文档库 最新最全的文档下载
当前位置:文档库 › 高等物理光学知识点

高等物理光学知识点

高等物理光学知识点
高等物理光学知识点

初中物理光学知识点

光学知识点大汇总 一、光的直线传播 1、光现象:包括光的直线传播、光的反射和光的折射。 2、光源:能够发光的物体叫做光源。 ●光源按形成原因分,可以分为自然光源和人造光源。 例如,自然光源有太阳、萤火虫等,人造光源有如蜡烛、霓虹灯、白炽灯等。 ●月亮不是光源,月亮本身不发光,只是反射太阳的光。 3、光的直线传播:光在真空中或同一种均匀介质中是沿直线传播的,光的传播 不需要介质。 大气层是不均匀的,当光从大气层外射到地面时,光线发了了弯折(海市蜃楼、早晨看到太阳时,太阳还在地平线以下、星星的闪烁等) 光沿直线传播的现象:小孔成像、井底之蛙、影子、日食、月食、一叶障目。 ●光沿直线传播的应用: ①激光准直. 排直队要向前看齐. 打靶瞄准 ②影的形成:光在传播过程中,遇到不透明的物体,由于光是沿直线传播的,所 以在不透光的物体后面,光照射不到,形成了黑暗的部分就是影。 ③日食月食的形成 日食的成因:当月球运行到太阳和地球中间时,并且三球在一条直线上,太阳光沿直线传播过程中,被不透明的月球挡住,月球的黑影落在地球上,就形成了日食. 月食的成因:当地球运行到太阳和月球中间时,太阳光被不透明的地球挡住,地球的影落在月球上,就形成了月食. 如图:在月球后 1的位置可看到日全食, 在2的位置看到日偏食, 在3的位置看到日环食。 1 2 3

④小孔成像:小孔成像实验早在《墨经》中就有记载小孔成像成倒立的实像, 其像的形状与孔的形状无关。像可能放大,也可能宿小。 用一个带有小孔的板遮挡在屏幕与物之间,屏幕上就会形成物的倒像,我们把这样的现象叫小孔成像。前后移动中间的板,像的大小也会随之发生变化。 这种现象反映了光沿直线传播的性质。 小孔成像原理:光在同一均匀介质中,不受引力作用干扰的情况下沿直线传播根据光的直线传播规律证明像长和物长之比等于像和物分别距小孔屏的距离之比。 4、光线:用一条带有箭头的直线表示光的径迹和方向的直线。(光线是假想的, 实际并不存在) 光线是由一小束光抽象而建立的理想物理模型,建立理想物理模型是研究物理的常用方法之一。 5、光速:光在不同物质中传播的速度一般不同,真空中最快. (1)光在真空中速度C=3×108m/s=3×105km/s;光在空气中速度约为3×108m/s。 光在水中速度为真空中光速的3/4,在玻璃中速度为真空中速度的2/3 。 雷声和闪电在同时同地发生,但我们总是先看到闪电后听到雷声,这说明什么问题? 这表明光的传播速度比声音快. (2)光年是长度的单位,1光年表示光在1年时间所走的路程,1光年=3×108 米/秒×365×24×3600秒=9.46×1015米 注意:光年不是时间的单位。 二、光的反射 1.反射:光在两种物质的交界面处会发生反射。 我们能够看见不发光的物体,是因为物体反射的光进入了我们的眼睛。 定义:光从一种介质射向另一种介质表面时,一部分光被反射回原来介质的现象叫光的反射。任何物体的表面都会发生反射。 2.探究实验:探究光的反射规律 【设计实验】把一个平面镜放在水平桌面上,再把一张纸板ENF竖直地立在平面镜上,纸板上的直线ON垂直于镜面,如图2-2所示。 一束光贴着纸板沿着某一个角度射到O点,经平面镜的反射,沿另一个方向

