文档库 最新最全的文档下载
当前位置:文档库 › 浅谈数学归纳法在高考中的应用

浅谈数学归纳法在高考中的应用

浅谈数学归纳法在高考中的应用
浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础

数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。

1.1数学归纳法的发展历史

自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。

安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。

伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明

22

333

(1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。

接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。

到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++=

其中1231,2k a k =+++??????

=?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递

归推理”的数学家,为无限的把握提供了思维。

17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

现的帕斯卡三角形。数学家皮亚诺提出了算术公理系统,用其中的归纳公理奠定数学归纳法的逻辑基础。

帕斯卡、毛罗利科、伊本穆思依姆等都很自觉地使用归纳推理,传承运用数学归纳法,但一直没有明确的名称,而是英国数学家德摩根在其命名上迈出了重要的一步,他曾在1838年伦敦出版的《小百科全书》中,建议将“归纳法(数学)”改为“逐次归纳法”,有意思的是在后来的一次无意中他无意中使用了“数学归纳法”这便成为了最早的名称。之后,英国数学家托德亨特的《代数》(1866年出版)中也采用了“数学归纳法”这一名称,从此这一名称在英国传播开了。

1.2数学归纳法的逻辑基础

数学家皮亚诺提出了算术公理系统,用其中的归纳公理奠定数学归纳法的逻辑基础。

归纳公理:由自然数组成的集合为N ,1N ∈,若N 中任意自然数的后继也属于N ,则N 包含了全部自然数。

2、数学归纳法的步骤及其类型

2.1 第一数学归纳法

设()p n 是关于自然数n 的命题,如果()p n 满足:

(1) (1)p 成立;

(2) 假设当n k =时,命题()p k 成立;

可以推出(1)p k +也成立,则命题()p n 对一切自然数n 都成立。

证明:设M 是由满足命题()p n 的自然数组成的集合

即M 是自然数集N 的子集,由于(1)p 成立

1M ∴∈,又由(2)知k M ∈ 1k M +∈

即k 的后继'k M ∈,由皮亚诺公理的归纳公理5得M N =

因此对于一切自然数n ,()p n 都成立。

第一数学归纳法的应用

例1 用数学归纳法证明22333(1)124n n n n N ++++??????+=∈

证明: (1)当1n =时,左边=1=右边命题成立

(2)假设n k =时命题成立,即

22

333

(k 1)124k k +++??????+= 那么当1n k =+时,223333(k 1)12(1)(1)4k k k +++??????++=++

22

(1)(k 2)4

k ++= 即当1n k =+时命题也成立,所以原命题成立。

2.2 第二数学归纳法

假设()p n 是关于自然数n 的命题,如果()p n 满足:

(1) (1)p 成立;

(2)假设()p n 对于所有满足a k <的自然数a 成立,则()p k 也成立;

那么,命题()p n 对一切自然数n 都成立。

证明:设{n |()M p n =∈成立,n N},又设A N M =-(差集)

假设A 不空,由自然数的最小数原理, A 有最小数0a

由条件(1)知1M ∈,故01a ≠

因此01,21a M -∈,又由条件(2)知01a M -∈,必有0a M ∈

这与0a A ∈矛盾,所以A 为空集

从而M N =,则命题()p n 对一切自然数n 都成立。

第二数学归纳法是第一数学归纳法的加强,在高考数学中不做要求,但是了解此方法很大程度上可以开拓一个学生的思维,体会其中的思想奥妙,在一定程度上可以激发学生学习数学的兴趣,促使学生去创新,与此同时可以发现数学的美。

2.3 数学归纳法其他类型

(1)跳跃数学归纳法

①当时,成立,

l n ,,3,2,1 =)(,),3(),2(),1(l P P P P

②假设时成立,由此推得时,也成立,

那么,根据①②对一切正整数时,成立.

(2)反向数学归纳法

设是一个与正整数有关的命题,如果

a) 对无限多个正整数成立;

b) 假设时,命题成立,则当时命题也成立,那

么根据①②对一切正整数时,成立.

