTERNAL FORCE AVERAGE MACRO) !获取线性单元力,并对单元边界处的力进行平衡 !输入信息 !力类型:MFORX,MFORY,MFORZ,MMOMX,MMOMY,MMOMZ *ASK,ITFTYPE,'PLEASE INPUT THE TYPE OF INTERNAL FORCE','MMOMY' !需处理的单元包 *ASK,EASSEMBLY,'PLEASE INPUT THE COMPONENT NAME OF ELEMENTS TO BE PROCESSED!', 'EOUTER' !需处理的节点包

ABAQUS输出轴力和弯矩

ABAQUS中如何通过cutting surface和section print输出桩的轴力 经过两个星期的摸索与学习,今天终于学会了桩轴力的输出。现总结如下: 1.主要步骤是先定义截面cutting surface,然后用section print输出轴力sof。 2.所有操作均是在inp文件中进行修改的,而不是ABAQUS/CAE中的编辑关键词(edit keywords)。 原因:在CAE中编辑关键词是可以修改inp文件,但CAE并不能识别所有的inp文件关键词,下面将举例说明。 3.最后提交的inp文件也不是在CAE中导入模型文件(import model),然后提交job进行运算的,而是在ABAQUS命令窗口(小黑屏)进行的。 原因同2中的一样,CAE并不能识别关键词*section print。 好了,下面开始详细的步骤讲解吧! 第一步:定义截面(cutting surface),具体的关键语句为: *surface,type=cutting surface,name=cutsurf-1 0.6,25,0,0,1,0 Set-pile 解读: 第一行,定义surface、surface类型以及名称。 第二行,定义截面上的一点(0.6,25,0)以及截面的法向量(0,1,0)。法向量不一定是单位向量。 第三行,截面所在的单元或集合。这个集合可以是事先在CAE里定义好的。 需要注意的是,这个cutting surface是垂直于桩径方向的一个桩截面,而不是桩的侧表面。我一开始理解错了! 此关键句在inp文件中的位置是在*Assembly, name=Assembly这一行之后,我试了下在放在材料定义之后,运算不成功。估计是因为我的Set-pile是在assembly里定义的,而不是在part里定义的单元集。若是在part 里定义了桩的集合,是不是可以将此关键句移动到材料定义之后,这个我倒没试。 如果是在CAE中通过编辑关键词来添加上述语句,将会有下面的错误提示:

轴的强度计算.

轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条件:][2.01055.936T T T d n P W T ττ≤?== Mpa (11-1) 设计公式: 3036][1055.95n P A n P d T =??≥τ(mm )?轴上有键槽 放大:3~5%一个键槽;7~10%二个键槽。?取标准植 ][T τ——许用扭转剪应力(N/mm 2) ,表11-3 T ][τ——考虑了弯矩的影响 A 0——轴的材料系数,与轴的材料和载荷情况有关。注意表11-3下面的说明 对于空心轴:340) 1(β-≥n P A d (mm )? 6.0~5.01≈=d d β, d 1—空心轴的内径(mm ) 注意:如轴上有键槽,则d ?放大:3~5%1个;7~10%2个?取整。 二、按弯扭合成强度条件计算 条件:已知支点、距距,M 可求时 步骤:如图11-17以斜齿轮轴为例 1、作轴的空间受力简图(将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力(图11-17a ) 2、求水平面支反力R H1、R H2作水平内弯矩图(图11-17b ) 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图(图11-17c ) 4、作合成弯矩图22V H M M M +=(图11-17d ) 5、作扭矩图T α(图11-17e ) 6、作当量弯矩图22)(T M M ca α+= α——为将扭矩折算为等效弯矩的折算系数 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴α与扭矩变化情况有关 1][][11=--b b σσ ——扭矩对称循环变化 α= 6.0][][01≈-b b σσ——扭矩脉动循环变化 3.0][][11≈+-b b σσ——不变的扭矩 b ][1-σ,b ][0σ,b ][1+σ分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。

轴强度校核Word版

一、横截面上的切应力 实心圆截面杆和非薄壁的空心圆截面杆受扭转时,我们没有理由认为它们在横截面上的切应力象薄壁圆筒中那样沿半径均匀分布 导出这类杆件横截面上切应力计算公式,关键就在于确定切应力在横截面上的变化规律。即横截面上距圆心τp任意一点处的切应力p与p的关系 为了解决这个问题,首先观察圆截面杆受扭时表面的变形情况,据此做出内部变形假设,推断出杆件内任意半径p处圆柱表面上的切应变γp,即γp与p的几何关系利用切应力与切应变之间的物理关系,再利用静力学关系求出横截面上任一点处切应力τp的计算公式 实验表明:等直圆杆受扭时原来画在表面上的圆周线只是绕杆的轴线转动,其大小和形状均不变,而且在小变形情况下,圆周线之间的纵向距离也不变 图8-56 扭转时的平面假设:等直圆杆受扭时它的横截面如同刚性圆盘那样绕杆轴线转动显然这就意味着:等直圆杆受扭时,其截面上任一根沿半径的直线仍保持为直线,只是绕圆心旋转了一个角度φ 图8-57 现从等直圆杆中取出长为dx的一个微段,从几何、物理、静力学三个方面来具体分析圆杆受扭时的横截面上的应力