最新机械基础知识点整理资料

1)疲劳强度和改善方法。是指材料经过无数次的交变应力仍不断裂的最大应力——1合理选材2合理结构3提高加工质量4表面处理 2)焊接开破口是为了保证焊透,间隙和钝边目的是为了防止烧穿破口的根部 3)焊条由焊芯和药皮组成焊芯—传到电流填充焊缝药皮—1机械保护2冶金处理渗合金3改善焊接工艺 带传动 1:带传动的组成:主动轮.从动轮.封闭环行带.机架 2:弹性滑动——带的弹性变形(不可避免);打滑——过载(可避免) 3打滑→小带轮,包角太小传动比(n1/n2=w1/w2=d2/d1) 4合适的中心距:带速V↑传动能力降低.V带根数不超过10根,过多受力不均匀。 5类型:摩擦型,啮合型(不出现弹性滑动,打滑现象) 按横截面分:平带V带圆带多楔带同步带 带传动的特点应用:优点①适用于两轴中心较大的传动;②具有良好的挠性;③可以缓冲吸振④过载时带在轮上打滑对机器有保护;⑤结构简单制造方便,成本低;缺点①外廓尺寸较大;②不能保证准确的传动比③传动效率低,寿命较短④需要张紧装紧。应用:带传动多用于两轴中心距较大,传动比要求不严格的机械中。①imax=7②V=5~25m/s③效率=0.9 链传动 1特点及其应用:保持平均传动比不变;传动效率高;张紧力小;能工作于恶劣环境中。缺点:稳定性差,噪声大,不能保持恒定传动比,急速反向转动性能比较低,成本高 2链轮的材料要求:强度.耐磨.耐冲击。低速轻载→中碳钢;中速重载→中碳钢淬火 3链传动的主要失效形式:链传动的运动不均匀性(多边形效应:多边形的啮合传动引起传动速度不均匀) 4链传动不适合于高速(中心线最好水平的,调整:加张紧轮) 5组成:主从动链轮和闭合的扰性环形链条,机架。链传动属于有中间扰性件的啮合传动 6传动比i≤7 传动效率p≤100kw 速度v≤15m/s (n1/n2=z2/z1) 齿轮传动 1原理:刚性啮合。特点:①i瞬时恒定②结构紧凑③效率高④寿命长⑤10∧5kw 300m/s 2类型:平行轴齿轮传动(圆柱齿轮传动)粗交轴齿轮传动(链齿轮传动)交错轴齿轮传动3渐开线齿轮:平稳→i瞬=n1/n2=w1/w2→合适齿轮; 4压力角:离rb越远,α↑→不利于传动。α=20° 5㈠斜齿圆柱齿轮传动的平稳性和承载能力都高于直齿圆柱齿轮传动适用于高速和重载传动的场合㈡锥齿轮传动一般用于轻载﹑低速的场合。 轴 1分类:转轴-传递扭矩又承受弯矩(汽车);传动轴-只传递扭矩(自行车);心轴-只承受弯矩;结构:①满足力学性能(强度,刚度) 2轴向定位:轴肩.套筒.轴承端盖.弹性挡圈.螺母.圈锥表面 3周向定位:键联接销钉焊接过盈配合 轴承 1分类:滑动滚动轴承(按工作表面的摩擦性而分) 2滑动轴承:①非液体摩擦滑动轴承一般用于转速荷载不大和精度要求不高的场合;目的:

《机械基础》知识点与公式

《机械基础》知识点及公式 量的名称符号单位单位 公式备注名称符号 力矩M牛 * 米N*m M=Fr r 为矩心到 F 的垂直距离力偶M牛 * 米N*m M=Fd d: 力偶间垂直距离正应力?帕Pa? =F N/A F N: 轴力 线应变ε △1ε= L/L△L=L -L 弹性模量E帕MPa ? =E*ε胡克定律GPa 伸长量 △L米m △ L=F L/EA胡克定律 N 切应力 σ帕Paσ=F Q/A F Q: 剪力 (剪切) 挤压应变? J帕Pa? J=F J/A J F J: 挤压力, A J =L*d 切应力 M T: 横截面上的扭矩 σ帕PaσT/I pρ: 横截面上任意一点的 (扭转)=Mρ半径 截面二次 44 I p=πD4/32=0.1D 4实心圆轴 极距I Z米m I p =0.1D4(1- α4)空心圆轴(α =d/D) 抗扭截面 3333实心圆轴 W = π D/16=0.2D W T米m T 系数W T =0.2D33(1- α4 )空心圆轴 正应力?帕Pa? =M*y/ I Z M:截面上的弯矩 y: 该点到中性轴的距离 截面对中性 44 梁是矩形截面, b 是宽,轴的截面二I Z米I Z=bh/12 m h 是高次距 抗弯截面 z 33W= I Z/y; ?=M /W 米m 系数W Z max max max z 强度校核?max Nmax≤[? ];maxQσ]; ?JmaxJJ J; =F /Aσ =F /A ≤[=F/A≤[? ]公式 σ=M T/ W T≤[ σ]; ? =M / W Z≤[ ? ];