(3)跷跷板数学归纳法

针对两个与自然数有关命题,n n A B

a) 证明1A 成立;

b) 假设k A 成立,递推证明k B 成立,即k A 成立推出k B 成立;

又假设k B 成立,由此递推证明出1k A +也成立,即k B 成立推出1k A +。于是,对于任

意自然数,结论,n n A B 都成立

3、结合高考试题体现数学归纳法

3.1 高考中数学归纳法题型的分析

在高考数学中,运用数学归纳法的证明一般不单独命题,考查常常渗透到数列综合题中,既考查推理论证能力,又考查探究思维能力。近年江西高考压轴题的数列不等式,常常会用到数学归纳法,且常与放缩法有关。其他省的高考题趋势也差不多,数学归纳法在高考中出现的几种题型主要是与数列、不等式、整除相结合考察,难度不是很大,但能体现出解题的效率大大增加,化复杂为容易、抽象为具体,是一个非常值得考察的知识点。

3.2 数学归纳法在代数中的应用

在高考中数学归纳法知识的考察往往是结合代数一起进行的,而代数方面主要体现在数列、整除、不等式方面,但是在几何方面也是一个命题点,这样在一定程度上考察了学生的创新能力与想象能力,符合现代数学的教学目标。下面就这两大方面进行分析阐述。

3.2.1数学归纳法在数列中的应用

高考数学中结合数列来体现数学归纳法是非常常见的题,有些数列的通项不k n =)(k P l k n +=)(n P 1≥n )(n P )(n P )(n P n k n =)(k P 1-=k n )1(-k P 1≥n )(n P

好求,我们可以先对前面几项发现规律,进而进行猜想,继而用数学归纳法进行证明,这不失一种很好解决问题的方法。在生活上可以将此精髓应用,可以达到很好的效果。

例2 [2014·重庆卷] 设11a =,1(n N )n a b ++=∈

(1)若1b =,求2a ,3a 及数列{}n a 的通项公式.

(2)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有n N +∈成立?证明你

的结论.

解:(1) 22a = 31a =

变下形式有11a = 21a = 31a =

根据这个规律进行猜想有1n a

下面用数学归纳法证明以上结论:

证明:1、(1)当1n =时,结论显然成立.

(2)假设n k =时命题成立 即1k a =

则1111k a +===

当1n k =+时命题也成立

所以1n a n N +=∈

2、设()1f x =则1()n n a f a +=

令()c f c = 即1c =解得14

c = 下面用数学归纳法证明命题2211n n a c a +<<<

(1)当1n =时,2(1)0a f == 3(0)1a f =

23114

a a <<<结论成立 (2)假设n k =时结论成立,即2211k k a c a +<<<

易知(x)f 在(-∞,1]上为减函数,从而

212()(1)(1)k c f c f a f a +=>+>=

即2221k c a a +>>>

再由(x)f 在(-∞,1]上为减函数,得

2223()(2)()1k c f c f a f a a +=<+<=<

故231k c a +<<因此2(1)2(1)11k k a c a +++<<<

当1n k =+时命题也成立 综上,存在14

c =

使221n n a c a +<<对所有n N +∈成立

3.2.2数学归纳法在不等式中的应用

用数学归纳法证明不等式可以有效提高解题效率,解题过程得到优化甚至可以使避免一些具体问题或简化。直接使用数学归纳法进行不等式的证明时,在归纳和过渡往往存在一定的困难,如果能灵活地使用不等式的传递性和可加性,在恰当的时候使用过渡不等式和假设不等式与目标不等式的特征关系,通过放缩常数和强化命题等技巧,可以顺利完成归纳和过渡。同时,在利用它来解决不等式问题时首先要细心地观察,然后大胆地进行联想,发现一些内在的联系从而为解决问题提供了方法和途径。

例3 [2014·安徽卷] 设实数0c >,整数1p >,n N +∈。

(1)证明:当1x >-且0x ≠时,(1)1p x px +>+ ;

(2)数列{}n a 满足11p a c >,111p n n n p c a a a p p -+-=+,证明:11p n n a a c +>>。 证明:(1)用数学归纳法证明如下

① 当2p =时,22(1)1212x x x x +=++>+原不等式成立.

② 假设(2,)p k k k N +=≥∈时,不等式(1)1k x kx +>+成立.

当1p k =+时,1(1)(1)(1)(1)(1)k k x x x x kx ++=++>++

21(1)1(1)k x kx k x =+++>++ 所以当1p k =+时,原不等式也成立。

综合①②可得,当1x >-,0x ≠时,对一切整数1p >,不等式(1)1p x px +>+均成立。

(2)先用数学归纳法证明1

p n a c >

①当1n =时,由题设知11p a c >成立;

②假设(2,)n k k k N +=≥∈时,不等式1p k a c >成立。 由111p n n n p c a a a p p

-+-=+易知0n a >,n N +∈ 当1n k =+时,

1111(1)p k k p k k a p c c a a p p p a -+-=+=+- 由1

0p k a c >>得111(1)0p k

c p p a -<-<-< 由(1)中的结论得111()1(1)1(1)p p k p p p k k k k a c c c p a p a p a a +??=+->+-=????

