文档库 最新最全的文档下载
当前位置:文档库 › 实数典型例题

实数典型例题

实数典型例题
实数典型例题

相交实数典型问题精析(培优)

例1.(2009年乌鲁木齐市中考题)的相反数是()

A. B.C. D.

分析:本题考查实数的概念――相反数,要注意相反数与倒数的区别,实数a的相反数是-a,选A.要谨防将相反数误认为倒数,错选D.

例2.(2009年江苏省中考题)下面是按一定规律排列的一列数:

第1个数:;第2个数:;

第3个数:;

……第个数:.

那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是(A )

A.第10个数B.第11个数C.第12个数D.第13个数

解析:许多考生对本题不选或乱选,究其原因是被复杂的运算式子吓住了,不善于从复杂的式子中寻找出规律,应用规律来作出正确的判断.也有一些考生尽管做对了,但是通过写出第10个数、第11个数、第12个数、第13个数的结果后比较而得出答案的,费时费力,影响了后面试题的解答,造成了隐性失分.本题貌似复杂,其实只要认真观察,就会发现,从第二个数开始,减数中的因数是成对增加的,且增加的每一对数都是互为倒数,所以这些数的减数都是,只要比较被减数即可,即比较的大小,答案一目了然.

例3(荆门市)定义a※b=a2-b,则(1※2)※3=___.

解因为a※b=a2-b,所以(1※2)※3=(12-2)※3=(-1)※3=(-1)2-3=-2.故应填上-2. 说明:求解新定义的运算时一定要弄清楚定义的含义,注意新定义的运算符号与有理数运算符号之间的关系,及时地将新定义的运算符号转化成有理数的运算符号.

例4(河北省)古希腊著名的毕达哥拉斯学派把1、3、6、10、…,这样的数称为“三角形数”,而把1、4、9、16、…,这样的数称为“正方形数”.从如图所示中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()

4=1+3 9=3+6 16=6+10

=3+10 =9+16 =15+21 =18+31

解 因为15和21是相邻的两个“三角形数”,且和又是36,刚好符合

“正方形数”,所以36=15+21符合题意,故应选C.(说明 本题容易错选B ,事实上,25虽然是“正方形数”,而9和16也是“正方形数”,并不是两个相邻“三角形数”).

例5.(2009年荆门市中考题)若,则x -y 的值为( )

A .-1

B .1

C .2

D .3

分析:因为x-1≥0,1-x ≥0,所以x ≥1,x ≤1,即x =1.而由,有

1+y =0,所以y =-1,x -y =1-(1)=2.

例6.(2009年宜宾市中考题)已知数据:,,,π,-2.其中无理

数出现的频率为( )

A .20%

B .40%

C .60%

D .80%

分析:,和开方开不尽的数,所以和都是无理数;л是无限不循环小数,也是无理数;而,-2都是有理数,所以无理数出现的频率为==60%,选C .

例7.(2009年鄂州市中考题)为了求的值,可令S =,则2S = ,因此

2S-S =,所以=.仿照以上推理计算出的值是( )

A . B. C. D.

解析:本题通过阅读理解的形式介绍了解决一类有理数运算问题的方

法,利用例题介绍的方法,有:设S =,则5S =,因此5S-S =-1,所以S =,选D.

说明:你能从中得到解决这类问题的一般性规律吗?试一试.

例8. (2009年枣庄市中考题)a 是不为1的有理数,我们把称为a 的

差倒数.如:2的差倒数是,的差倒数是.已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则 .

解析:首先要理解差倒数的概念,再按照要求写出一列数,从中找出规

律,再应用规律来解决问题.根据题意可得到:,=,==4,=,…,可见这是一个无限循环的数列,其循环周期为3,而2009=669×3+2,所以a2009与a2相同,即.

典型例题的探索

(利用概念)例 3. 已知:是的算术数平方根,是立方根,求的平方根。

分析:由算术平方根及立方根的意义可知

1

2

4

3

a联立<1><2>解方程组,得:

+2

b

a

2b

2,

=

<

>

+

-

=

-

<

>

代入已知条件得:,所以

故M+N的平方根是±。

练习:1. 已知,求的算术平方根与立方根。

2. 若一个正数a的两个平方根分别为和,求的值。

(大小比较)例4. 比较的大小。

分析:要比较的大小,必须搞清a的取值范围,由知,由知,综合得,此时仍无法比较,为此可将a的取值分别为①;②;③三种情况进行讨论,各个击破。当时,取

,则,显然有

当时,,当时,仿①取特殊值可得

(利用取值范围)例5. 已知有理数a满足,求的值。

分析:观察表达式

中的隐含条件,被开方数应为非负数即,亦即,故原已知式可化为:

()2005200420042005200420052005200422=-∴=-∴=-∴=-+--a a a a a a 练习: 若x 、y 、m 适合关系式

y x y x m y x m y x --++-=-++--+2005200532353,试求m

的值。

(思路:x-2005+y 与2005-x-y 互为相反数,且均有算术平方根,故二

者分别为0)

(规律探索)例6. 借助计算器计算下列各题:

(1)(2)(3)(4) 仔细观察上面几道题及其计算结果,你能发现什么规律?你能解释这一

规律吗?

分析:利用计算器计算得:(1)

,(2) (3),(4)

观察上述各式的结果,容易猜想其中的规律为:

个1与n 个2组成的数的差的算术平方根等于n 个3组成的数。即

实数思想方法小结 实数是整个数学学科的基础,对于初学者来讲,有些概念比较抽象、难

懂,但是,如果我们运用数学的思想方法来指导本章的学习,却会收到良好的效果.那么,在本章中有哪些重要思想方法呢?

一、估算思想

估算能力是一种重要的数学思维方法,估算思想就是在处理问题时,采

用估算的方法达到问题解决的目的,在遇到无理数的大小比较或确定无理数的范围等问题时,常用到估算的方法进行解决。

例1估计10+1的值是( )

(A )在2和3之间 (B )在3和4之间

(C)在4和5之间(D)在5和6之间

分析:此题主要考查学生的估算能力,首先要确定10的取值范围,在估算10+1的取值范围。因为9<10<16,所以<10<,即3<10<4,4<10+1<5,从而可确定10+1的取值范围。

解:选C.

二、数形结合思想

所谓数形结合就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来的一种方法。通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到优化解题的目的。在数轴上表示实数,根据数轴上的数进行有关的计算等都能体现数形结合思想的重要作用。

例2如图1,数轴上点表示,点关于原点的对称点为,设点所表示的数为,求的值.

分析:此题是与数轴有关的数形结合的问题,要求的值,需要先根据数轴确定x的值,由数轴易得从而可求出代数式的值。

解:点表示的数是,且点与点关于原点对称,

点表示的数是,即

三、分类思想

所谓分类讨论思想就是按照一定的标准,把研究对象分成为数不多的几个部分或几种情况,然后逐个加以解决,最后予以总结做出结论的思想方法。按照不同的标准,实数会有一些不同的分类方法。

例3在所给的数据:…(相邻两个5之间8的个数逐次增加1个)其中无理数个数( ).