量的名称符单位单位 公式号名称符号 模数m毫米mm m=p/π=d/z 压力角α度°cos20°=0.94 齿数z z=d/m 齿距p毫米mm p=mπ 齿厚s毫米mm s=p/2= m π/2 槽宽e毫米mm e= p/2= m π/2 基圆齿距p毫米mm p =pcos20°= mπcos20° b b 齿顶高h a毫米mm ha=ha* m=m 齿根高h f毫米mm h f =(ha * +c * )m=1.25m 全齿高h毫米mm h= ha+ h f =2.25m 顶隙c毫米mm c= c * m=0.25m 分度圆直径d毫米mm d=mz 基圆直径d毫米mmd = dcos20 ° = mzcos20° b b 齿顶圆直径d a毫米mm d a=d+2h a =m(z+2) 齿根圆直径d f毫米mm d f =d-2h f =m(z-2.5)中心距a毫米mm a=d1/2+d 2/2=m/2(z 1 +z2) 传动比i 12齿轮传动: i 12=n1/n 2=d2/d 1= z 2/ z 1带轮传动: i 1k=n1 /n k= 所有从动轮齿数脸乘积 所有主动轮齿数连乘积 轮系传动比i 1k nk= n 1 所有主动轮齿数脸乘积 所有从动轮齿数连乘积 末轮线速度v毫米/分mm/min v= n k L 流量q v 3 / 秒 3 q v=V/t 米m/s 流速v米 / 秒m/s v= q v/A 静压力p帕Pa p=F/A 备注 标准直齿圆 柱齿轮: ha* =1 * c=0.25 短齿制齿轮: ha*=0.8 c* =0.3 i 12=n1/n 2=D2/D1 螺旋传动: L=P h=nP (n:螺纹线数)齿轮齿条:L=πmz k滚 轮传动: L=πD V:油液体积 A:活塞有效面 2 积( m)

