文档库 最新最全的文档下载
当前位置:文档库 › 共振论

共振论

共振论
共振论

共振论

存在着电子离域的体系包括分子、离子、自由基,用经典的路易斯结构式不能完全、准确地表示出

不能描述出其体系内电子云平均化,这个体系的真实结构和性质。例如,1,3-丁二烯用CH

2=CH-CH=CH2

C-C有部分双键的性质,C=C比正常C=C键长等。为了解决用经典的路易斯结构式表达复杂的电子离域体系的矛盾,鲍林在1931-1933年间提出了“共振论”。共振论是用经典的结构式表达电子离域体系,是价键理论的延伸。在有机化学中经常被使用,比较方便地解决了电子离域体系的表示,但有它的局限性。

一、共振论的基本概念

对于电子离域体系的化学物种,不能用一个经典结构式表示清楚其结构,可用几个可能的经典结构式表示,真实物种是这几个可能的经典结构的叠加——共振杂化体。

表示离域体系的可能的经典结构称做极限结构或共振结构,共振结构的叠加得到共振杂化体,共振杂化体才能较确切地代表真实物种的结构。

1,3-丁二烯可用一系列共振结构表示:

每个式子叫共振结构式或共振极限结构式,“<—>”双箭头符号表示共振结构之间的叠加或共振;合起来表示真实的1,3-丁二烯。表示共振结构的叠加关系,不同于互变异构体间表示互变关系。

共振杂化体是一单一物种,只有一个结构。极限结构式表示电子离域的极限度。

一个物种的极限结构式越多,电子离域的范围越大,体系能量越低,物种越稳定。

任何一个极限结构的能量都高于共振杂化体的能量,真实物种与最低能量的极限结构(最稳定的极限结构)的能量差称为共振能。它是由电子离域而获得的稳定化能,与共轭能是一致的。

每个极限结构对其共振杂体的贡献是不相等的。极限结构越稳定,对共振杂化体的贡献越大。相同的极限结构贡献相等。

例如,1,3-丁二烯的共轭能为14kJ·mol-1,可用下列极限结构表示:

CH2=CH-CH=CH2是最稳定的极限结构,对杂化体贡献最大,它与真实分子的能量差为共振能;后面几个极限结构是不稳定的,能量较高,对共振杂化体的贡献小,有时可以不考虑;

和相同,对共振杂化体的贡献相等。

二、共振结构式书写规则

共振结构式书写应遵守几条规则:

1.在各极限结构式中,原子在空间的位置相同,只是电子排布有差别

2.所有的极限结构式都要符合经典的路易斯结构式,如碳的化合价为4价,第二周期元素的价电子数为8等

3.在所有极限结构式中,配对电子或不配对电子数目保持一致

三、极限结构的相对稳定性

1.极限结构式中共价键数越多越稳定

2.价电子层中达到满层的电子数(惰性气体结构)结构稳定

3.电荷分离的极限结构稳定性小(电荷分离需要能量)

四、极限结构对杂化体的贡献比较

1.等同的极限结构贡献相等

2.共价键数多的极限结构贡献大

3.电荷没有分离的极限结构贡献大

4.原子价电子数目达到情性气体原子电子结构的贡献大

5.键长、键角变形小的贡献大

五、共振论的应用

1.可以解释电子离域体系中很多结构与性质方面的问题。

例如,1,3-丁二烯有下列共振表示:

可进行1,2-加成,也可以进行1,4-加成,两种加成生成的活性中间体也存在共振:

2.可帮助判断反应进行的难易和反应机理

例1、氯乙烯的氯不易被取代,因为存在下列共振

例2、丙烯的α-氢易进行自由型卤代反应,而3-氯丙烯易进行S N1取代反应(见H8节),因为这两种取代反应生成的中间体分别有下列共振:

六、共振论的局现性

共振论在有机化学中用起来比较方便,能解释电子离域体系的一些实验现象,但也存在一些问题。如共振论认为极限结构只是写出来的,实际上是不存在的。又如环丁二烯与苯有相似的共振结构,但环丁二烯比苯活泼得多。这些都是共振论所不好解决的问题。

互变异构

某些有机化合物的结构以两种官能团异构体互相迅速变换而处于动态平衡的现象。例如,乙酰乙酸乙酯是酮式和烯醇式的平衡混合物:

在乙酰乙酸乙酯中加入能与酮作用的足够试剂后,乙酰乙酸乙酯将全部以酮式起反应;同样,加入足够量的烯醇试剂后,则能全部以烯醇式起反应。酮式中的活泼亚甲基-H2-由于同时受两个吸电子的羰基影响,其氢原子变得很活泼,容易作为氢离子离开,同时使活泼亚甲基的碳原子上的电子对发生共轭转移,负电荷落在内氧原子上。分子中的两个羰基的亲电子性能不同,酮的羰基新电性较强,氧上容易带有负电荷,形成烯醇式结构。酮式和烯醇式迅速互相变换,互为变异构体。这两种异构体在低温(-78℃)时互变速率很慢,可将它们分开。此外,还有环已酮的酮式和烯醇式的互变异构现象等。