(A)2个 (B)3 (C)4个 (D)5个

解析:作此类题需要掌握实数的分类.判断一个数是哪类数,可以化简

后再判断,但是对于代数式分类判断,则不能化简后再判断,如是分式,对于数、式分类时,常用策略是:“数看结果,式看形式”.;;显然、、都是有理数;所以无理数的个数为3.选B.

解释理由如下: ()

3213213213213213213213213213213

121112112123

3311191101111111011122211110111222111个个个个个个个个个个…………………………n n n n n n n n n n n n n =?=-?=-?=-+?=-《平方根》典例分析

平方根是学习实数的准备知识,是以后学习一元二次方程等知识的必备

基础,也是中考的必考内容之一.现以几道典型题目为例谈谈平方根问题的解法,供同学们学习时参考.

一、基本题型

例1 求下列各数的算术平方根

(1)64;(2)2)3(-;(3)4915

1.

分析:根据算术平方根的定义,求一个数a 的算术平方根可转化为求一

个数的平方等于a 的运算,更具体地说,就是找出平方后等于a 的正数.

解:(1)因为6482=,所以64的算术平方根是8,即864=;

(2)因为93)3(22==-,所以2)3(-的算术平方根是3,即3)3(2=-;

(3)因为49644915

1=,又4964)78(2=,所以49151的算术平方根是78,即

78

49151=.

点评:这类问题应按算术平方根的定义去求.要注意2)3(-的算术平方根

是3,而不是3.另外,当这个数是带分数时,应先化为假分数,然后再求其算术平方根,不要出现类似74

149161=的错误.

想一想:如果把例1改为:求下列各数的平方根.你会解吗?请试一试. 例2 求下列各式的值

(1)81±; (2)16-; (3)259

; (4)2)4(-. 分析:±81表示81的平方根,故其结果是一对互为相反数;-16表

示16的负平方根,故其结果是负数;259表示259

的算术平方根,故其结果是正数;2)4(-表示2)4(-的算术平方根,故其结果必为正数.

解:(1)因为8192=,所以±81=±9.

(2)因为1642=,所以-416-=.

(3)因为2

53??? ??=259,所以259=53.

(4)因为22)4(4-=,所以4)4(2=-. 点评:弄清与平方根有关的三种符号±a 、a 、-a 的意义是解决这类问题的关键.±a 表示非负数a 的平方根.a 表示非负数a 的算术平方根,-a 表示非负数a 的负平方根.注意a ≠±a .在具体解题时,符与“”的前面是什么符号,其计算结果也就是什么符号,既不能漏掉,也不能多添.

例3 若数m 的平方根是32+a 和12-a ,求m 的值.

分析:因负数没有平方根,故m 必为非负数,故本题应分两种情况来解. 解: 因为负数没有平方根,故m 必为非负数.

(1)当m 为正数时,其平方根互为相反数,故(32+a )+(12-a )

=0,解得3=a ,故32+a =9332=+?,912312-=-=-a ,从而8192==a .

(2)当m 为0时,其平方根仍是0,故032=+a 且0433=-a ,此时两方程联立无解.

综上所述,m 的值是81.

二、创新题型

例4 先阅读所给材料,再解答下列问题:若1-x 与x -1同时成立,则x 的值应是多少?有下面的解题过程:1-x 和x -1都是算术平方根,故两者的被开方数x x --1,1都是非负数,而1-x 和x -1是互为相反数. 两个非负数互为相反数,只有一种情形成立,那就是它们都等于0,即1-x =0,x -1=0,故1=x . 问题:已知,21221+-+-=x x y 求y x 的值.

解:由阅读材料提供的信息,可得,012=-x 故21

=x . 进而可得2=y .

故y x =41212

=??

? ??. 点评:这是一道阅读理解题.解这类问题首先要认真阅读题目所给的材料,总结出正确的结论,然后用所得的结论解决问题.

(穿墙术)例5 请你认真观察下面各个式子,然后根据你发现的规律写出第④、⑤个式子. ①

44141411611622=?=?=?=?=; ②244242421623222=?=?=?=?=; ③344343431634822=?=?=?=?=. 分析:要写出第④、⑤个式子,就要知道它们的被开方数分别是什么,为此应认真观察所给式子的特点.通过观察,发现前面三个式子的被开方数分别是序数乘以16得到的,故第④、⑤个式子的被开方数应该分别是64和80. 解:④84244441646422=?=?=?=?=; ⑤

544545454516580222=?=?=?=?=?=. 点评:这是一个探究性问题,也是一道发展数感的好题,它主要考查观察、归纳、概括的能力.解这类题需注意分析题目所给的每个式子的特点,然后从特殊的例子,推广到一般的结论,这是数学中常用的方法,同学们应多多

体会,好好掌握!

平方根概念解题的几个技巧

平方根在解题中有着重要的应用.同学们想必已经知到.但是,今天要告诉同学们的是它的几个巧妙的应用.希望对大家的学习有所帮助.

一、巧用被开方数的非负性求值.

大家知道,当a ≥0时,a 的平方根是±a ,即a 是非负数.

例1、若,622=----y x x 求yx 的立方根.

分析 认真观察此题可以发现被开方数为非负数,即2-x ≥0,得x ≤2;x -2≥0,得x ≥2;进一步可得x=2.从而可求出y=-6.

解 ∵???≥-≥-0202x x , ∴???≥≤22x x x=2; 当x=2时,y=-=(-

6)2=36.

所以yx 的立方根为336.

二、巧用正数的两平方根是互为相反数求值.

我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a 例2、已知:一个正数的平方根是2a -1与2-a ,求a 的平方的相反数的立方根.

分析 由正数的两平方根互为相反得:(2a -1)+(2-a)=0,从而可求出a=-1,问题就解决了.

解 ∵2a -1与2-a 是一正数的平方根,∴(2a -1)+(2-a)=0, a=-1.

a 的平方的相反数的立方根是.113-=-

三、巧用算术平方根的最小值求值. 我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零. 例3、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求ba 的非算术平方根.(即负的平方根)

分析 y=)1(32++-b a ,要y 最小,就是要2-a 和)1(3+b 最小,

而2-a ≥0,)1(3+b ≥0,显然是2-a =0和)1(3+b =0,可得a=2,b=-1.

解 ∵2-a ≥0,)1(3+b ≥0,y=)1(32++-b a ,∴2-a =0和)1(3+b =0时,y 最小.由2-a =0和)1(3+b =0,可得a=2,b=-1.

所以ba 的非算术平方根是.11-=-

四、巧用平方根定义解方程.

我们已经定义:如果x2=a (a ≥0)那么x 就叫a 的平方根.若从方程的角度观察,这里的x 实际是方程x2=a (a ≥0)的根.