中国科学院大学《高等物理光学》期末知识点总结

20讲题目:平面波与球面波;空间频率;角谱:波的叠加;空间频率的丢失:卷积的物理意义;抽样定理;衍射与干涉;透过率函数;近场与远场衍射;“傅里叶变换与透镜”;対易:衍射的分析法:空品対易;全息;阿贝成像原理(4f 系统);泽尼克相衬显微镜;CTF;OTF;非相干与相干成像系统;衍射的计算机实验;衍射的逆问题;叠层成像(Ptychography );如何撰写科技文章 抽样定理:利用梳状函数对连续函数 抽样,得 抽样 函数 ,由 函数的阵列构成,各个空间脉冲在 方向和 方向的间距分别为 。每个 函数下的体积正比于该点g 的函数值。利用卷积定理,抽样函数 的频谱为 空间域函数的抽样,导致函数频谱 的周期性复 现,以频率平面上 点为中心重复 见图。假定 是限带函数,其频谱仅在频率平面一个有限区域R 不为0.若 , 分别表示包围R 的最小矩形,在 , 方向上的宽度,则只要 ,X,Y 为抽样间隔。 中各 个频谱区域就不会出现混叠现象。这样就 有可能用滤波的方法从 中抽取出原函数频谱G ,而滤除其他各项,再由G 求出原函数,因而能由抽样值还原原函数的条件是1) 是限带函数2)在x ,y 方向上 抽样点最大允许间隔分别为 , 通常 称为奈奎斯特间隔。显然,当函数起伏变化大,包含的细节多、频带范围较宽时,抽样间隔就应当较小。抽样数目最小应为 这是空间带宽积(函数在空域和频域中所占面积之积) 2.10若只能用 表示的有效区间上的脉冲点阵对函数进行抽样,即 试说明,及时采用奈奎斯特间隔抽样,也不在能用一个理想低通滤波器精确恢复 。解:因为表示的有限区域以外的函数抽样对精确恢复,也有贡献不可省略。用 表示的有限区间上的脉冲点阵对函数进行抽样,即 ,抽样函数 对应的频谱为 ,上式右端大 括号中的函数,是以 点为中心周期性重复出现的函数频谱 。对于限带函数,采用奈奎斯特间隔抽样, 中的各个频谱区域原本不会发生混叠现象,但是和二维 函数卷积后,由于 函数本身的延展性,会造成各函数频谱间发生混叠现象,因而不再能用低通滤波的方法精确恢复原函数 。从另一角度看,函数 被矩形函数限制范围后,成为 ,新的函数不再是限带函数,抽样时会发生频谱混叠,可以得出同样的解释。 2.11如果用很窄的矩形脉冲阵列对函数抽样(物理上并不可能在一些严格的点上抽样一个函数)即 式中, 、 为每个脉冲在 方 向的宽度。若抽样间隔合适,说明能否由 还原函数 。解:用很窄的矩形脉冲阵列对函数进行抽样,例如当采用CCD 采集图像,每个像素都有一定的尺寸大小。这时抽样函数 对应的频谱为 , )] sinc sinc ,由于 、 尺寸很小,二维 函数是平缓衰减的函数, 对 中各个以 点为中心的函数频谱 的高度给以加权衰减。上式也可以看成是用经 函数加权衰减的脉冲序列与 卷积,结果是一样的。由于各个重复出现的频谱 形状不变,带宽不变,不发生混叠,因而只要抽样间隔合适,仍然能通过低通滤波还原 . 空间频率的理解:传播矢量位于 平面时,由于 , 平面上复振幅分布为 等位相线方程为 与不同C 值相对应的等位相线是一些垂直于 轴的平行线,图画出了位相依次相差 的几个波面,与 平面相交得出的等位相线,这些等位相线接近相等,由于等位相线上的光振动相同,所以复振幅在xy 平面周期分布的空间周期可以用位相相差 的两相邻等位相线的间隔X 表示, 所以 用空间周期的倒数表示x 方向单位长度内变化的周期数,即 , 成称为复振幅分布在x 方向上的空间频率。 角谱理解: , , , 称 作 平面上复振幅分布的角谱,引入角谱的概念,进一步理解复振幅分解的物理含义:单色光 波场中某一平面上的场分布可看做不同方向传播的单色平面波的叠加,在叠加时各平面波成分有自己的振幅和常量位相,它们的值分别取决于角谱的模和辐角。 泰伯效应:用单色平面波垂直照射一个周期性物体,在物体后面周期性距离上出现物体的像。这种自成像效应就称为泰伯效应,是一种衍射成像。 3.3余弦型振幅光栅的复振幅透过率为 式中, 为光栅的周期; 。 观察平面与光栅相距为z 。当z 分别取下述值时,试确定单色平面垂直照明光栅时在观察平面上产生的强度分布。解:1) 为泰伯距离,光栅透射光场为 式中,A 为平面波振幅值。该透射光场对应的空间频率为 根据菲涅尔衍射 的传递函数 可写出观察平面上得到广场的频谱为 当 时 则式(A )变为 对上式做傅里叶逆变换可得到 观察平面上的光场复振幅分布为 强度分布为 强度分布与光栅透射场 分布相同。结论:在泰伯距离处,可以观察到物体的像;在 处观察到的是对比度反转的泰伯 像;在 处观察到的是泰伯副像,条纹频率变为原来的两倍。 3.4孔径的透过率函数表示为 ,用向P 点汇聚的单色球面波照射孔径 ,P 点位于孔径后面有限短距离z 处得观察平面上,坐标是 .求观察平面上的光强分布,并说明该光强分布与孔径是什么关系;若该孔径是两个矩形孔,求观察平面上的光强分布,并画出沿y 轴方向的 光强分布曲线。解:孔径平面上透射波的光场分布为 把它代入菲涅尔衍射方程,得到衍射光场为 其 强 度 分 布 为 即证明了观察平面上强度 分布是以P 点为中心的孔径的夫琅禾费单缝衍射图样。以上分析表明,若采用向观察平面汇聚 的球面波照明孔径,在近距离上就可以观察到孔径的夫琅禾费单缝衍射分布。 