核磁共振研究的历史

核磁共振研究的历史 刘志军 (中科院自然科学史研究所,北京100190;忻州师范学院物电系,山西034000) 摘要:本文选取不论是对于众多学科的基础理论方面,还是在人类的生产、生活方面都有重大贡献的核磁共振研究作为典型案例进行研究,清晰地呈现出了核磁共振研究鲜明的阶段性特征,以及由这一典型案例所揭示出的基础研究与应用研究之间动态变化着的、复杂的互动关系。最后通过分析和总结,得出了这一典型案例对我国的科技发展和科技创新的一些启示。 关键词:核磁共振;诺贝尔奖;基础理论;应用研究 中图分类号:04-09 1二战结束之前核磁共振实验的发展 1.1核磁共振研究的开端,这个时期主要以物理学的纯基础理论研究为特征 自从十九世纪末,二十世纪初人类对于微观世界的科学探究真正起步后,不论是在实验还是在理论方面都在不断取得突破和进展。正如麻省理工学院物理系电子研究实验室的丹尼尔·克莱普纳(Daniel Kleppner)所说,二十世纪初那些深刻改变了我们的世界观的,物理学天才们的思想和成就,主要是建立在当时重要的物理实验发现之上的[1]。可以说,物理实验是物理基础理论创新和发展的主要源泉和基础。 核磁共振研究是从斯特恩(Otto Stern)的分子束实验开始的。 斯特恩(Otto Stern)1888年2月17日出生于德国的索劳(Sorau)。1912年,他从德国的布雷斯劳大学(University of Breslau)获得物理化学博士学位后,作为爱因斯坦的助手,追随爱因斯坦,先后到过布拉格大学和苏黎世大学任教。1914他开始在法兰克福大学工作,职务是理论物理学的无薪教师(Privatdocent),服兵役归来后,1919年斯特恩在法兰克福大学开始和玻恩一起工作,玻恩时任该校理论物理系主任。就在这一年,斯特恩观察到,注入高真空室内的原子或分子沿直线运动,形成一束粒子流,在某些方面类似于光束。使斯特恩成名的实验工作就是由此发展起来的。1919年,斯特恩对银原子束首次应用了这一方法,以检验1850年前后气体中分子速率的理论计算结果。1920年,斯特恩在他的助手彼得·勒特斯和盖拉赫的帮助下,用实验事实无可辩驳地说明了在外加非均匀磁场的作用下,原子的空间取向是量子化的,这就是非常著名的斯特恩-盖拉赫实验。空间量子化的概念是索末菲1916 年为了描述氢原子在外磁场和外电场作用下的行为而引入量子理论的。空间量子化可以满意地描述正常塞曼效应(Zeeman effect)和斯塔克效应(Stark effect),对于解释X 射线谱线和说明氦谱问题也起过重要作用。然而在斯特恩-盖拉赫实验之前,一直没有人能够以实验证实空间量子化这一客观事实的存在。这一实验不仅支持了玻尔的定态轨道原子理论,并且也为“电子自旋”概念的提出提供了实验基础,大大促进了分子束(原子束)实验方法的发展。 斯特恩也因为发展了分子束的方法以及发现了质子磁矩这两方面的重要贡献而获得了1943年的诺贝尔物理学奖[2]。 包括斯特恩-盖拉赫实验在内的一系列物理理论及实验成就的取得并没有功利和实用性的技术创新的目标因素在其中。从斯特恩实验研究的资金来源方面,也有力的佐证了这一点。当时正值第一次世界大战刚刚结束,玻恩所主持的物理系资金异常紧张。从1920 年1 月

汽轮机振动大的原因分析及其解决方法[1]

汽轮机振动大的原因分析及其解决方法 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动监测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。 而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是

电梯运行抖动共振原因及解决方法

电梯运行抖动原因及解决方法 2012-3-9 11:11:37 1、检查导轨的垂直度和导轨轨距,因为如果这两项不合格有可能导致轿厢作斜面爬坡运动发出一种类似共振的声音。 2、也有可能是钢丝绳受力不均匀造成的,可以将几根钢丝绳做调整达到受力均匀。 3、以上两项试了以后还有的话,可以在轿厢顶加钢丝绳夹来消除来自钢丝绳的振动,钢丝绳夹有铸铁和木的两种,个人认为铸铁钢丝绳夹效果更好些。 1.导轨安装时校正不垂直,或使用年代长久导轨磨损、变形或导轨接头处不平,台阶较大。解决方法:导轨不垂直重新校轨,一般安装后的导轨校正难度大,但也应尽最大努力去调整,以求达到标定值,或更换导轨,或重新磨光修平接头处。 2.导轨支架松动或压轨道螺栓松动。 解决方法:螺栓松动,拧紧螺母,如支架整体松动,则须重新预埋或焊接。 3.主机机座与承重梁连接固定螺栓松动,运行时窜动而引起下部抖动振荡。 解决方法:重新拧紧螺栓,并加锁紧螺母并死。 4.减速箱中,蜗轮与蜗杆间隙不适或研磨不适。 解决方法:调整蜗轮蜗杆啮合间隙到规定值。 5.闸车两侧间隙不均,运行时,时擦时不擦,磨损的闸皮在弧度上高低不一致。 解决方法:重新调整闸车,使两侧间隙均为0.5~0.7㎜,并两边工作同步,闸皮磨损超标或异常须更换。 6.轿厢底不水平,特别是负载运行时受力不均而强烈抖动。 解决方法:调节拉杆螺栓,校平轿底,并注意负载时载荷的均匀分布。 7.轿厢壁、底、顶螺丝松动,运行时窜动并伴有异声。 解决方法:紧固所有松动的螺栓。 8.轨距在全高上误差大。 解决方法:重新调整,并达到规定的设计要求。 9.钢丝绳间受力不均,钢丝绳抖动异常带动轿厢抖动。 解决方法:重新调整钢丝绳受力,并测量使各绳拉力差不超过±5%。 10.安全钳动作后,楔块未完全复位,运行时磨轨。 解决方法:重新调整使之复位,并注意间隙和提拉力要完全符合要求。 11.轿顶及绳轮上的轴承内滚珠磨损,运行时有一顿一顿的感觉或反绳轮与两边上梁间隙不一致轻微切槽而发生弹动现象。 解决方法:更换轴承,调整好间隙。 12.对重运行时与井道内异物相碰,并传送到轿厢,引起振荡。 解决方法:清除异物,使上下运行时无阻碍物。