例4、解方程(x+1)2=36.

分析 把x+1看着是36的平方根即可.

解 ∵(x+1)2=36 ∴x+1看着是36的平方根. x+1=±6.

∴x1=5 , x2=-7.

例4实际上用平方根的定义解了一元二次方程(后来要学的方程).你能否解27(x+1)3=64这个方程呢?不妨试一试.

利用平方根的定义及性质解题

如果一个数的平方等于a (a ≥0),那么这个数是a 的平方根.根据这个概念,我们可以解决一些和平方根有关的问题.(例1与例2区别)

例1 已知一个数的平方根是2a -1和a -11,求这个数.

分析:根据平方根的性质知:一个正数的平方根有两个,它们互为相反数.互为相反数的两个数的和为零.

解:由2a -1+a -11=0,得a=4,所以2a -1=2×4-1=7.

所以这个数为72=49.

例2 已知2a -1和a -11是一个数的平方根,求这个数.

分析:根据平方根的定义,可知2a -1和a -11相等或互为相反数. 当2a -1=a -11时,a=-10,所以2a -1=-21,这时所求得数为(-21)2=441;

当2a -1+a -11=0时,a=4,所以2a -1=7,这时所求得数为72=49.

综上可知所求的数为49或441.

(区别:类似3是9的平方根,但9的平方根不是3,是+3、-3.)

例3 已知2x-1的平方根是±6,2x+y-1的平方根是±5,求2x-3y+11的平方根.

分析:因为2x-1的平方根是±6,所以2x-1=36,所以2x=37;因为2x+y -1的平方根是±5,所以2x+y-1=25,所以y=26-2x=-11,

所以2x-3y+11=37-3×(-11)+11=81,

因为81的平方根为±9,所以2x-3y+11的平方根为±9.

例4 若2m-4与3m-1是同一个数的平方根,则m为()

(A)-3 (B)1 (C)-3或1 (D)-1

分析:本题分为两种情况:(1)可能这个平方相等,即2m-4=3m-1,此时,m=-3;(2)一个数的平方根有两个,它们互为相反数,所以(2m-4)+(3m-1)=0,解得m=1.所以选(C).

练一练:

已知x的平方根是2a-13和3a- 2,求x的值.

已知2a-13和3a-2是x的平方根,求x的值

3.已知x+2y=10,4x+3y=15, 求x+y的平方根.

.

答案:;2. 49或1225; 3.5

从被开方数入手

二次根式中被开方数的非负性,时常是求解二次根式问题的重要隐含条件。从被开方数入手,将会使很多问题迎刃而解。

一、确定二次根式有意义

例1.下列各式中一定是二次根式的是()

A. B. C. D.

分析:二次根式的两个基本特征是①带二次根号“”,②被开方数必为非负数。A中被开方数为负数;B中不带“”,而是“”;D中被开方数的正负无法确定;所以A、B、D都不是或不一定是二次根式。只有C中的被开方数恒大于0,且带“”,故选(C)。

例取何值时,下列各式在实数范围内有意义。

⑴⑵⑶⑷

分析:使二次根式在实数范围内有意义,必有被开方数大于等于0。如果式子中含有分母,分母不能为0。

解:⑴由2-x≥0,x-1≥0,∴1≤x≤2,∴当1≤x≤2时,

⑴式有意义;

⑵由2x—1>0 (∵分母2x—1≠0)∴x>,∴当x>时,⑵式有意义;

⑶由x—1≥0,x—2≠0,∴x≥1且x≠2 ,∴当x≥1且x≠2时,⑶式有意义;

⑷由于( x—3)≥0,∴x取任何实数时,⑷式都有意义。

二、含有相反数的被开方数根式的化简与求值

例3.已知y=,求(xy—64)的算术平方根。

分析:由被开方数x—7,7—x互为相反数,且均需满足被开方数大于等于0。故x—7=7—x=0,由此求出x、y。

解:由∴x—7=7—x=0,得x=7,∴y=9

∴===1

例4.设等式在实数范围内成立。其中,m、x、y是互不相等的三个实数,求代数式的值。

解:由m≠x≠y,∴x—m≠0, y—m≠0

又被开方数 x—m≥0 , m—y≥0即y—m≤0

即有x—m>0,y—m<0

而被开方数∴∴m=0

=∴x=-y>0

将m=00

∴===

下面两道练习题,同学们不妨试试。

取何值时,下列各式在实数范围内有意义。

⑴⑵⑶⑷

2.若y=,试求(4x-2y)2010的值。

实数大小进行比较的常用方法

实数的大小比较是中考及数学竞赛中的常见题型,不少同学感到困难。“实数”是初中数学的重要内容之一,也是学好其他知识的基础。为帮助同学们掌握好这部分知识,本文介绍几种比较实数大小的常用方法,供同学们参考。

方法一:差值比较法差值比较法的基本思路是设a,b为任意两个实数,先求出a与b的差,再根据当a-b﹥0时,得到a﹥b。当a-b﹤0时,得到a﹤b。当a-b=0,得到a=b。

例1:(1)比较与的大小。(2)比较1-与1-的大小。

解∵-=<0 ,∴<。

解∵(1-)-(1-)=>0 ,∴1->1-。

方法二:商值比较法商值比较法的基本思路是设a,b为任意两个正实数,先求出a与b得商。当<1时,a<b;当>1时,a>b;当=1时,a=b。来比较a与b的大小。

例2:比较与的大小。

解:∵÷=<1 ∴<

方法三:倒数法倒数法的基本思路是设a,b为任意两个正实数,先分别求出a与b的倒数,再根据当>时,a<b。来比较a与b的大小。

例3:比较-与-的大小。

解∵=+ , =+

又∵+<+

∴->-

(超纲,不作要求)方法四:平方法平方法的基本是思路是先将要比较的两个数分别平方,再根据a>0,b>0时,可由>得到a>b来比较大小,这种方法常用于比较无理数的大小。

例5:比较与的大小

解:, =8+2。

又∵8+2<8+2 ∴<。

方法五:估算法

估算法的基本是思路是设a,b为任意两个正实数,先估算出a,b两数或两数中某部分的取值范围,再进行比较。

例4:比较与的大小

解:∵3<<4 ∴-3<1 ∴<

方法六:移动因式法(穿墙术)

移动因式法的基本是思路是,当a>0,b>0,若要比较形如a的大小,可先把根号外的因数a与c平方后移入根号内,再根据被开方数的大小进行比较。

例6:比较2与3的大小

解:∵2==,3==。

又∵28>27,∴2>3。

方法七:取特值验证法

比较两个实数的大小,有时取特殊值会更简单。

例7:当时,,,的大小顺序是______________。

解:(特殊值法)取=,则:=,=2。

∵<<2,∴<<。

例(常德市)设a=20,b=(-3)2,c=,d=,则a、b、c、d按由小到大的顺序排列正确的是()

<a<d<b <d<a<c <c<d<b <c<a<d

分析可以分别求出a、b、c、d的具体值,从而可以比较大小.