双圆孔:振幅透过率表示 透射光场 傅里叶变换 夫琅禾费光场分布 强度分布 可双孔衍射图样的强度分布是单孔的衍射图样与双光束干涉图样相互调制结果。 双矩形:振幅透过率表示 透射光场 傅里叶变换 夫琅禾费光场分布 强度分布 可双矩形孔衍射图样的强度分布是单矩形孔的衍射图样与双光束干涉图样相互调制结果。 傅里叶透镜和普通透镜的区别:傅里叶变换透镜与普通透镜并无本质区别,只是根据作用的不同将透镜分为傅里叶变换透镜与普通透镜。为了能在较近的距离观察到物体的远场夫琅禾费衍射图样,通常是利用传统的光学元件----透镜,也就是说透镜可以用来实现物体的“傅里叶变换”,我们把实现这种功能的这类透镜称为傅里叶变换透镜。 4.2楔形棱镜,楔角为 ,折射率为n ,底边厚度为 .其位相变换函数,并利用它来确定平行光束小角度入射时产生的偏向角 。解:如图所示,棱镜的厚度函数为 则棱镜的位相调制可以表示为 忽略常系数,则棱镜的位相变换函数可表示为 对于小角度入射的平行光束(假设入射角为 ),其复振 幅分布为 与入射光相比,其传播角度发生了偏转,角度为 CTF:把相干脉冲响应的傅里叶变换定义为相干传递函数,即 }, OTF:非相干成像系统的光学传递函数,强度的传递函数,它描述非相干成像系统在频域的效应。 联系:CTF 与OTF 分别是描述同一个成像系统采用相干照明和非相干照明时的传递函数,它 们都取决于系统本身的物理性质,沟通二者的桥梁是 CTF 和OTF 分别定义为 } 利用傅里叶的自相关定理得到 因此,对 于同一系统来说光学传递函数 等于相干传递函数 的归一化自相关函数。 区别:截止频率:OTF 的截止频率是CTF 截止频率的两倍,但前者是对强度而言,后着是对复振幅而言的,两者由于对应物理量不同,不能从数值上简单比较,成像好坏也物体本身有关。两点分辨率:根据瑞丽分辨率判据,对两个等强度的非相干点光源,若一个点光源产生的艾里斑中心恰好与第二个点光源产生的艾里斑的第一个零点重合,则认为这两个点光源刚好能分辨,高斯像面的最小可分辨间隔是 ,l 是出瞳的直径,对于想干成像系统能否分辨两个 点光源,主要考虑两点间距外,还必须考虑他们的位相关系。相干噪声:想干成像系统在像面上会出现激光散斑或灰尘等产生的衍射斑,这些相干噪声对成像不利。非相干成像系统不产生相干噪声。 5.2一个余弦型光栅,复振幅透过率为 放在图上所示的成像系统的物面上,用单色平面波倾斜照明,平面波传播方向在 平面内,与z 轴夹角为 。透镜焦距为 ,孔径为 。1)求物体透射光场的频谱2)使像平面出现条纹的最大 角等于多少?求此时像面强度分布3)若 采用上述极大值,使像面上出现条纹的最大光栅频率是多少?与 时截止频率相比结论如何?解:1)倾斜单色平面波入射,在物平面上产生的入射光场为 ( )则物平面的透射光场为 其频谱为 其频谱如图,物体有三个频率分量,与垂直入射 的情况相比,其频谱沿 轴整体平移 。本题 中简化计算, 。2)物体的空间频谱包括三个分量,其中任意一个分量都对应空间某一特 定传播方向的平面波。如果仅让一个分量通过系统,则在像面上不会有强度起伏,因此为了在像面上有强度起伏,即有条纹,至少要让两个频率分量通过系统。对于想干成像系统,其截止 频率为 ,式中 为透镜直径; 。因此选取的 角必须至少保证最低的两个 频率分量能通过系统,即最低的两个频率分量都在系统的通频带内,即要求 同时满足上述条件,需要 , 角可以选取的最大值为 当 取该值时,只有两个频率分量通过系统,像的频谱为 对应的复振幅分布为 强度分布为 3)当 取该最大值时,要求光栅频率满足如下关系 即要求 或者是说 当 时,要求光栅频率不大于系统截止频率,即要求 或者是说 可见,当采用 倾斜角的平面波照明时,系统允许通过的物光栅的频 率比垂直照明时提高了一倍。 5.12图所示成像系统,双缝光阑缝宽为a ,中心间距为d 照明光波长为 求系统的脉冲响应和 传递函数并画出他们的截面图。1)相干照明2)非相干照明。解: 时间相干性:假定光源发出的光是由一个有限长度的波列所组成的,将波列在真空中的传播的长度称为相干长度 。单个波列持续的时间 称为相干时间。通常用相干长度和想干时间来衡量时间相干性的好坏。当时间延迟 远大于 或光程差远大于 观察不到干涉条纹。相干时间和光源谱宽之间的关系(时间相干性的反比公式)为 , 为谱线宽度。谱线 越窄,相干时间和相干长度就越长,时间相干性越好,可以得到 ;讨论在空间某一点,在两个不同时刻光场之间的相关性.(同地异时)例如迈克尔孙干涉仪。同一光源形成 的光场中,同一地点不同时刻的光之间的相干性。 空间相干性:讨论在同一时刻 , 空间中两点光场之间的相关性。(同时异地)例如杨氏双缝干涉实验。同一光源形成的光场中,不同地点同一时刻的光之间的相干性。 6.7在图所示的杨氏干涉实验,采用宽度为a 的准单色缝光源,辐射强度均匀分布为 , 。试1)写出计算 两点空间相干度 的公式。2)若a=0.1mm ,z=1m ,d=3mm ,求观察屏上杨氏干涉条纹对比度的大小。3)若z 和d 仍取上述值,欲使观察屏上干涉条纹对比 度下降为0.4,求缝光源宽度a 应为多少?解:1)缝光源的强度分布为 (