有机论文

浅谈亲核重排反应及它们的应用 阮赛 摘要:分子重排反应在有机化学中一般都归入反应机理的内容之列。由于分子重排反应在理论上和实际应用上都有它特殊的意义, 所以 人们对它的研究和认识做了大量的工作。通过对分子重排反应的讨论, 可以加深我们对有机化学知识的认识。 概念:分子重排反应(molecularrearrangement) 。有机化学反应类型之一。一些有机化学反应,有机物在试剂、加热、或其他因素的影响下,分子中某些原子(或基团)发生转移,分子碳架或者官能团的位置发生改变,甚至环的大小也发生变化,这样一些反应称为分子重排反应。 一、重排反应类型 分子重排是大量存在的,为了研究方便,也要对其进行分类。通常有下面几种分类方法。 (一)按分子内重排及分子间的重排分类 一.分子内重排 发生分子内重排反应时,基团的迁移仅发生在分子的内部。根据其反应机理,可分为分子内亲电重排和分子内亲核重排。

1. 分子内亲核重排 分子内发生在临近两个原子间的基团迁移,多数情况下属于分子内亲核重排。例如:辛戊基溴在乙醇中的分解; 2. 分子内亲电重排 分子内亲电重排反应多发生在苯环上。常见的有联苯胺从排、N-取代苯胺的重排和羟基的迁移等。 氢化偶氮苯在酸的作用下,可发生重排反应生成联苯胺。N-取代苯胺在酸性条件下,可发生取代基从氮原子上迁移到氮原子的邻位、对位上的反应。例如:亚硝基的迁移,它也是亲电性的重排反应。 苯基羟胺在稀硫酸作用下,可发生OH-的迁移,即OH-作为亲核质点从支链迁移到芳环上,生成氨基酚。 二.分子间的重排 分间的重排可看作是几个基本过程的组合。例如,N-氯代乙酰苯在盐酸的作用下发生重排:先是发生置换反应产生分子氯,然后,氯与乙酰苯胺进行亲电取代反应得到产物。 (二)、按反应历程分类 根据迁移基团的亲核、亲电或是自由基的性质,重排反应可分为亲核重排、亲电重排和自由基重排。亲核重排是迁移基团带着一对电子迁移到缺电子的迁移终点。用“Z”表示迁移基团,“B”为迁移终点,亲核重排可用通式表示如下: 缺电子中心B可以是碳正离子、碳烯、氮烯、也可以是缺电子的氧原子。由于产生不稳定正性中心的方法很多,所以亲核重排反应的类型也是最多的。重排过程中迁移基团始终未离开分子,往往发生邻基参与,形成类似环丙烷正离子的二电子三中心体系,是一个芳香过渡态,体系能量较低,容易生成,这也是亲核重排反应多的原因之一。

随机共振理论及其应用发展研究

随机共振理论及其应用发展研究 【摘要】在输入信号、噪声和非线性系统的协同作用下,噪声能量可以向有用的信号能量转化,从而提高输出信号的信噪比,这种现象称为随机共振。本文介绍了随机共振的发展及其在多领域的探究应用,综述了随机共振在工程信号处理方面的进展。 【关键词】随机共振;信号处理;能量增强 0 概述 1981年,意大利物理学家RobertoBenzi等人在研究古气象冰川问题时,首先提出了随机共振[1]的概念,圆满解释了古气象中冰川期和暖和期以大约10万年为周期交替出现的现象。 在过去的70万年中地球环境的周期性变化时的研究发现,地球围绕太阳转动变化的周期也大约为10万年,这显示出太阳对地球施加了周期性变化的信号,由于该周期信号非常之小,不足以导致气候在冷暖状态的大幅度变迁。Benzi等人据此提出了一种气候模型,认为地球所处的非线性的环境条件可使地球处于冷态或暖态两种状态,在地球所受的噪声(如:太阳常数的无规律变化等)作用下,太阳施加的周期信号,致使地球的古气象气候在冷暖两态间发生了大幅度的周期变动。这种当噪声和弱信号输入一个非线性系统时,在某个非零的噪声强度上,系统对输入信号的响应将达最优的现象被称为随机共振。这便是最初的随机共振理论模型。 1 随机共振理论分类 随着研究的不断深入,越来越多的随机共振理论被学者所提出。 1.1 经典随机共振理论 经典随机共振理论是针对双稳态随机共振系统所提出的,主要包括绝热近似理论、线性响应理论、驻留时间分布理论和本征值理论或弗洛克理论。而在随机共振机制的研究中,双稳态系统则是最常用的非线性系统,朗之万方程由于具有简洁的表达方式和典型的动力学特性,成为较为理想的研究对象。 由朗之万方程[2]描述的双稳态系统模型如式来描述,相应地,系统势函数表示为: U(x)=-■a(x)■+■b(x)■-x·f(t)+ζ(t) 由势函数描述的朗之万方程为:

转机振动原因分析

转机振动原因分析文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

GB振动标准: 1、额定转速750r/min以下的转机,轴承振动值不超过0.12mm 2、额定转速1000r/min的转机,轴承振动值不超过0.10mm 3、额定转速1500r/min的转机,轴承振动值不超过0.085mm 4、额定转速3000r/min的转机,轴承振动值不超过0.05mm。 转机振动原因分析: 转机振动原因通常有四种:不平衡、共振、不对中和机械故障。 1.转子不平衡 它是最常见的振动原因,如转子制造不良、转子叶片上异物的堆积、电机转子平衡不良等。不平衡造成较大振动的另一原因是设备底座刚度较差或发生共振。键和键槽也是导致不平衡振动的另一原因。 转轴热弯曲是引起转子不平衡的另一种现象。一般热弯曲引起的不平衡振动随负荷变化而略有变化。但如果设备基础与其转动发生共振,则极有可能发生剧烈振动。因此,预防的关键,一是转轴的材质必须满足要求;二是转机机座必须坚实可靠。 2.共振 系统中的共振频率取决于其自由度数量;共振频率则由质量、刚度和衰减系数决定。转机支承共振频率应远离任何激振频率。对于新装置,可向制造厂咨询所需地基刚度以达到此目的。对于共振频率与转速相同的现有装置有两种选择—最大限度地减少激振力或改变共振频率。后者可通过增加系统刚度和质量来实现。处理共振问题时,最好改变共振频率。 共振也可能是由于转子与定子系统组件不对中或机械和电气故障而引起。