因此1p k a c +>,即11p k a c +>,

所以当1n k =+时,不等式1p n a c >也成立。

综合①②可得,对一切正整数n ,不等式1p n a c >均成立。 再由111(1)n p n n a c a p a +=+-可得11n n

a a +<, 即1n n a a +< 综上所述,11p n n a a c +>>,n N +∈

点评:此高考题是用数学归纳法来证明著名不等式贝努利不等式,在一定程度上有回归到课本上的节奏,这题出现在高考试题上不仅是考察数学归纳法的知识,更重要的体现数学归纳法的功效,可以激发学生的创新思维,给学生想象空间,减少学生在探究未知知识时的畏惧心理。

在利用数学归纳法证明不等式,有些时候需要对命题的加强进而去证明,这样就可以把一个无从下手的题目进行处理,证得加强后的命题,因此原命题也成立。此方法在简答过程是由一定难度的,在学生成绩水平中具有区分度,但是很有必要让学生训练掌握,下面分析一个此类型的典高考题,体会下其中的思想、奥妙所在。

例4 [2008·辽宁卷]在数列{}n a ,{b }n 中,112,4a b ==且1,,n n n a b a +等差数列,11,,n n n b a b ++成等比数列n N +∈

1) 求234,,a a a 及234,,b b b 由此猜测{}n a {b }n 的通项公式,并证明你的结论;

2) 证明:11221115 (12)

n n a b a b a b +++<+++ 证明:1)略,直接写出几项进行归纳猜想进而用数学归纳法进行证明。

2)分析:由于此问右边的式子与无关,不能直接用数学归纳法证明,因

此可以加强结论之后再用数学归纳法证明。

当1n =时,11115612

a b =<+不等式显然成立 现用数学归纳法来证明112211151......,21222n n

n a b a b a b n +++<-≥++++ a )当2n ≥时,有1)知(1)(21)n n a b n n +=++,命题成立

b )假设当n k =时命题成立,那么当1n k =+时 由归纳假设有112211111511......1222(2)(23)k k a b a b a b k k k +++++<-+++++++ 51151511222(2)(22)122(2)122(1)2

k k k k k <-+=-=-++++++ 所以当1n k =+时命题也成立

故得证。

3.2.3数学归纳法在整除中的应用

数学归纳法与整除性问题相结合,在一定程度上考察了一个学生的思维转换的能力,同时可以体现出学生对数学归纳法的理解与掌握程度。在最近几年里,各省未出此类题型,但是很有命题的趋势,并且有时候技巧性很强,所以值得去研究学习。

例5 求证7121n n +-能被9整除(n 为正整数)

证明:令()7121n g n n =+-

(1) 当1n =时,(1)712118g =+-=能被9整除,所以命题成立

(2) 假设n k =时命题成立,即()7121k g k k =+-能被9整除

那么当1n k =+时,1(1)712(1)1k g k k ++=++-

7(7121)9(82)k k k =+--+

由假设知7(7121)k k +-能被9整除,而9(82)k +也能被9整除

所以(1)g k +能被9整除

因此当1n k =+时命题也成立,所以原命题正确,得证。

说明:此类题型很多考生不能很好的配凑出假设结论出来,那么就要加一项减一项进行处理,对于整除本身是个抽象的问题就感觉困难,如果能找出此题的突破口,此类题就是比较好处理的。但是往往同学们很难把握到,针对这个问题,我们寻求另一种论证方法:“作差”,即求(1)()g k g k +-的差,其优点是方法统一,容易显露问题的核心,便于寻求推证的途经,读者可以将这两种方法进行比较。 另证:令()7121n g n n =+-

(1)当1n =时,(1)712118g =+-=能被9整除,所以命题成立

(2)假设n k =时命题成立,即()7121k g k k =+-能被9整除

那么当1n k =+时,1(1)712(1)1k g k k ++=++-

1(1)g(k)(712(1)1)(7121)k k g k k k ++-=++--+- 6(72)18(21)k m =+=+

其中m 为整数

所以当1n k =+时命题也成立

所以原命题正确

3.3数学归纳法在几何中的应用

高考中用数学归纳法证明几何问题至今高考题中还没出现,但是思维是活跃的,可以激发学生的空间想象潜力,在将来知识爆炸的时代,选择优秀的人才,用数学归纳法证明几何问题将会是很好的选择,下面探究用数学归纳法证明几何问题的典型试题。