解因为a=20=1,b=(-3)2=9,c==-,d==2,而-<1<2<9,所以c<a<d<b.故应选A.

除以上七种方法外,还有利用数轴上的点,右边的数总比左边的数大;以及绝对值比较法等比较实数大小的方法。对于不同的问题要灵活用简便合理的方法来解题。能快速地取得令人满意的结果。

无限循环小数可以化成分数

我们知道小数分为两大类:一类是有限小数,一类是无限小数.而无限小数又分为两类:无限循环小数和无限不循环小数.有限小数都可以表示成十分之几、百分之几、千分之几……,很容易化为分数.无限不循环小数即无理数,它是不能转化成分数的.但无限循环小数却可以化成分数,下面请看:

探索(1):把……(即0.3·2·)化成分数.分析:设x=3·2·=+++……①

上面的方程两边都乘以100得

100x=32++++……②

②-①得100x-x=32 99x=32 x= 32

99

所以0323232……=

32

99

用同样方法,我们再探索把0.5·,3·2·化为分数.可知0.5·= 5

9

,3·2·=

302

999

我们把循环节从小数点后第一位开始循环的小数叫做纯循环小数,通过上面的探索可以发现,纯循环小数的循环节最少位数是几,化成分数的分母就有几个9组成,分子恰好是一个循环节的数字.

探索(2):把……和……化成分数

分析:把小数乘以10得

……×10=……①

再把小数乘以100得

……×100=……②

②-①得……×100-……×10=47- 4

……×90=43 ……= 43

90

所以……=

43

90

再分析第二个数……化成分数.把小数乘以100得

……×100=……①

把小数×10000得

……×10000=……②

②-①得

……×(10000-100)=3256-32

……×9900=3224 ∴……=3224 9900

同样的方法,我们可化2·5·=17089900 ,0. 32·9·=326990

. 我们把循环节不从小数点后第一位开始循环的小数叫做混循环小数.混循环小数化分数的规律是:循环节的最少位数是n ,分母中就有n 个9,第一个循环节前有几位小数,分母中的9后面就有几个0,分子是从小数点后第一位直到第一个循环节末尾的数字组成的数,减去一个循环节数字的差,例如2·5·化成分数的分子是1725-17=1708,0. 32·9·

化成分数的分子是329-3=326.

用数形结合思想解实数中问题

数形结合思想是一种重要的解题思想方法,它可以使较繁杂或难解的题目由繁变简,化难为易,出奇制胜,下面举例说明用数形结合思想解实数中的问题。

例1 实数a 、b 在数轴上的位置如图1所示,那么化简|a+b|+2)(a b -的结果是( )

A 、2b

B 、2a

C 、-2a

D 、-2b

分析:由图1可观察出b >0,a <0,a+b <0,b -a >0然后可化简。 解:观察图1实数a 、b 在数轴上的位置可判定b >0,a <0,a+b <0,b

-a >0,然后化简|a+b|+2)(a b -=-(a+b )+b -a=-2a ,故选C 。 点评:借用数轴判断出某些字母(数)的大小,然后化简是实数化简经常用的一种方法。

例2 如图2,数轴上表示1、2的对应点为A 、B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )(也可用中点坐标公式

=x +x B C x 中点A )

图1 C A B 图2

A 、2-1

B 、1-2

C 、2-2

D 、2-2

分析:通过A 、B 两点所表示的数求出C 点坐标

解:我们知道实数和数轴上的点一一对应,由图2知,|OA|=1,|OB|=2,从而|AB|=|OB|-|OA|=2-1

又点B 、点C 关于点A 对称∴|AC|=|AB|=2-1

这时|OC|=|OA|-|AC|=1-(2-1)=2-2

即点C 所表示的点为2-2,故选C 。

点评:本题借用数轴和点的对称性求出C 点坐标。

例 3 某种零件的合格品规格为(φ04.003.050+

-)mm ,其中有一个不合格零

件与合格品的要求相差,这个不合格零件的直径其最大的可能值与最小的可能值的差是 mm 。 (分析:本题已知中不合格品的取值范围不明确,若构作数轴图3,选用原点O 表示直径为50mm 的合格品,A 、B 分别表示合格品波动的上、下限,则C 、D 分别表示不合格品波动的上、下限,易得答案)

解 依题意作数轴如图3,选用原点O 表示直径为50mm 的合格品,A 、B 分别表示合格品波动的上、下限,则C 、D 分别表示不合格品波动的上、下限,则|CD|=|-(-)=(mm )。

点评:有些实际问题不好解决时,借用数轴可出奇制胜。

化简:|a+2|-|2a -3|(零点分段讨论法)

分析:-2、23

将数轴分为三部分,应讨论化简 0

A C 图3

解:依题意作图如4所示,

①当a <-2时,|a+2|-|2a -3|=-a -2+2a -3=a -5

②当-2≤a ≤23

时,|a+2|-|2a -3|=a+2-(3-2a )=3a -1

③当a >23

时,|a+2|-|2a -3|=a+2-(2a -3)=-a+5。

点评:将使绝对值里为0的数(零点)标在数轴上,可将实数分为几部分,然后进行讨论。

0 2

图4

(完整版)实数知识点及例题

实数习题集 【知识要点】 1.实数分类: 2.相反数:b a ,互为相反数 0=+b a 4.倒数:b a ,互为倒数 0;1=ab 没有倒数. 5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2 ±a . 若a x ,a x a x 33,= =记作的立方根叫做数则数 6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法. 【课前热身】 1、36的平方根是 ;16的算术平方根是 ; 2、8的立方根是 ;327-= ; 3、37-的相反数是 ;绝对值等于3的数是 4 、的倒数的平方是 ,2的立方根的倒数的立方是 。 5 、2的绝对值是 ,11的绝对值是 。 6、9的平方根的绝对值的相反数是 。 7 +的相反数是 ,-的相反数的绝对值是 。 8 - -+的相反数之和的倒数的平方为 。 【典型例题】 例1、把下列各数分别填入相应的集合里: 2 ,3.0,10,1010010001.0,125,722,0,1223π---?-Λ 有理数集合:{ }; 无理数集合:{ }; 负实数集合:{ }; 例2、比较数的大小 (1)2332与 (2)6756--与 例3.化简: (1)233221-+-+ - 实数 有理数 无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数) 正无理数 负无理数 )0(>a 3.绝对值: =a a a - )0(=a )0(< a

(2 例4.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值. 例5 若|2x+1|与x y 48 1 +互为相反数,则-xy 的平方根的值是多少? 总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用. 例6.已知b a ,为有理数,且3)323(2 b a +=-,求b a +的平方根 例7. 已知实数x 、y 、z 在数轴上的对应点如图 试化简:x z x y y z x z x z ---++++ -。 y x z

实数典型例题(培优)