转速下谐波的共振频率也易造成故障。它们也可能由于不对中或机械和电气故障而诱发。然而与相同频率下的问题相比,这些共振造成的问题并不常见。 3.不对中 它可能在转速和两倍转速下造成径向和轴向的激振力。但是绝不能因为没有上述现象中的一种或两种而断定不存在对中问题。同时应考虑机组的热膨胀,一副联轴节之间要留有1.5-3mm间隙。 4.机械故障 质量低劣的联轴器、轴承和润滑不良以及支座不坚固,都是产生不同频率和幅值激振力的原因。 (1)质量低劣的联轴器主要表现在铸造质量差、连接螺孔偏斜、毛刺,橡皮垫圈很快损坏,使联轴器由软连接变为硬连接,产生振动、磨损。 (2)径向轴承的更换,一般是简单更换。为了避振换新轴承时,应对轴承外环作接触涂色检查,必要时处理轴承座。 (3)轴向波动是造成转机,包括联轴器、轴承在内的另一振动问题的起因。一般转机的轴向推力靠止推轴承约束。但是,如果轴向对中不良,且转子轴向发生磨蹭,则可能会产生剧烈的轴向振动。 (4)支座软弱即四个支脚不在同一平面上。转机用螺栓紧固在这四点时,如果各轴承不对中,必然造成剧烈振动。因此转机安装时,应该先用适当力矩对称拧紧几个紧固点。然后每次松开一个紧固点,并用千分表测量该点垂直变形量。如果垂直变形量大 于.05mm,应在此支脚下加垫片,其厚度等于变形量。重复以上过程,直至松开时每个点垂直变形量小于0.05mm为止。

有趣的共振现象

有趣的共振现象 学生:严晓雯 指导老师:殷光香 唐朝的时候,洛阳的一座寺院里出了一件怪事。寺院的房间里有一口铜铸的磬,没人敲它,常常自己“嗡嗡”地响起来,这里是什么原因呢? 原来,这口磬和饭堂的一口大钟,它们在发声时,每秒种的振动次数——频率正好相同。每当小和尚敲响大钟时,大钟的振动使得周围的空气也随着振动起来,当声波传到老和尚房内的磬上时,由于磬的频率跟声波频率相同,磬也跟着振动起来。发出了“嗡嗡”的响声。这就是发生振动的共振现象,也叫共鸣。 你注意过吧,胡琴的下端都有一个不小的“肚子”——蒙上蛇皮的竹筒。当你兴致勃勃地拉起胡琴时,琴弦的振动通过蛇皮会引起“肚子”中空气的共鸣,使发出来的琴声不仅响亮,而且音乐丰满,悠扬动听。人们把这种“肚子”叫做共鸣箱。你瞧,扬琴、琵琶、提琴、钢琴等乐器,不都有各种形状,大小不一的共鸣箱吗? 除了共鸣箱之外,人们利用共振现象来做的好事还不少呢。 建筑工人在造房子的时候,不论是浇灌混凝土的墙壁或地板,为了提高质量,总是一面灌混凝土,一面用振荡器进行震荡,使混凝土由于振荡更紧密、结实。 大街上的行人,车辆的喧闹声,机器的隆隆声——这些连绵不断的噪声不仅影响人们正常生活,还会损害人的听力。有一种共振性的消声器,是由开有许多小孔的孔板和空腔所构成。当传来的噪声频率与共振器的固有频率相同时,就会跟小孔内空气柱产生剧烈共振。这样,声音能在共振时转变为热能,使相当一部分噪声被“吞吃”掉。 此外,粉碎机,测振仪,电振泵等,也都是利用共振现象进行工作的。

但在某些情况下,共振现象也可能造成危害。例如:当军队过桥的时候,整齐的步伐能产生振动。如果它的频率接近于桥梁的固有频率,就可能使桥梁共振,以致到了断裂的程度。因此,部队过桥要用便步。 在我国西北一带,山头终年积雪。每当春暖花开,山上冰雪融化,雪层会离开原来的地方滑动。往往一次偶然的大吼声,厚厚的雪层就会因为共振而崩塌下来,因此规定攀登雪山的勘察队员,登山队员不能大声说话。 我们要将共振充分运用到各个科学领域,还要防止共振现象给生活、工作、环境带来危害。这就需要我们不断去研究、探索。

转机振动原因分析

GB振动标准: 1、额定转速750r/min以下的转机,轴承振动值不超过0.12mm 2、额定转速1000r/min的转机,轴承振动值不超过0.10mm 3、额定转速1500r/min的转机,轴承振动值不超过0.085mm 4、额定转速3000r/min的转机,轴承振动值不超过0.05mm。转机振动原因分析: 转机振动原因通常有四种:不平衡、共振、不对中和机械故障。1.转子不平衡 它是最常见的振动原因,如转子制造不良、转子叶片上异物的堆积、电机转子平衡不良等。不平衡造成较大振动的另一原因是设备底座刚度较差或发生共振。键和键槽也是导致不平衡振动的另一原因。 转轴热弯曲是引起转子不平衡的另一种现象。一般热弯曲引起的不平衡振动随负荷变化而略有变化。但如果设备基础与其转动发生共振,则极有可能发生剧烈振动。因此,预防的关键,一是转轴的材质必须满足要求;二是转机机座必须坚实可靠。 2.共振 系统中的共振频率取决于其自由度数量;共振频率则由质量、刚度和衰减系数决定。转机支承共振频率应远离任何激振频率。对于新装置,可向制造厂咨询所需地基刚度以达到此目的。对于共振频率与转速相同的现有装置有两种选择—最大限度地减少激振力或改变共振频率。后者可通过增加系统刚度和质量来实现。处理共振问题时,最好改变共振频率。