例6 平面内有n 条直线,其中任意两条不平行,任意三条不共点,求证它们:

(1) 共有1()(1)2

f n n n =-个交点; (2) 互相分割成2()

g n n =条线段;

(3) 把平面分割成1()(1)12h n n n =

++个部分

[分析] 本题利用几何法证明比较困难,因与n 自然数有关,可考虑数学归纳法,结合图形,只要明确增加一条直线后发生的变化即可进行证明。

[证明] (1)当1n =时(1)0,(1)1,(1)2f g h ===与图形性质相同,命题成立。

(2) 假设1(2)n k k =-≥时,命题成立,则当n k =时,考查1n k =-及 增加一条直线l ,这一条直线与原来的1k -条直线的关系是它们都相交,各有一个交点。所以(k)(1)1f f k k =-+-又因为增加的一条直线l 被原来的1k -条直线分割成k 段(即增加的1k -个点把l 分成k 段)而l 又把原来的1k -条直线每条多分出一段(即增加的1k -个交点把各交点所在的线段一分为二),共增加了1k k +-条线段。所以(k)(1)1(1)21g g k k k g k k =-++-=-+-

又因为l 被分割成k 段,每段把该段所在的部分平面分成两部分,总共多出k 个部分平面。所以(k)(1)h h k k =-+,由假设易知1()(1)2

f k k k =

-,2(k)g k =,1(k)k(k 1)12h =++故n k =时命题成立 由(1)(2)知,对任何n N +∈命题都成立。

[点评] 利用数学归纳法证明几何问题要语言叙述准确清楚,一定要讲清从n k =到1n k =+时,新增加量是多少,也就是变化的状态。一般地,证明第二步时,常用的方法是加一法,即在原来k 的基础上,再增加1个,进而证明。也可以从1k +个中分减1个来,剩下的k 个利用假设。

4、数学归纳法的教学研究

4.1 对数学归纳法的教学建议

数学归纳法的知识点对于第一次接触的高中生来讲是一个很难理解的抽象问题,在一定程度上会阻碍他们理解该知识点,因此合理的教学在一定程度上会帮助学生克服面临的困难,与此同时可以帮助学生更好把握数学归纳法的题目,夺得更高的分数。下面提出几点教学的建议,此建议是根据《普通高中课程标准试验教科书数学选修2-2》数学归纳法知识排版选题提出的。

(1) 对数学归纳法原理的理解是这一节的难点,一定要特别注意

对数学归纳法是证明与正整数有关的数学命题的特别方法,其实它更应该反映的是一种递推的数学思想,先存在一个使结论成立的最小正整数0n ,这是递推的基础,在这个基础上,假设当0(,)n k k n k N +=≥∈时,命题成立,根据这个假

设,如能推出当n=k+1时命题也成立,那么久可以递推出对所有不小于0n 的正整

数命题都成立。这是递推的一句。有了这个一句,加上递推的基础,就可以说明对所有0n n ≥的正整数n ,命题都成立。

(2) 通过教学要让学生认识到数学归纳法的两个步骤缺一不可。

数学归纳法的两个步骤缺一不可,教学中要向学生强调这一点。如果命题只证到0n n =成立,就断定对一切正整数n 都成立,即不做第二步证明,这就是不

完整归纳,不足以证明命题的正确性。但没有第一步,也是不正确的。有些命题,如果只作第二步,完全可以做通,但事实上它们是不成立的。如1123(1)12

n n ++++++n=。 若n=k 时,1123k(k 1)12

++++++k= 则可推得n=k+1时,11123(1)k(k 1)1(1)(1)(2)122

k k k k ++++++++=++++k+=,然而n=1时命题成立显然不成立。这个例子说明,数学归纳法的两个步骤是问题的两个方面,一个是命题成立的基础,另一个是递推的依据(延续关系),二者缺一不可,教学中可以通过反例来让学生体会这一点。

(3) 教学中应引导学生特别注意根据题意找准初始值

(不是每个问题的初始值都是1)

教材所给例子中虽然第一步中的起始值都是从n=1开始的,但其实n 从几开始要依据题目而论,只不过从n=1开始的题目比较普遍,难度也不太大,这一点教师可以依据学生情况做一补充。另外,在第一步骤中,只需证明n 取第一个值时命题成立就可以了,无需继续验证其他有限个值,因为一旦有了“第一个”的基础,再有第二部递推的依据,即保证了n 取第2个,第3个……值时命题的正确性。

4.2 数学归纳法解题技巧

(1)起点前移:有些时候验证1比较困难,可以用验证成立代替验证,当然其他的点也可以向前移动,只要符合前移的起点对结论成立并且容易验证,为了简化问题,有意向前移动起点。

(2)起点增多:有些命题在证明向这一步时,需要经其他特殊情形作为基础,此时往往需要补充验证某些特殊情形,因此需要适当增多起点.