图8-58 1.几何方面 小变形条件下 dφ为dx长度内半径的转角,γ为单元体的角应变 图8-59 或 因为dφ和dx是一定的,故越靠近截面中心即半径R越小,角应变γ也越小且γ与R成正比例(或线性关系) 由平面假设:对同一截面上各点 θ表示扭转角沿轴长的变化率,称为单位扭转角,在同一截面上其为常数

所以截面上任一点的切应力与该点到轴心的距离p成正比

p为圆截面上任一点到轴心距离,R为圆轴半径 图8-60 上式为切应力的变化规律 2.物理方面(材料在线性弹性范围内工作)由剪切胡克定律 由于G和为常数,所以 上式表明受扭等直圆杆在线性弹性范围内工作时,横截面上的切应力在同一半径p 的圆周上各点处大小相同,但它们随p做线性变化 同一横截面上的最大切应力在横截面的边缘处。这些切应力的方向均垂直于各自所对应的半径,指向与扭矩对应 3.静力学方面 前面已找出了受扭等直圆杆横截面上的切应力τp随p变化的规律,但还没有把与扭矩T联系起来。所以一般情况下还不能计算τp的大小 现利用静力学关系求T

轴的强度校核例题及方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 1.3.1、轴的设计概要 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 1.3.2、轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高

其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性,是目前工业中应用最广泛的氮化钢。 铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 1.3.3、轴的结构设计 根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。 1). 轴的组成 轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。 轴主要由三部分组成。轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。 2). 结构设计步骤 设计中常采用以下的设计步骤:

MATLAB轴的强度与刚度校核

Matlab三级项目 用matlab实现轴强度刚度的校核 专业:工程设计与分析 学号:6 姓名: 晨 指导老师:建亮

引言 传统校核过程的相对固定,以及冗繁的计算量使得程序化的实现成为了我的首选。为简化计算,在“工欲善其事,必先利其器”思想的指导下,我尝试写了这个多参数函数,与传统机械设计中的强度刚度校核理论相结合验证,结果无误。 理论基础 《材料力学》中提到了扭转剪应力、弯曲剪应力、弯曲正应力的各自计算方法。《机械设计》中关于轴的设计及刚度强度的校核过程。 常见的轴有转轴,心轴和传动轴。在上学期的机械设计课程设计中的减速器中所用的都为转轴。轴的材料主要采用碳素钢和合金钢,其中最常用的事45钢,应进行调质和正火处理,基本界面确定之后将用45钢进行调整和试运行。本次课程设计为了实现广泛性将不确定材料,因此所用系数因具体的材料,毛坯直径及热处理方法由机械设计手册查得。 在一般情况下,轴的工作能力主要决定于它的强度和刚度,对于高转速轴,有时还决定于它的振动稳定性。在设计轴时,除了要按这些工作能力准则进行设计计算或校核计算以外,在结构设计时还需要使其能满足其他一系列要求,例如轴上零件固定的要求、热处理要求、运转维护等。 所以,本软件的功用旨在使得以往复杂的算法程序化。使用者输入相关参数即可得出结果,而且可以重复计算,方便而且可靠。

同时,可以给出查表或者查数据所需的一些简单计算的结果,方便用户进行设计计算。并且,在一些需要用户人工选择的情况下,给出一定的参考值或者参考意见。 一、轴的强度设计 1.1按许用弯曲应力的计算 由弯矩所产生的弯曲应力b σ应不超过许用弯曲应力,一般计算顺序 如下: 1.画出轴的空间受力简图,将轴上作用力分解为水平受力图和垂直受力图。求出水平面上和垂直面上的弯矩Mxy 图和Mxz 图。 2.作出弯矩M=22Mxz xy +M 图 3.作出转矩T 图。 4.应用公式M`=22)(T M α+M`图。(式中α是根据转矩性质而定的应力校正系数。对于不变的转矩,取α=[]b 1-σ/[]b 1+σ,对于脉动的轴,取α为[]b 1-σ/[]b 0σ,对于对称循环的转矩,取α=1. []b 1-σ[]b 1+σ[]b 0σ,分别为材料在静,脉动循环和对称循环应力状态下的需用弯曲应力。其值可由机械设计课本表7-3选取。 5.计算应满足下列条件。 []W σσ== =≤

相关文档