共振也可能是由于转子与定子系统组件不对中或机械和电气故障而引起。 转速下谐波的共振频率也易造成故障。它们也可能由于不对中或机械和电气故障而诱发。然而与相同频率下的问题相比,这些共振造成的问题并不常见。 3.不对中 它可能在转速和两倍转速下造成径向和轴向的激振力。但是绝不能因为没有上述现象中的一种或两种而断定不存在对中问题。同时应考虑机组的热膨胀,一副联轴节之间要留有1.5-3mm间隙。 4.机械故障 质量低劣的联轴器、轴承和润滑不良以及支座不坚固,都是产生不同频率和幅值激振力的原因。 (1)质量低劣的联轴器主要表现在铸造质量差、连接螺孔偏斜、毛刺,橡皮垫圈很快损坏,使联轴器由软连接变为硬连接,产生振动、磨损。 (2)径向轴承的更换,一般是简单更换。为了避振换新轴承时,应对轴承外环作接触涂色检查,必要时处理轴承座。 (3)轴向波动是造成转机,包括联轴器、轴承在内的另一振动问题的起因。一般转机的轴向推力靠止推轴承约束。但是,如果轴向对中不良,且转子轴向发生磨蹭,则可能会产生剧烈的轴向振动。 (4)支座软弱即四个支脚不在同一平面上。转机用螺栓紧固在这四点时,如果各轴承不对中,必然造成剧烈振动。因此转机安装时,

有机化学化学----有机化学

《有机化学》课程教学大纲 课程编码:1011003 课程性质:专业核心课程 学时:96 学分:5 适用专业:化学专业 【课程性质、目的和要求】 有机化学是化学科学的一个重要分支,是高等化学教育专业的一门专业必修课程。它是在学生修完无机化学的基础上,系统地讲授各类有机化合物结构与性质的关系及相互转化的方法。通过有机化学的教学,使学生掌握各类有机化合物的命名,物理性质、典型反应及制备方法;初步掌握典型有机化合物结构与性能的关系,以及典型有机反应的历程;掌握各类异构现象,初步掌握构象及反应中的立体化学;掌握诱导效应和共轭效应,并能运用解释有关问题;初步掌握几类重要的有机反应活泼中间体;初步掌握测定结构的物理方法,具备识辨简单图谱的能力;了解碳水化合物、蛋白质、油脂等几类重要天然产物及合成高分子化合物。 通过有机化学的教学,不仅要求学生掌握有关的基本理论和基本技能,而且要培养学生的自学能力,解决问题的能力。在教学过程中,要适当融入本学科的最新成果及发展趋势,为培养高素质的中学化学教师及高层次人才打下坚实的基础。有机化学课程的基本要求如下: 1、了解有机化学产生与发展的简史,认识它与工业、农业、现代国防、现代科技以及日常生活的密切关系,它与数学、物理学、化学、生命科学、环境科学等的联系。 2、掌握有机化学命名原则和主要门类有机物的命名方法,同分异构现象,重要官能团和有机物分类。 3、掌握典型的有机物的结构、性质、重要合成方法,五类有机物相互转化的条件和规律。 4、应用价键理论理解典型有机物的基本构造,应用分子轨道理论理解乙烯、1,3-丁二烯、苯等分子结构。 5、初步掌握诱导效应和共轭效应,能运用它们解释某些有机反应问题。 6、初步掌握立体化学基础知识和基本理论。 7、熟悉并掌握共价键断裂的方式;初步掌握亲核取代、亲电取代、亲核加成、亲电加成和自由基反应的基本历程;了解氧化、还原、缺电子重排的历程和周环反应的基本规律;了解过渡态理论;初步掌握碳正离子、碳负离子、自由基、碳烯、苯炔等溶液中间体的结构、性质及在有机反应中的作用。

受迫振动和共振的研究

受迫振动和共振的研究 振动科学是物理学的重要组成部分。其中受迫振动....和共振.. 问题的研究,不但在理论上涉及经典和现代物理科学的发展;更在工程技术领域受到极大的重视并不断取得新的成果。例如:在建筑、机械等工程问题中,经常须避免“共振”现象的出现以保证工程质量;但目前新研发的很多仪器和装置的工作原理又是基于各种“共振”现象的产生;在微观科学研究领域中“共振”也已成为重要的研究手段。 本实验以音叉振动系统为研究对象,用电磁激振线圈的电磁力作为驱动力使音叉起振;并以另一电磁线圈作为检测振幅传感器,观测受迫振动系统的振幅与驱动力频率之间的关系,以研究“受迫振动”与“共振”现象及其规律。 一、 实验目的 (1) 研究音叉振动系统在周期性外力作用下振幅与外力频率的关系,测绘其关系曲线,并求出系统的共振频率和系统的振动锐度(和品质因素Q 值有关的参量); (2) 通过改变音叉双臂同一位置处所加金属块的质量,研究系统的共振频率与系统质量的关系; (3) 通过测量音叉的共振频率,确定未知物体的质量,以了解音叉式传感器的工作原理; (4) 改变音叉阻尼状态,了解阻尼力对音叉系统的共振频率及其振动锐度的影响。 二、 实验原理 1. 简谐振动与阻尼振动 众所周知:弹簧振子、单摆、复摆、扭摆等振动系统在作小幅度振动,并且其所受各种阻尼力小到可以忽略的情况下,可视为简谐振动状态。此类振动满足下述简谐振动.... 方程: 02022=+x dt x d ω (1) 上式的解为: )cos(00?ω+=t A x (2) 以理想弹簧振子为例:其固有角频率m K =0ω,K 为弹簧的劲度系数,m 为振动系统的有效质量,振幅A 和初位相0?与振动系统的初始状态有关,系统的振动周期T =K m πωπ220=。即振动周期仅与系统的质量及弹簧的劲度系数有关;由此可知:理想弹簧振子的振动频率f=m K T π 211=。 但是,实际的振动系统存在各种阻尼因素。仍以弹簧振子为例:其振动幅度在摩擦力(空气阻力、内力等)的阻尼下会逐步减小直到零——即阻尼振动.... 状态。摩擦力的大小通常与振动速率有关,在多数情况下其大小与速率成正比而方向相反,可以dt dx b ?表述。由牛顿第二定律ma F =给出的阻尼运动方程可以表示为:22dt x d m dt dx b Kx =??。则相应的阻尼振动....方程则为:

风机振动原因分析

1 轴承座振动 1.1 转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。 1.2 动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;

振动大实例与原因分析

1倍频振动大除了动平衡还应检查什么? 750KW异步电机,3000V工频,2极,轴长2M6,轴瓦档轴颈80mm,端盖式滑动轴承,中心高500mm。 检修后空载试车,垂直4.6mm/s,水平6.5mm/s,轴向1.2mm/s,振动较大,振感很强。振动频谱1倍频4-5mm/s,2倍频1-2mm/s,断电后1倍频2倍频值一点点降下来的。 据维修技师反应3年前空载试车也是振动大到现场连上机械接手在转就好了,于是到现场安装试车,结果振动还是大。 重新拆回车间,转子在动平衡机上做了动平衡,装配时轴瓦间隙也重新复测了。再试车振动比原来还大了点,频谱和原来一样。 我问了维修人员,动平衡配重2面都加了,轴瓦间隙都在标准里面。 请问做动平衡时是在1300-1500左右做的,有无可能在3000转时平衡改变了? 除了动平衡还要检查其他什么? 可能是共振问题,这个规格的电机转子固有频率接近5ohz,本案例中应大于50hz 动平衡后单机试转仍大,是由于加重后固有频率下降更接近转频,所以振动有升无减 请注意:动平衡的速度不是工频,平衡本身可能是合格的 联合运行振动值更大,是由于连接上了被驱动设备,形成转子副,电机转子带载后固 有频率下降较多,更接近工频。所以振动愈发的大 其实就一句话:组合转子的固有频率小于原来单体的,好像这么说的,原话不记得了 据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。 一、单一一倍频信号 转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。振动强烈程度对工作转速的变化很敏感。 1.力不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。 2.偶不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。 3.动不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。

(完整版)大学有机化学知识点整理考试必备

大学有机化学知识点提纲(一)绪论 共价键 价键理论(杂化轨道理论);分子轨道理论;共振论. 共价键的属性:键能;键长;键角;键的极性. 键的极性和分子极性的关系;分子的偶极矩. 有机化合物的特征 (二)烷烃和环烷烃 基本概念 烃及其分类;同分异构现象;同系物;分子间作用力;a键,e键;构型,构象,构象分析,构象异构体;烷基;碳原子和氢原子的分类(即1,2,3碳,氢;4碳);反应机理,活化能. 对于基本概念,不是要求记住其定义,而是要求理解它们,应用它们说明问题. 命名 开链烷烃和环烷烃的IUPAC命名,简单的桥环和螺环的命名. 烷烃和环烷烃的结构 碳原子sp3杂化和四面体构型;环烷烃的结构(小环的张力). 烷烃的构象 开链烷烃的构象,能量变化;环烷烃的构象:重点理解环己烷和取代环己烷的构象及能 量变化,稳定构象,十氢萘及其它桥环的稳定构象. 烷烃的化学性质 自由基取代反应—卤代反应及机理;碳游离基中间体—结构,稳定性;不同的卤素在反应中的活性和选择性;反应过程中的能量变化. 环烷烃的化学性质 自由基取代反应(与烷烃一致);小环(3,4元环)性质的特殊性—加成. (三)烯烃 烯烃的结构特点 碳的sp2杂化和烯烃的平面结构;键和键. 烯烃的同分异构,命名 碳架异构,双键位置异构,顺反异构(Z,E). 烯烃的物理和化学性质 烯烃的亲电加成及其机理,马氏规则;碳正离子中间体—结构,稳定性,重排. 其它加成反应:催化加氢(立体化学,氢化热);硼氢化—氧化(加成取向,立体化学);羟汞化—脱汞(加成取向);与HBr/过氧化物加成(加成取向);其它游离基加成. 氧化反应:羟基化反应—邻二醇的形成;KMnO4/H+的氧化,臭氧化反应,烯烃结构的测定. α-位取代反应:烯丙基型取代反应(高温卤代和NBS卤代)及机理—烯丙基自由基. (四)炔烃和二烯烃 炔烃 ①结构:碳的sp杂化和碳-碳三键;sp杂化,sp2杂化和sp3杂化的碳的电负性的差异及相应化合物的偶极矩. ②同分异构体 ③化学性质:末端炔烃的酸性及相关的反应;三键的加成:催化加氢,亲电加成,亲核加成;碳—碳三键与H2/Lindlar催化剂反应(顺式烯烃);碳—碳三键与Na/液氨的反应(反式烯烃);加卤素;加HX(马氏规则);加H2O(羰基化合物的形成);加HBr/过氧化物;硼氢化—氧化;加HCN及乙炔的二聚;氧化反应:KMnO4氧化和臭氧化. 二烯烃 ①共轭二烯烃的稳定性:键能和键长平均化,共轭效应.