(3)加大跨度:有些命题为了减少归纳中的困难,可以改变跨度来实现,但是这样操作就会使起点增多。

(4)选择恰当的假设方式:归纳假设不是一定要用“假设时命题成立”,0=n 1=n k n =1+=k n k n =

我们可以根据题目的意思选取第一类、第二类、跳跃、反向数学归纳法的假设形式,灵活巧妙的处理。

(5)变换命题:有些时候我们需要利用一个辅助命题来帮助完成证明,也有的时候可以改成等价命题或则将证明的结论加强。这样才可以使用数学归纳法证明。

参考文献

[1] 孙宏安.帕斯卡与数学归纳法[J].数学通报,1997(9):28-30.

[2]罗增儒.关于数学归纳法的逻辑基础[J].数学教学,2004(8):17-18.

[3] 冯进.数学归纳法的发展历程[J].常热理工学院学报,2008(8):21-25.

[4] Rabinovitch L.RabbiLevi ben Gershon and the Origins of Mathematical Induction [J].Archive for History of Exact Sciences,1970(6): 237-248.

[5] 史久一,朱梧槚著.化归与归纳·类比·猜想.大连理工大学出版社,2008:16-20.

[6]朱华伟.高中数学新课程标准中的归纳法[J].数学通讯,2005(13):26-30.

[7] 黄光谷、黄川、蔡晓英、李杨.吉米多维奇数学分析习题集选解[M]. 出版社地址:华中科技大学出版社,2006:25-26.

[8] 2011年IMO中国国家集训队教练组编.2011走向IMO[M].上海:华东师范大学出版社,2011:30-31.

致谢

本论文是在导师刘育兴副教授悉心指导下完成的,导师渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响深远。不禁使我树立了远大的学术目标、掌握了基本的研究方法,还是我明白了许多待人接物与为人处事的道理。本论文从选题到完成,每一步都是在导师的指导下完成的,倾注了导师大量的心血。在此,谨向导师表示崇高的敬意和衷心的感谢!

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

浅谈数学归纳法

浅谈数学归纳法 国良 井冈山大学数理学院邮编:343009 指导老师:艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理:

第一条引理 该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理 如果该命题对任意底(对任意n )成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n 值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J 。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,数学归纳法开始得到世人的承认并得到数学界日益广泛的应用。十九世纪,意大利数学家皮亚若建立自然数的公理体系时,提出归纳公理,为数学归纳法奠定了理论基础。即:对于正整数N +的子集M ,如果满足:①1∈M;②若a ∈M ,则a+1∈M ;则M=N +. 2 数学归纳法的表现形式 2.1 第一数学归纳法 原理1:设()P n 是一个与正整数有关的命题,如果 (1)当00()n n n N +=∈时,()P n 成立; (2)假设0(,)n k k n k N +=≥∈时命题成立,由此推得n=k+1时,()P n 也成立; 那么,对一切正整数n 0n ≥,()P n 成立。 证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠?,于是由最小数原理,S 中有最小数a ,

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

数学归纳法的应用习题

第2课时数学归纳法的应用双基达标(限时20分钟) 1.利用数学归纳法证明1 n+ 1 n+1 + 1 n+2 +…+ 1 2n<1(n∈N *,且n≥2)时,第二步 由k到k+1时不等式左端的变化是 (). A.增加了 1 2k+1 这一项 B.增加了 1 2k+1 和 1 2k+2 两项 C.增加了 1 2k+1 和 1 2k+2 两项,同时减少了 1 k这一项 D.以上都不对 解析不等式左端共有n+1项,且分母是首项为n,公差为1,末项为2n 的等差数列,当n=k时,左端为1 k+ 1 k+1 + 1 k+2 +…+ 1 2k;当n=k+1时, 左端为 1 k+1 + 1 k+2 + 1 k+3 +…+ 1 2k+ 1 2k+1 + 1 2k+2 ,对比两式,可得结论. 答案 C 2.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是 ().A.假使n=2k+1时正确,再推n=2k+3正确 B.假使n=2k-1时正确,再推n=2k+1正确 C.假使n=k时正确,再推n=k+1正确 D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N*) 解析因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第(k+1)个正奇数即n=2k+1正确. 答案 B 3.已知平面内有n条直线(n∈N*),设这n条直线最多将平面分割成f(n)个部分,则f(n+1)等于