高中物理光学知识点总结

二、学习要求 1、知道有关光的本性的认识发展过程:知道牛顿代表的微粒、惠更斯的波动说一直到光的波粒二象性这一人类认识光的本性的历程,懂得人类对客观世界的认识是不断发展不断深化的。 2、知道光的干涉:知道光的干涉现象及其产生的条件;知道双缝干涉的装置、干涉原理及干涉条纹的宽度特征,会用肥皂膜观察薄膜干涉现象。知道光的衍射:知道光的衍射现象及观察明显衍射现象的条件,知道单缝衍射的条纹与双缝干涉条纹之间的特征区别。 3、知道电磁场,电磁波:知道变化的电场会产生磁场,变化的磁场会产生电场,变化的磁场与变化的磁场交替产生形成电磁场;知道电磁波是变化的电场和磁场——即电磁场在空间的传播;知道电磁波对人类文明进步的作用,知道电磁波有时会对人类生存环境造成不利影响;从电磁波的广泛应用认识科学理论转化为技术应用是一个创新过程,增强理论联系实际的自觉性。知道光的电磁说:知道光的电磁说及其建立过程,知道光是一种电磁波。 4、知道电磁波波谱及其应用:知道电磁波波谱,知道无线电波、红外线、紫外线、X 射线及γ射线的特征及其主要应用。 5、知道光电效应和光子说:知道光电效应现象及其基本规律,知道光子说,知道光子的能量与光学知识点其频率成正比;知道光电效应在技术中的一些应用 6、知道光的波粒二象性:知道一切微观粒子都具有波粒二象性,知道大量光子容易表现出粒子性,而少量光子容易表现为粒子性。 光的直线传播.光的反射 二、光的直线传播 1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C =3×108m/s ; 各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v

相关文档
相关文档 最新文档