化学专业科目二《有机化学选论》

福建师范大学申请成人高考教育学士学位考试 化学专业 《有机化学选论》课程考试大纲 课程简介: 本课程使用教材为中国环境科学出版社出版的《中级有机化学》,陈乐培、董玉环等编,2004年版。 本课程在基础有机化学学习的基础上,对有机化合物的命名、有机反应的基本理论、立体化学、取代基效应、有机反应活性中间体进行了系统的论述,并对重要有机反应,如取代反应、消去反应、加成反应、分子重排反应及有机合成路线设计等内容进行了系统的阐述。 本课程每章在扼要介绍基础知识和基本理论后,结合一些实例,让学生在学习过程能够更好的理解和掌握,中级有机化学是在基础有机化学的基础上进一步对有机化学的理论及反应进行阐述,内容上并不象高等有机化学难度较高,主要是基础有机化学中学过的基本理论和反应,进行更系统、全面地阐述,有助于学生更好地从理论上掌握有机化学,对学习过基础有机化学,掌握的知识又较薄弱的学生,学习这门中级有机化学较适合。 教学目的: 学习目的:通过本课程的学习,使同学们掌握中级有机化学的基本现论和原理,对有机反应的基本原理、立体化学、取代基效应、有机反应活性中间体,一些重要有机反应有较系统的掌握,对有机合成设计有初步掌握和认识。 学习对象:本课程主要学习有机反应的基本理论、立体化学、取代基效应、有机反应活性中间体和重要有机反应,如取代反应、消失反应、加成反应、分子重排反应及有机合成路线设计等。本课程适合学习的对象为师范院校函授本科,自考本科、网络本科的化学和应用化学专业的学生教材。 学习方法介绍:本课程共分十章,除了第五章第二节芳环上的取代反应和第九章周环反应为自学内容外,其它各章节均有电子课件,学生可结合教材和电子课件有针对性地学习,主要掌握好各章节的主要内容;每章节均有较多的练习题,还有综合练习,这些练习和习题就是本课程的一些主要内容,所以学生要掌握好习题和综合练习。 与相关课程的联系:本课程是在学生学习基础有机化学基础上,对基础有机化学中一些基本理论和重要反应系统的阐述,所以本课程与基础有机化学密切相关,许多知识与基础有机化学是相互渗透的。网络专升本的学生已经较系统学习了基础有机化学,在这基础上学习中级有机化学,从内容、知识的掌握都能较好衍接。 教学大纲 通过本课程的学习,使同学们掌握中级有机化学的基本理论和原理,对有机反应的基本原理、立体化学、取代基效应、有机反应活性中间体,一些重要有机反应有较系统

电梯运行中共振的原因及解决措施

电梯运行中共振的原因及解决措施 发表时间:2018-05-14T10:18:06.710Z 来源:《电力设备》2017年第34期作者:张锋众 [导读] 摘要:近年来,由于电梯运行故障造成的安全事件不断发生,人们高度重视电梯安全问题。 (日立电梯(中国)有限公司广东广州 510043) 摘要:近年来,由于电梯运行故障造成的安全事件不断发生,人们高度重视电梯安全问题。电梯检测是电梯安全运维的重要环节,发挥着积极的作用。电梯共振是较为常见的问题,主要是由于轿厢与曳引机等造成的,要从安装与运维管理等方面,采取相应的措施,做好故障处理,以确保电梯运行的安全性与稳定性,避免发生安全事故。要做好故障分析,明确此现象发生的具体原因,采取针对性措施,确保电梯能够安全运行。 关键词:电梯运行;共振问题;解决措施 电梯在运行时候,只要出现共振现象,就会导致电梯的稳定性、安全性大大下降,对于使用的人们来说这就造成了一定的安全隐患。针对此种情况需要明确电梯在运行中的各种问题,以加强其安全性。 1 对电梯运行的概述 随着建筑行业的不断发展,能够满足土地资源节约的高层建筑日益增多,有效满足了市场的需求。电梯是高层建筑中重要的运输工具,运行速度随着建筑物高度的增加而不断加快。为此,高速电梯成为电梯发展的重要趋势,在提升运行速度的同时,更要关注其稳定性和安全性,需要引起技术人员的高度重视。高速电梯运行的空间是狭长的井道,在运行速度提升的同时,会引发周围流场压力的强烈波动,使得轿厢与对重块之间产生相互作用,使得对重块平衡性降低,甚至诱发电梯升降系统产生严重的气动力,振动产生。 2 产生共振的主要原因 2.1 电气回路、控制系统问题引起的振动 电梯运行时出现振动的情况也会在很大程度上取决于控制与拖动系统的运行准确性与进度。在通常状况下,出现振动的可能性随着控制要求的增高而增大。因此,应该依照现实的性能标准以及使用要求,对电梯的控制精度进行科学合理的选择。如在控制系统里,拖动、电气控制系统控制三相电源电压的时候,当不平衡系数大于7%,就会在某种程度上干扰调速器给定信号,使得电机不能正常的进行工作。在通常状况下,往往会选用调速器对滤波过程中的PID控制器进行调整,当控制器的比例放大系数P太大,积分系数I太小;控制器滤波时间给定不当;负反馈控制系统中速度给定信号有干扰不稳定。电梯速度控制系统中,通常利用光电编码器采集速度、位置信号,若编码器采集回来反馈给控制器的不是实际速度、位置,就必然导致系统振动。 2.2 由编码器工作不正常引起的振动 由于编码器在电动机主轴上没有装配好,反馈的脉冲信号异常,会引起电梯抖动;编码器是精密的光电产品,如果灰尘进入壳内遮挡光栅,最终反馈到变频器里的脉冲信号不能真实反映电机的转速和轿厢位置;编码器对精度要求较高,要特别注意码盘的干净整洁,不能有灰尘进入编码器内部挡住光栅,也不能有外力使码盘变形损坏,否则得不到正确的信号,进而影响整体的运行稳定。 编码器工作不正常,引起电梯在运行中振动和位置偏差。对于交流变频调速调压电梯的检验中经常发现:旋转编码器与曳引机曳引轮轴向安装时固定不牢靠、同轴度偏差以及信号传输线未采用屏蔽电缆或未单点接地处理,使旋转编码器采集到的信号有效输出数字脉冲个数不准确,导致控制主板对反馈信号判断失误,不能有效驱动变频器导致电梯运行产生振动。应重新调整旋转编码器与曳引机减速器轴向连接的同心度,旋转编码器的硬件接线应采用屏蔽线且接地良好。 2.3 由测速反馈设施干扰引起的振动 测速反馈装置工作不正常的原因有:当测速装置侧向安装时由于传动轴面的非均匀性产生了径向脉动,轴向对接安装时的同轴度偏差,反馈装置的信号传输线未采用屏蔽电缆线等,这些都导致了测速机不能有效反馈曳引机的转动速度,使反馈至控制板的信号受到干扰,影响了控制板处理器对传输信号的判断,从而引起电梯在运行过程中振动。应重新调整测速机与电动机轴的同心度,以及侧向连接时轴面的受力均匀度,连接线必须采用屏蔽线且接地良好,避免因轴向窜动、径向窜动和干扰造成测速信号的误差,保证电梯的运行特征不受干扰。 2.4 电动机问题引起的振动 电机转子和定子不同轴,由于转子(定子)偏心导致的电机内部电磁力不均,电机输出的转矩是脉动的,转矩脉动超过标准就会使得轿厢有垂直振动出现;如果电机三相绕组阻抗不相等,反向旋转的磁路会产生振动,主要原因是电机绕组下线时没有按照工艺指引进行作业,电机各相匝数不一致。电梯在某一固定频率振动特别厉害,这个频率与电机额定频率(转速)十分相近时。此时应该用振动测试分析仪测定是否发生在电机的6f,f是电机频率,6f是永磁同步电机的力矩波动基波,如果过大电梯振动特别明显。此时电机设计人员需要通过技术手段进行抑制,常见的有将定子铁芯的槽倾斜特定的角度,或者将磁钢倾斜特定角度,二者是等效的。 3 电梯检测中电梯运行共振解决措施 3.1 做好电气的控制工作 对于电气方面引起的振动,工作人员可以通过检查供电电源、接地线的设置、接触器的输出输入端、控制板、信号线与控制线的布线方式、编码器与变频器的选型来减小共振。与此同时,工作人员也可以重新调整曳引机减速器与旋转编码器轴向连接的弧度,对于旋转编码器的硬件接线,要采用接地良好的屏蔽线。这样才能使旋转编码器的脉冲输出数有效反映出电梯曳引机的转速,从而确保控制面板的处理器正常分析反馈信息,驱使变频器正常工作。 3.2 定期对电梯设施安装的完备性进行检测 电梯的振动情况会在极大程度上受到电梯使用中出现的形变以及安装误差的影响。因此在使用电梯的时候,必须要给予定期检查,对其安装部件与设备的完备性进行检查。如检查电机振动是否符合振动标准,检查紧固件的紧固性是不是满足相应的标准等,如果部件不符合使用标准或要求,应该对电梯给予合理的维修或更换,从而保证各部件的硬度和强度等等。 3.3 做好电梯电气的控制 根据相关规定,电梯的电动机应该设置有时间运转限制器,以在发生电梯启动而曳引机不转、以及轿厢由于障碍物的影响停止向下运动而导致的曳引绳在曳引轮处打滑的情况时,保证电梯制动器停止运作并保持停止运作的状态。如果电梯总运行时间小于10s,则电动机时