().A.f(n)+n-1 B.f(n)+n C.f(n)+n+1 D.f(n)+n+2 解析要使这n条直线将平面所分割成的部分最多,则这n条直线中任何两条不平行,任何三条不共点.因为第n+1条直线被原n条直线分成n+1条线段或射线,这n+1条线段或射线将它们所经过的平面区域都一分为二,故f(n+1)比f(n)多了n+1部分. 答案 C 4.已知S n=1 1·3+ 1 3·5+ 1 5·7+…+ 1 (2n-1)(2n+1) ,则S1=________,S2=________, S3=________,S4=________,猜想S n=________. 解析分别将1,2,3,4代入观察猜想S n=n 2n+1 . 答案1 3 2 5 3 7 4 9 n 2n+1 5.用数学归纳法证明“当n为正偶数时x n-y n能被x+y整除”第一步应验证n =________时,命题成立;第二步归纳假设成立应写成________________.解析因为n为正偶数,故第一个值n=2,第二步假设n取第k个正偶数成立,即n=2k,故应假设成x2k-y2k能被x+y整除. 答案2x2k-y2k能被x+y整除 6.用数学归纳法证明: 1+1 22+ 1 32+…+ 1 n2<2- 1 n(n≥2). 证明:(1)当n=2时,1+1 22= 5 4<2- 1 2= 3 2,命题成立. (2)假设当n=k时命题成立,即1+1 22+ 1 32+…+ 1 k2<2- 1 k,当n=k+1时, 1+1 22+ 1 32+…+ 1 k2+ 1 (k+1)2 <2- 1 k+ 1 (k+1)2 <2- 1 k+ 1 k(k+1) =2- 1 k+ 1 k- 1 k+1=2- 1 k+1 ,命题成立. 由(1)、(2)知原不等式在n≥2时均成立. 综合提高(限时25分钟)

浅谈数学归纳法及其在中学数学中的应用2

目录 1、数学归纳法---------------------------------------------------------- 3 1.1 归纳法定义-------------------------------------------------------- 3 1.2 数学归纳法体现的数学思想----------------------------------------- 4 1.2.1 从特殊到一般------------------------------------------------ 4 1.2.2 递推思想---------------------------------------------------- 4 2、数学归纳法在中学数学中的应用技巧------------------------------------- 5 2.1 强调------------------------------------------------------------- 5 2.1.1 两条缺一不可------------------------------------------------ 5 2.2 技巧------------------------------------------------------------- 5 2.2.1 认真用好归纳假设-------------------------------------------- 5 2.2.2 学会从头看起------------------------------------------------ 6 2.2.3 在起点上下功夫---------------------------------------------- 7 2.2.4 正确选取起点和过渡------------------------------------------ 8 2.2.5 选取适当的归纳假设形式-------------------------------------- 9 3、数学归纳法在中学数学中的应用 ---------------------------------------- 9 3.1 证明有关自然数的等式--------------------------------------------- 9 3.2 证明有关自然数的不等式------------------------------------------ 11 3.3 证明不等式------------------------------------------------------ 11 3.4 在函数迭代中的应用---------------------------------------------- 12 3.5 在几何中的应用-------------------------------------------------- 14 3.6 在排列、组合中的应用-------------------------------------------- 16 3.7 在数列中的应用-------------------------------------------------- 16 3.8 有关整除的问题-------------------------------------------------- 17

数学归纳法的应用

数学归纳法的应用 姓名 甘国优 指导教师 赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法. Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application . Key words :Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