实数典型问题精析(培优) 例1.(2009的相反数是( ) A . B C .2 - D . 2 分析:本题考查实数的概念――相反数,要注意相反数与倒数的区别,实数a 的相反数是-a ,选A.要谨防将相反数误认为倒数,错选D. 例2.(2009年江苏省中考题)下面是按一定规律排列的一列数: 第1个数:11122-??-+ ???;第2个数:2311(1)(1)1113234????---??-++ + ??? ??????? ; 第3个数:234511(1)(1)(1)(1)11111423456???????? -----??-++ +++ ??????? ??????????? ; ……第n 个数:23 2111(1)(1)(1)111112342n n n -???? ?? ----??-++++ ??? ? ?+?????? ?? . 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是(A ) A .第10个数 B .第11个数 C .第12个数 D .第13个数 解析:许多考生对本题不选或乱选,究其原因是被复杂的运算式子吓住了,不善于从复杂的式子中寻找出规律,应用规律来作出正确的判断.也有一些考生尽管做对了,但是通过写出第10个数、第11个数、第12个数、第13个数的结果后比较而得出答案的,费时费力,影响了后面试题的解答,造成了隐性失分.本题貌似复杂,其实只要认真观察,就会发现,从第二个数开始,减数中的因数是成对增加的,且增加的每一对数都是互为倒数,所以这些数的减数都是 21,只要比较被减数即可,即比较14 1 131121111、、、的大小,答案一目了然. 例3(荆门市)定义a ※b =a 2 -b ,则(1※2)※3=___. 解 因为a ※b =a 2 -b ,所以(1※2)※3=(12 -2)※3=(-1)※3=(-1)2 -3=-2.故应填上-2. 说明:求解新定义的运算时一定要弄清楚定义的含义,注意新定义的运算符号与有理数运算符号之间的关系,及时地将新定义的运算符号转化成有理数的运算符号. 例4(河北省)古希腊著名的毕达哥拉斯学派把1、3、6、10、…,这样的数称为“三角形数”,而把1、4、9、16、…,这样的数称为“正方形数”.从如图所示中可以发现,任何一个大于

实数知识点汇总及经典知识讲解

)(无限不循环小数负有理数 正有理数无理数?????????????????--???---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、ΛΛΛΛ?????????????实数第二章 实数 一、 平方根、立方根 1..算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。 2.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。 正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。 3.正数的立方根是正数;0的立方根是0;负数的立方根是负数。 4. (1)())0,0(0,0>≥=≥≥=?b a b a b a b a ab b a (2)若b 3=a ,则b 叫做a 的立方根。 (3 (0)(0).a a a a a ≥?==?-

减。运算中有括号的,先算括号内的,同一级运算从左到右依次进行。 3、实数的大小比较 常用方法:数轴表示法、作差法、平方法、估值法。 (1)在数轴上表示两个数的点,右边的点表示的数大,左边的点表示的数小。(2)正数大于零,负数小于零;两个正数,绝对值大的较大;两个负数,绝对值大的较小。(3)设a,b是任意两实数, 若a-b>0,则a>b; 若a-b=0,则a=b; 若a-b<0,则a

实数经典例题与习题

经典例题类型一.有关概念的识别 1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有() A、1 B、2 C、3 D、4 解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C 举一反三: 【变式1】下列说法中正确的是() A、的平方根是±3 B、1的立方根是±1 C、=±1 D、是5的平方根的相反数 【答案】本题主要考察平方根、算术平方根、立方根的概念, ∵=9,9的平方根是±3,∴A正确. ∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确. 【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是() A、1 B、1.4 C、 D、 【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C. 【变式3】 【答案】∵π= 3.1415…,∴9<3π<10 因此3π-9>0,3π-10<0 ∴ 类型二.计算类型题 2.设,则下列结论正确的是()

A. B. C. D. 解析:(估算)因为,所以选B 举一反三: 【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________. 【答案】1);.2)-3. 3),, 【变式2】求下列各式中的 (1)(2)(3) 【答案】(1)(2)x=4或x=-2(3)x=-4 类型三.数形结合 3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______ 解析:在数轴上找到A、B两点, 举一反三: 【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是(). A.-1 B.1- C.2- D.-2 【答案】选C [变式2]已知实数、、在数轴上的位置如图所示: 化简

实数典型例题(培优)

相交实数典型问题精析(培优) 例1.(2009 的相反数是( ) A . B C . D . 分析:本题考查实数的概念――相反数,要注意相反数与倒数的区别,实数a 的相反数是-a ,选A.要谨防将相反数误认为倒数,错选D. 例2.(2009年江苏省中考题)下面是按一定规律排列的一列数: 第1个数:11122-??-+ ???;第2个数:2311(1)(1)1113234????---??-+++ ??? ???????; 第3个数:234511(1)(1)(1)(1)11111423456????????-----??-+++++ ??????? ??????????? ; ……第n 个数:232111(1)(1)(1)111112342n n n -??????----??-++++ ??? ? ?+????????L . 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是(A ) A .第10个数 B .第11个数 C .第12个数 D .第13个 数 解析:许多考生对本题不选或乱选,究其原因是被复杂的运算式子吓住了,不善于从复杂的式子中寻找出规律,应用规律来作出正确的判断.也有一些考生尽管做对了,但是通过写出第10个数、第11个数、第12个数、第13个数的结果后比较而得出答案的,费时费力,影响了后面试题的解答,造成了隐性失分.本题貌似复杂,其实只要认真观察,就会发现,从第二个数开始,减数中的因数是成对增加的,且增加的每一对数都是互为倒数,所以这些数的减数都是21,只要比较被减数即可,即比较141131121111、、、的大小,答案一目了然. 例3(荆门市)定义a ※b =a2-b ,则(1※2)※3=___. 解 因为a ※b =a2-b ,所以(1※2)※3=(12-2)※3=(-1)※3=(-1)2-3=-2.故应填上-2. 说明:求解新定义的运算时一定要弄清楚定义的含义,注意新定义的运算符号与有理数运算符号之间的关系,及时地将新定义的运算

实数经典例题及习题。dos2.doc

第二章实数综合练习题 、实数的概念及分类 1、实数的分类 「正有理数r 「有理数3 零卜整数、有限小数和无限循环小数实数' L负有理数」 「正无理数r L无理数Y 卜无限不循环小数 L负无理数」 2、无理数:无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如J7,扼等; (2)有特定意义的数,如圆周率兀,或化简后含有兀的数,如兰+8等; 3 (3)有特定结构的数,如0.1010010001…等; 二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果&与4互为相反数, 则有a+b=0, a=—b,反之亦成立。 2、绝对值 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(lalNO)。零的绝对值是它本身,也可看成它的相反数,若lal=a,则Q0;若lal=-a,则龙0。 3、倒数 如果a与b互为倒数,则有ab=l,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 4、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一?对应的,并能灵活运用。 5、估算 三、平方根、算数平方根和立方根 1、算术平方根:一?般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算木平方根。特别地,。的算术平方根是0。 表示方法:记作“西”,读作根号a。 性质:正数和零的算术平方根都只有一个,零的算术平方根是零。 2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。 表示方法:正数a的平方根记做“土石”,读作“正、负根号a”。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