谈对有机化学课程的认识及教学中的建议

谈对有机化学课程的认识及教学中的建议 有机化学是研究有机化合物的来源、制备、结构、性能、应用及有关理论、变化规律和方法学的科学。它是有机学工业的理论基础,与经济建设和国防建设密切相关,不论是化学工业、能源工业、材料工业还是国防工业的发展,都离不开有机化学的成就。同时,有机化学的基本原理对于掌握和发展其他学科也是必不可少的。 我把文章分为三部分:学习有机化学的心得;教学中的改进意见;对有机化学的认识。 通过这一年的学习,我们掌握了烷烃、不饱和烃、共轭烯烃、芳烃、卤代烃、醇和酚、醛酮醌、羧酸及其衍生物的物理性质、化学性质、制备方法等,对有机化学课程有了更加深入的了解。有机化学不同于无机化学的地方在于,有机物的数目多、分子体积大、结构复杂、副反应多等。正因为有机物数量庞大、反应复杂,所以我们学习起来感到比较困难,难以记忆,难以理解。这就要求我们在学习有机化学的时候要讲求一些学习方法。 下面分条叙述一下自己学习有机化学的心得。 1、善于串联各类有机物之间的关系 在有机化学学习中,会发现有机反应式错综复杂,且种类繁多,想要全部记住,记准并非易事,但若在平时的学习中善于归纳总结,将所学的每一章节的内容归纳出其知识网络图,相信学好有机化学并非难事。 在学习某一类时,重点掌握其官能团的特性,在掌握通性的同时,在学习一些化合物的特殊性。比如芳香族化合物,其通性为芳香性,即分子稳定性。对于不同的芳香化合物气芳香性不同,如苯>萘>菲。在课程安排上,首先介绍了苯萘菲的性质,最后介绍共性,这是符合我们的认知规律的,对我们学习时有所帮助的。但是我们掌握时要从大处着手,即从共性到特殊性,这样有利于我们形成知识体系。 2、总结经验规律 在学习过程中,我们要学会对有机知识进行归纳和整理,有机化学的零碎知识较多,如果只是无条理地堆积,那么堆积的知识越多,头绪就越乱,也越不利于运用所学知识去解决问题。对零碎的知识进行归纳,使之条理化、纲领化,不仅能帮助我们记忆,也有利于我们建立牢固的知识结构。 3、理论与实验相结合 有机化学作为一门实验科学,若不能掌握其基本的实验操作,不重视实验技能的培养,是很难学好有机化学这门课的。掌握实验操作,在实验过程中理解和记忆有机化学反应能够达到事半功倍的效果。 4、培养兴趣,与实际生活相结合 学好有机化学,重在要有兴趣,培养学习兴趣能够使我们更有效地进行学习。结合生活实际,解释生活中常用的一些问题,或通过所学知识去解决一些与有机化学有关的问题,均能使我们能更近一步掌握和灵活运用所学知识,并逐步建立起学习兴趣。 5、要有空间概念 立体性是有机化合物中各类繁多的重要原因之一,也能影响有机化合物的性质。比如有些药物右旋是有作用的,而作选择是没有作用的。有些反应生成了顺式产物,有些则是反式产物,有些则发生了反转等,这与无机化学反应有很大差

相关文档
相关文档 最新文档