数学归纳法在离散数学中的应用

数学归纳法在离散数学中的应用 在由一系列有限的特殊事例得出一般性结论的推理方法称为归纳法。而 数学归纳法则是用于证明与自然数n 有关的结论的归纳法:如果我们能够证明当n=1时结论是成立的,而且我们能用相同的方法由n=1命题成立证得n=2命题也成立;由n=2命题成立证得n=3成立;由n=3命题成立证得n=4成立…而且这个过程显然可以无穷进行下去。则我们就断言对于所有自然数n 命题都是成立的。数学归纳法的一般形式为,关键是归纳: 初始步):先证n =1时,结论成立; 归纳步):再证若假设对自然数n =k 结论成立(或者对所有小于等于n 的 自然数k 结论都成立),则对下一个自然数n =k+1结论也成立; 结论): 根据初始步和归纳步的证明得出结论对所有自然数都成立。 当结论与多个自然数有关时这样一类题目的时候,要注意的一点就是对所要进行归纳的自然数的选择。 例1、对群的任意元素 a,b ,及任何正整数m ,n, a m *a n = a n m + 问题解析:这是自然数有关的结论。但这里涉及到两个自然数,但由元素 的幂的定义以及m 和n 的作用的对称性,故只要任意选择其中一个即可。 证明:用数学归纳法对n 进行归纳证明。 对任何正整数m ,当n=0时,有 a m *a n = a m *a 0= a m *e= a 0+m 。 故结论成立。 假设当 n=k 时, a m *a k = a k m +。则当n=k+1时,由*满足结合律、 元素的幂的定义及归纳假设a m *a 1+k = a m *(a k *a)= (a m *a k )*a= a k m +*a= a )1(++k m ,即结论对n=k+1也成立。 故对任何正整数m,n, e a m *a n = a n m + n m m n m n n m n m a a a a a a a a +-+--------==*=*=*1 ) (1 1 1 ) () () () ( 例2、设d 1,d 2,…,d n 为n 个正整数,n ≥2,并且∑=n i i d 1 =2n-2。证明:存在 n 个顶点的树T 使它的顶点度数分别是d 1,d 2,…,d n 。

数学论文 浅谈数学归纳法的应用

浅谈数学归纳法的应用 数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。 一、用数学归纳法证明整除问题 用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。 例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由. 证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: (1)当n =1时,显然成立. (2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1), 由于3k -1-1是2的倍数,故18(3k - 1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除. 由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36. 二、用数学归纳法证明恒等式问题 对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性. 例2、是否存在常数c b a ,,,使得等式)(12 )1()1(32212222c bn an n n n n +++=+?++?+?对一切自然数n 成立?并证明你的结论. 解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得 ???? ?????++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11 ,3===c b a ,于是对3,2,1=n ,下面等式成立: )10113(12)1()1(32212222+++= +?++?+?n n n n n n 令222)1(3221+?++?+?=n n S n 假设k n =时上式成立,即)10113(12 )1(2+++= k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12 )1(++++++=k k k k k k

数学归纳法几种常见方式及其应用中存在的问题论文

数学归纳法几种常见方式及其应用中存在的问题 摘要 在处理数学问题时,经常涉及与任意自然数有关的一些命题,这些命题实质上是由无限个n取具体整数时得到的无限个命题组成的,我们往往不能逐一验证,这时,数学归纳法就是我们最常应用的一个有效的推理方法,为什么我们能够相信数学归纳法的证明呢?因为数学归纳法实质上是一种演绎推理法,华罗庚老先生是这样解释数学归纳法原理的:“我们采用形式上的讲法,也就是:有一批编了号码的数学命题,我们能够证明第1号命题是正确的;如果我们能够证明在第K 号命题正确的时候,第K+1号命题也是正确的,那么,这一批命题就全部正确.”其实,数学归纳法的正确性在我们学到的自然数的公理系统已经得到说明,他是与皮亚诺公理等价的一个本原性命题. 关键字数学归纳法常见方式及问题无限有限 数学归纳法(Mathematical Induction,通常简称为MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。是用来研究与正整数有关的数学问题,在高中数学中常用来证明等式(不等式)成立和数列通项公式成立。 数学归纳法一般分为以下几种常见的方式: (一)第一数学归纳法: 一般地,证明一个与自然数n有关的命题P(n),有如下步骤 (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (二)第二数学归纳法: 对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立; (2)假设n0≤n<=k时P(n)成立,并在此基础上,推出P(k+1)成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (三)倒推归纳法(反向归纳法): (1)验证对于无穷多个自然数n命题P(n)成立, (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (四)螺旋式归纳法

数学归纳法的七种变式及其应用

数学归纳法的七种变式及其应用

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4是证明一个命题对于所有的自然数都是成立的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为:

浅谈数学归纳法

浅谈数学归纳法 陈国良 井冈山大学数理学院江西吉安邮编:343009 指导老师:曹艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理: 第一条引理该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理如果该命题对任意底(对任意n)成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来陈述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,

数学归纳法的应用

数学归纳法的应用 姓名甘国优指导教师赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛。本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力。 关键词:数学归纳法;步骤;证明方法. Abstract:Mathematical induction is a common evidencemet hod in mathematics, it is have very broad application。 In this paper,author research into the step ofthe Mathematica l induction , it includes summariz,evidence andguess embod y the idea ofthe evidence ofmathematicalinduction. Also at here ,we summariz themethodof the mathemat ical inductionapplication insolvealgebra identities , g eometric ,order and portfolio ,and so on .also analyze the c ommonerrors on application and into duct skill of the proof ,proof ofskills introduced. It is help to incr eased the level of the Mathematical induction’s application.Key words:Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法。我们在学习