北师大版八年级数学上册第二章实数知识点及习题

实数 知识点一、【平方根】如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2 ≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。因此: 1、当a=0时,它的平方根只有一个,也就是0本身; 2、当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。 3、当a <0时,也即a 为负数时,它不存在平方根。 例1. (1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。 (3)若 x 的平方根是±2,则x= ;的平方根是 (4)当x 时,x 23-有意义。 (5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少? 知识点二、【算术平方根】: 1、如果一个正数x 的平方等于a ,即a x =2 ,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根 号a”,其中,a 称为被开方数。特别规定:0的算术平方根仍然为0。 2、算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。 3、算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此, 算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为: a ±。 例2. (1)下列说法正确的是 ( ) A .1的立方根是1±; B .24±=; ( C )、81的平方根是3±; ( D )、0没有平方根; (2)下列各式正确的是( ) A 、981±= B 、14.314.3-=-ππ C 、3927-=- D 、235=- (3)2 )3(-的算术平方根是 。 (4)若x x -+ 有意义,则=+1x ___________。 (5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32 =-+-b a ,求c 的取值范围。 (7)如果x 、y 分别是4- 3 的整数部分和小数部分。求x - y 的值. (8)求下列各数的平方根和算术平方根. 64; 121 49 ; 0.0004; (-25)2; 11. 1.44, 0,8, 49 100 , 441, 196, 10-4

二次根式知识点及典型例题练习

第十六章 二次根式 知识点: 1、二次根式的概念:形如(a ≥0)的式子叫做二次根式。“”= “”,叫做二次根号,简称根号。根号下面的整体“a ”叫做被开方数。 2、二次根式有意义的条件:a ≥0; 二次根式没有意义的条件:a 小于0; 例1、 a +1表示二次根式的条件是______。 例2、已知y=2x -+2x -+5,求x y 的值。 例3、若1a ++1b -=0,求a 2004+b 2004的值。 例4、 当x ______时,12--x 有意义,当x ______时,3 1+x 有意义。 例5、若无意义2+x ,则x 的取值范围是______。 例6、(1)当x 是多少时,31x -在实数范围内有意义? (2)当x 是多少时, 2x 在实数范围内有意义?3x 呢? 3、二次根式的双重非负性: ≥0;a ≥0 。 例1、 已知+ =0,求x,y的值. 例2、 若实数a、b满足 +=0,则2b-a+1=___. 例3、 已知实a满足,求a-2010的值. 例4、 在实数范围内,求代数式 的值. 例5、 设等式=在实数范围内成立,其中a、x、y是两两不同的实数,求的值. 例6、已知9966 x x x x --=--,且x 为偶数,求(1+x )22541x x x -+-的值. 4、二次根式的性质: (3)

例1、(1) ()25.1=________ (2) ()252 =________ (3) ()2 2.0-=________ (4) 272??? ? ??=________ 例2、化简 (1)9=_____ (2)2(4)-=_____ (3)25=_____ (4)2 52??? ??--=_____ (4)2(3)- =_____ 例3.(1)若2a =a ,则a 可以是什么数? (2)若2a =-a ,则a 是什么数? (3)2a >a ,则a 是什么数? 例4.当x>2,化简2(2)x --2(12)x -. 5、积的算术平方根的性质 (a ≥0,b ≥0)即两个非负数的积的算术平方根,等于积中各因式的 算术平方根的积。 , 6、商的算术平方根的性质 (a ≥0,b >0) 商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。 。 例1、计算 (1)57 (2139(3927 (412 6 例2、化简 (1916?(21681?(3229x y (4)54

实数知识点总结及练习题

)(无限不循环小数负有理数正有理数无理数? ???????? ? ???????--???---)()32,21() 32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ??? ?????????? 实数第一章 勾股定理 姓名 座号 班级 一、勾股定理:直角三角形两直角边的平方和等于斜边c 的平方,即222c b a =+ 二、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。 三、勾股数:满足222c b a =+的三个正整数,称为勾股数。常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(6,8,10);(9,12,15);(这些勾股数组的倍数仍是勾股数) 第二章 实数 一、实数的概念及分类 1、实数的分类 2、无理数:无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3 π +8等; (3)有特定结构的数,如0.1010010001…等;

二、平方根、算数平方根和立方根 1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。特别地,0的算术平方根是0。 表示方法:记作“a ”,读作根号a 。 性质:正数和零的算术平方根都只有一个,零的算术平方根是零。 2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。 表示方法:正数a 的平方根记做“a ± ” ,读作“正、负根号a ”。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 开平方:求一个数a 的平方根的运算,叫做开平方。 0≥a 注意a 的双重非负性: a ≥0 3、立方根 一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。 表示方法:记作3a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。 三、实数的倒数、相反数和绝对值 1、相反数:a+b=0,a=—b , 2、绝对值:若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。 3、倒数:如果a 与b 互为倒数,则有ab=1 4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。 2、实数大小比较的常用方法 (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

实数知识点总结及典型例题练习

实数知识点总结 考点一、实数的概念及分类 (3分) 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 整数包括正整数、零、负整数。 正整数又叫自然数。 正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数 在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类: (1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3 π+8 等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等(这类在初三会出现) 考点二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。正数大于零,负数 小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、平方根、算数平方根和立方根 1、平方根 如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。 一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 正数a 的平方根记做“a ±”。 2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a (a ≥0) 0≥a ==a a 2 -a (a <0) ;注意a 的双重非负性: a ≥0 3、立方根 如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。 考点四、科学记数法和近似数 1、有效数字 一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个

实数知识点+题型归纳

第六章实数 知识讲解+题型归纳 知识讲解 一、实数的组成 1、实数又可分为正实数,零,负实数 2.数轴:数轴的三要素——原点、正方向和单位长度。数轴上的点与实数一一对应 二、相反数、绝对值、倒数 1. 相反数:只有符号不同的两个数互为相反数。数a的相反数是-a。正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。 2.绝对值:表示点到原点的距离,数a的绝对值为 3.倒数:乘积为1的两个数互为倒数。非0实数a的倒数为 1 a . 0没有倒数。 4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1. 三、平方根与立方根 1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。数a的平方根记作(a>=0) 特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。负数没有平方根。 正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。 a | |a

开平方:求一个数的平方根的运算,叫做开平方。 2.立方根:如果一个数的立方等于a,则称这个数为a立方根。 数a 的立方根用3a表示。 任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。 开立方:求一个数的立方根(三次方根)的运算,叫做开立方。 四、实数的运算 有理数的加法法则: a)同号两数相加,取相同的符号,并把绝对值相加;b)异号两数相加。绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。 2.有理数的减法法则:减去一个数等于加上这个数的相反数。 3.乘法法则: a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零. b)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正 c)几个数相乘,只要有一个因数为0,积就为0 4.有理数除法法则:

实数知识点、典型例题及练习题单元复习

第六章《实数》知识点总结及典型例题练习题 一、平方根 1. 平方根的含义 如果一个数的平方等于a ,那么这个数就叫做a 的平方根。 即a x =2 ,x 叫做a 的平方根。 2.平方根的性质与表示 ⑴表示:正数a 的平方根用a ± 表示,a 叫做正平方根,也称为算术平方 根,a -叫做a 的负平方根。 ⑵一个正数有两个平方根:a ± (根指数2省略) 0有一个平方根,为0,记作00= ,负数没有平方根 ⑶平方与开平方互为逆运算 开平方:求一个数a 的平方根的运算。 a a =2 ==? ??-a a 00<≥a a ()a a =2 (0≥a ) ⑷a 的双重非负性:0≥a 且0≥a (应用较广) 例:y x x =-+-44 得知0,4==y x ⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地 向右或向左移动一位。 区分:4的平方根为____ 4的平方根为____ ____4=4开平方 后,得____ 3.计算a 的方法????? ? ? ??精确到某位小数  =非完全平方类 =完全平方类 773294 *若0>>b a ,则b a > 二、立方根和开立方 1.立方根的定义 如果一个数的立方等于a ,呢么这个数叫做a 的立方根,记作3a 2. 立方根的性质 任何实数都有唯一确定的立方根。正数的立方根是一个正数。负数的立方根是一个负数。0的立方根是0. 3. 开立方与立方 开立方:求一个数的立方根的运算。 ()a a =3 3 a a =3 3 33a a -=- (a 取任何数) 这说明三次根号内的负号可以移到根号外面。 *0的平方根和立方根都是0本身。 三、推广: n 次方根 1. 如果一个数的n 次方(n 是大于1的整数)等于a ,这个数就叫做a 的n 次方根。 当n 为奇数时,这个数叫做a 的奇次方根。 当n 为偶数时,这个数叫做a 的偶次方根。 2. 正数的偶次方根有两个。 n a ± 0的偶次方根为0。00=n 负数没有偶次方根。 正数的奇次方根为正。0的奇次方根为0。负数的奇次方根为负。

七上实数经典例题及习题

七上实数经典例题及习题

2 知识点总结及题型 考点一、实数的概念及分类 (3分) 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 整数包括正整数、零、负整数。 正整数又叫自然数。 正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数 在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3 π +8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等 考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、平方根、算数平方根和立方根 (3—10分) 1、平方根 如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。 正数a 的平方根记做“a ”。 2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。 正数和零的算术平方根都只有一个,零的算术平方根是零。

中考典型例题精析 实数的运算及大小比较

中考典型例题精析二 考点一 实数的大小比较 例 1 (2015·潍坊)在|-2|, 20 ,2-1,2这四个数中,最大的数是( ) A .|-2| B .20 C .2-1 D.2 考点二 实数非负性的应用 例 2 (2015·绵阳)若a +b +5+||2a -b +1=0,则(b -a)2 015= ( ) A .-1 B .1 C .52 015 D .-5 2 015 考点三 实数的混合运算 例 3 (2015·安顺)计算:? ????-12-2 -(3.14-π)0+|1-2|-2sin 45°. 基础巩固训练: 1.在13,0,-1,2这四个实数中,最大的数是( ) A. 13 B .0 C .-1 D.2 2.计算:3-2×(-1)=( ) A .5 B .1 C .-1 D .6 3.下面计算错误的是( ) A .(-2 015)0 =1 B.3 -9=-3 C. ? ?? ??12-1 =2 D .(32)2=81 4.若(a -2)2+||b +3=0,则(a +b)2 016的值是( ) A .1 B .-1 C .2 016 D .-2 016 5.若a =20 ,b =(-3)2 ,c =3 -9,d =? ?? ??12-1 ,则a ,b ,c ,d 按由小到大的顺序排 列正确的是( )A .c <a <d <b B .b <d <a <c C .a <c <d <b D .b <c <a <d 6.计算: 3-4 -? ?? ??12-2 = . 7.实数m ,n 在数轴上的位置如图所示,则 |n -m|= . 8.计算:3 -27-(-3)÷? ?? ?? -13×3= . 9.计算:(1)(1-2)0 +(-1)2 016 -3tan 30°+? ?? ??13-2 ; (2) (-1) 2 016 +(1-π)0 ×3 -27-? ?? ??17-1 +|-2|. 考点训练 一、选择题 1.(2015·山西)计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-4 2.杨梅开始采摘了!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( ) A .19.7千克 B .19.9千克 C .20.1千克 D .20.3千克 3.在实数-1,0,1 2,-3,2 0160中,最小的数是( ) A .- 3 B .-1 C. 1 2 D .0 4.(2015·衡阳)计算()-10+||-2的结果是( ) A .-3 B .1 C .-1 D .3 5.(2015·北海)计算2-1 +12的结果是( ) A .0 B .1 C .2 D .21 2 6.下列计算错误的是( )

(完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题

新浙教版七年级上册数学第三章《实数》知识点及典型例题

注意掌握以下公式:① 2 a ? =?? ② 33a a =- 将考点与相关习题联系起来 考点一、关于“……说法正确的是……”的题型 1、下列说法正确的是( ) A .有理数只是有限小数 B .无理数是无限小数 C .无限小数是无理数 D . 4 π 是分数 2、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17是17的平方根。其中正确的有( ) A .0个 B .1个 C .2个 D .3个 3、下列结论中正确的是 ( ) A .数轴上任一点都表示唯一的有理数 B .数轴上任一点都表示唯一的无理数 C. 两个无理数之和一定是无理数 D. 数轴上任意两点之间还有无数个点 考点二、有关概念的识别 1、下面几个数:. 0.34,1.010********.064-3π,22 7 5 ) A. 1 B. 2 C. 3 D. 4 2、下列说法中正确的是( ) A. 813 B. 1的立方根是±1 C. 1=±1 D. 55的平方根的相反数 3、一个自然数的算术平方根为a ,则与之相邻的前一个自然数是 考点三、计算类型题 126,则下列结论正确的是( ) A.4.5

实数中考经典试题

类型一.有关概念的识别 1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有() A、1 B、2 C、3 D、4 解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π, 是无理数 故选C 举一反三: 【变式1】下列说法中正确的是() A 、的平方根是±3B、1的立方根是±1C 、=±1 D 、是5 的平方根的相反数 【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是() A、1 B、1.4C 、D 、 【变式3】 = 类型二.计算类型题 2.设,则下列结论正确的是() A. B. C. D. 解析:(估算)因为,所以选B 举一反三: 【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是例题精讲