数学归纳法的应用

数学归纳法的应用 数学归纳法的应用:具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等. 上述过程主要体现在数学归纳法的过程及注意事项,主要是证明恒等式的一些例子,下面我们看看数学归纳法应用的其他类型. (1)证明恒等式(略) (2)证明不等式. 例题:记()11111,23n S n n N n =+ ++???+>∈,求证:()212,2 n n S n n N >+≥∈. 证明:(1)当2n =时,2211125211234122 S =+++=>+,∴当2n =时,命题成立. (2)设n k =时,命题成立,即2111112322 k k k S =+++???+>+,则当1n k =+时,121111111123221222k k k k k S ++=+++???++++???+++ 11121111112212222222222k k k k k k k k k k k +>++++???+>++=++=+++++ 故当1n k =+时,命题也成立. 由(1),(2)可知,对n N ∈,2n ≥,212 n n S >+. 注意:利用数学归纳法证不等式,经常要用到“放缩”的技巧. (3)证明数或式的整除性 例题:求证:()()2111n n a a n N -+++∈能被21a a ++整除 证明:(1)当1n =时,()21111211a a a a ?-+++=++,命题显然成立. (2)设n k =时,()2111k k a a ?-+++能被21a a ++整除.则当1n k =+时, ()()() 2122121111k k k k a a a a a a +-++++=?+++()()()()212212111111k k k k a a a a a a a ---+??=+++++-+? ? ()()()212112111k k k a a a a a a --+??=++++++?? 由归纳假设,以上两项均能被21a a ++整除,故1n k =+时,命题成立. 由(1),(2)可知,对n N ∈,命题成立

数学归纳法及其应用 论文

自学考试本科毕业论文论文题目:数学归纳法及其运用 学校名称:桂林师范高等专科学校 专业名称:数学教育 准考证号: 030114300393 姓名:何东萍 指导教师:李政

目录 内容摘要 一、数学归纳法的由来 (一)数学归纳法的概念 (二)数学归纳法的命名 (三)归纳法的证明 二、数学归纳法的步骤 三、数学归纳法的几种形式 (一)第一数学归纳法 (二)第二数学归纳法 (三)倒推归纳法 (四)跳跃归纳法 (五)螺旋式归纳法 四、数学归纳法的应用 (一)数学归纳法在生物方面的应用(二)数学归纳法在初等数学方面的应用(三)数学归纳法在几何方面的应用 五、数学归纳法的变体 (一)从0以外的数字开始 (二)针对偶数与奇数 (三)递归归纳法 六、数学归纳法常见误区及注意 (一)易错例题 (二)数学归纳法需注意 文献参考

数学归纳法及其应用 班级:数学教育2班姓名:何东萍指导老师:李政 【内容摘要】本文讲述了数学归纳法的历史由来和理论原理,通过数学归纳法的基本形式的学习和理解,用相应实例进行解析说明数学归纳法在各方面的具体应用。最后总结了数学归纳法的常见误区和应用技巧,并对未来发展的场景作出了预测。在中学数学的过程中,有一种很常见并且很基本的数学方法——数学归纳法。对于数学归纳法,人们常常有这样的疑问:数学归纳法的原理是什么?数学归纳法的证明过程为什么要用这样的规定格式?数学归纳法的应用前景会如何? 【关键词】数学归纳法;归纳法的分类;归纳法的应用; 一、数学归纳法的由来 在最早的使用数学归纳法的证明出现于Francesco Maurolico的Arithmeticorum libri duo(1575年)。Maurolico利用递推关系证明出前n个奇数的总和是n^2,数学归纳法之谜便由此解开。 (一)数学归纳法的概念 数学归纳法有这么一个典型的例子:如果你有一排很长的直立着的多米诺骨牌那么第一张骨牌将倒下,其中某一个骨牌倒了,与其相邻的下一个骨牌也会倒,所以我们可以由此推断出所有的的骨牌都将要倒。也就能确定出这么一种递推关系,只要能够满足这两个条件就会导致所有骨牌全都倒下,用数学的方式可以简述为: (1)第一块骨牌倒下; (2)任意两块相邻骨牌,只要前一块倒下,后一块必定倒下。这样,无论有多少骨牌,只要保证(1)(2)成立,就会全都倒下。 关于数学归纳法,新教材是这样描述的:“从特殊的事例推出一般原理的推

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

相关文档
相关文档 最新文档