__________. 3)___________,___________,___________. 【变式2】求下列各式中的 (1)(2)(3) 类型三.数形结合 3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B 两点的距离为______ 解析:在数轴上找到A、B两点, 举一反三: 【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是(). A.-1 B.1-C.2-D.-2 【答案】选C [变式2]已知实数、、在数轴上的位置如图所示: 化简 【答案】: 类型四.实数绝对值的应用 4.化简下列各式: (1) |-1.4|(2) |π-3.142| (3) |-| (4) |x-|x-3|| (x≤3) (5) |x2+6x+10| 分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。

实数复习专题知识点及例题推荐文档

实数习题集【知识要点】 1实数分类: f整数(包括正整数,零,负整数) 1分数(包括正分数,负整数) :正无理数 〔负无理数 2. 相反数:a,b互为相反数<=>a b 0 r a(a0) 3 .绝对 值:: a *0(a0) ? a(a0) 4倒数:a, b互为倒数U>ab 1;0没有倒数 5 .平方根,立方根:若x2a,则数x叫做数a的平方根,记作x + .. a . 若x3 a,则数x叫做数a的立方根,记作x 3 a 6.-------------------------------------------------------- 数轴的概念与画法.实数与数轴上的点对应;禾U用数形结合的思想及数轴比较实数大小的方法 【课前热身】 1、36的平方根是 ______ ; ,16的算术平方根是__________ ; 2、8的立方根是 _______; 327 = _____________ ; 3、37的相反数是__________ ;绝对值等于? 3的数是 _____________ 4、2 3的倒数的平方是___________ , 2的立方根的倒数的立方是 __________ 。 5、2 .3 的绝对值是______________ , 5/131 11的绝对值是______________ 。 6、9的平方根的绝对值的相反数是 ________________________________________ 。 7、 2 3的相反数是_________ , 2 3的相反数的绝对值是___________ 。 8、.2 ,7的绝对值与.7 .2 6的相反数之和的倒数的平方为________ 。 【典型例题】 例1、把下列各数分别填入相应的集合里: _ 22 ________ ___________________ ? .12,0, ,3125,0.1010010001 , -10 2,0.3,- 7 2 有理数集合:{ ____________________________________ }; 无理数集合:{ ______________________________________ }; 负实数集合:{ ______________________________________ }; 例2、比较数的大小

实数知识点及典型例题练习题总结

(4)《实数》知识点总结及典型例题练习题 第一节、平方根 1. 平方根与算数平方根的含义 平方根:如果一个数的平方等于a ,那么数x 就叫做a 的平方根。即a x =2,记作x=a ± 算数平方根:如果一个正数x 的平方等于a ,那么正数x 叫做a 的算术平方根,即x 2=a ,记作x=a 。 2.平方根的性质与表示 ⑴表示:正数a 的平方根用a ±表示,a 叫做正平方根,也称为算术平方根,a -叫做a 的负平方根。 ⑵一个正数有两个平方根:a ±(根指数2省略) 0有一个平方根,为0,记作00= 负数没有平方根 ⑶平方与开平方互为逆运算 开平方:求一个数a 的平方根的运算。 a a =2==???-a a 0<≥a a ()a a =2 (0≥a ) ⑷a 的双重非负性:0≥a 且0≥a (应用较广) 例:y x x =-+-44 得知0,4==y x ⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动一位。 区分:4的平方根为____ 4的平方根为____ ____4=4开平方后,得____ (6)若0>>b a ,则b a > (7)() ) 0,0(0,0>≥=≥≥=?b a b a b a b a ab b a 典型习题: (1)求算数平方根与平方根 1:求下列数的平方根 36 (-4)2 0 10

2:求eg1中各数的平方根 (2)解简单的二次方程 3:2 81250x -= 4 :4(x+1)2=8 (3)被开方数的意义 5:若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1) 6:实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a (4):有关x 的取值范围目前中考的所有考点 考点: 例题:求使得下列各式成立的x 的取值范围 7:53-x 8: 当______m 时,m -3有意义;当______m 时,3 3-m 有意义 9: x -11 10.等式1112-=+?-x x x 成立的条件是( ). A 、1≥x B 、1-≥x C 、11≤≤-x D 、11≥-≤或x (5)非负性 知识点:总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.

最新人教版七年级下册数学《实数》典型例题

《实数》典型例题 例1 下列各数哪些是有理数,哪些是无理数? 6,-5,39,0,.2 2,4,32,3,7,4,7233-+-π 解 有理数有:-5,0, 4,4,723-. 无理数有:.2 2,32,3,7,9,633+-π 说明:有理数包括整数与分数,只要是分数就是有理数,而无理数是无限不循环小数,被开方数开不尽方的数都是无理数,在本题中 2 2是无理数,不是分数. 例2 比较下列各组数的大小: (1)3和35, (2)32-和3-, (3)326和11, (4)0和7-. 解 (1)710.15,732.133≈≈ ,而710.1732.1>,∴.533> (2)732.13,260.123-≈--≈- ,而732.1260.1->-,∴.323->- (3)317.311,962.2263≈≈ ,而317.3962.2<,∴11263<. (4).70-> 例3 计算: (1)7472+,(2)55156?,(3)51125÷?,(4).)13()32(22-+ 解 (1).767)42(7472=+=+ (2).655 165551655156=??=??=? (3).3103253455512551 125=??=???=??=÷? (4).5251312)13()32(22==+=-+ 说明:有关无理数的计算问题要按运算法则及运算律进行计算.

例4 计算(精确到0.1): (1)652-,(2)322+π ,(3)3234-,(4).5233? 解 (1).0.245.248.445.224.22652≈-=-?≈- (2).0.546.357.173.122 14.3322≈+=?+≈+π (3).7.526.192.626.173.142343≈-=-?≈- (4).3.2324.2273.135233≈???≈? 例5 下面命题中,正确的是( ) A .不带根号的数一定是有理数 B .有绝对值最大的数,也有绝对值最小的数 C .任何实数的绝对值都是正数 D .无理数一定是无限小数 分析 圆周率π是不带根号的数,但它是无限不循环小数,所以它是无理数,可见命题A 不正确. 实际上,可以写出很多不带根号的无理数,如0.101001000100001……就是一个无理数;不存在最大的正数(对任何正数a ,都不如1+a 大),导致不存在绝对值最大的数,所以B 是假命题;实数0的绝对值不是正数,可见命题C 也不正确. 解答 D 说明 考查实数的意义. 例6 下列说法中正确的是( ) A .无理数是开方开不尽的数 B .无限小数不能化成分数 C .无限不循环小数是无理数 D .一个负数的立方根是无理数 分析 实数可分为无理数和有理数. 有限小数和无限循环小数统称为有理数,无限不循环小数称为无理数. 开方开不尽的数一定是无理数,但无理数还包含了其他数,如π,任何有理数都能化成分数形成. 所以A 、B 、D 都是错的. C 正确. 解答 C

相关文档
相关文档 最新文档