文档库 最新最全的文档下载
当前位置:文档库 › AEDB-9340-J-02-A中文资料

AEDB-9340-J-02-A中文资料

Description

The AEDB-9340 optical encoder series are six-channel optical incremental encoder modules with codewheel. The encoder is compliant to RoHS directive and had been declared as a lead free product. When used with codewheel, these modules detect rotary position. Each module consists of a collimated LED source and detector IC enclosed within a small plastic package. Due to highly collimated light source and unique photo detec-tor array designs, these modules are extremely tolerant to mounting misalignment.

The AEDB-9340 optical encoder has integrated commu-tation output (U, V, W), two-channel quadrature outputs plus a third channel index output (A, B, I). This ungated index output is a positive index pulse that is generated once for each full rotation of the codewheel.

The AEDB-9340 series optical encoder is designed for use with a codewheel that has an optical radius of 15 mm (0.590 inch) for 1250/2500 CPR, 12.3 mm (0.484 inch) for 1024/2048 CPR and 12 mm (0.472 inch) for 1000/ 2000 CPR.

The quadrature, index, commutation signals and power supplied to encoder are accessed through eight 0.46 mm square male connector pins located on 1.27 mm (pitch).

The AEDB-9340 optical encoder provides advanced motion control detection with integrated commutation outputs (U, V, and W). It is equivalent to those produced by Hall Switches, thus making it ideal for servo motor application. With the AEDB-9340 solution, the system will be more compact, have reduced alignment time with usage of alignment jig, thus making assembly process much easier for housed encoder integration. It has superior switching accuracy due to much lower hysteresis when compared to a Hall Switches. The com-mutation signals can be generated for Brushless DC motor of different rotor pole-pairs by simply changing with matching pole-pair codewheel.Features

?Two-channel quadrature output with ungated index pulse (A, B, I)

?Three-channel integrated commutation output (U, V, W)?Up to 2500 Cycles Per Revolution (CPR)

?Easy assembly with alignment jig

?Designed to fit into circular shaped housing

?Up to 150 kHz frequency response

?–10°C to 85°C operating temperature

?TTL compatible

?Single 5 V supply

?Integrated feedback device for Brushless DC Motor

AEDB-9340 Series

1250/2500 CPR Commutation Encoder Modules

with Codewheel

Data Sheet

Applications

Typical applications include industrial printers, plotters,

tape drives, and industrial and factory automation

equipment.

Note: Avago Technologies encoders are not recommended

for use in safety critical applications, e.g., ABS braking

systems, power steering, life support systems and critical

care medical equipment. Please contact sales representative

if more clarification is needed.

Theory of Operation

The AEDB-9340 optical encoder is a emitter-detector module. Coupled with codewheel, these modules trans-late the rotary motion of a shaft into six-channel digital output.

The modules contain a single Light Emitting Diode (LED) as light source. The light is collimated into a parallel beam by means polycarbonate lens located directly over the LED. Opposite the emitter is a detector IC. This IC consists of multiple sets of photo detectors and signal processing circuitry necessary to produce digital waveforms output.

The codewheel rotates between the emitter and detec-tor, causing the light beam to be interrupted by pattern of spaces and bars on the codewheel.

The Photodiodes that detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced in such away that light period on one pair of detectors corresponds to dark period on adjacent pair of detectors.

The photodiode outputs are then fed through the signal processing circuitry resulting in A, A, B, B, I, and I. Comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase). The commutation feedback (U, V, W) signals are generated based on the codewheel design. Definitions

Cycles (N):The number of electrical cycles per revolution(CPR). Note: CPR refers to the raw signal from encoder, that is the cycles before 4x decode.

One Cycle: 360 electrical degrees (°e).

One Shaft Rotation: 360 mechanical degrees.Cycle Error (D C): An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of 1/N of a revolution.

Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally 180°e or 1/2 cycle.

Pulse Width Error (D P):The deviation, in electrical degrees, of the pulse width from its ideal value of 180°e.

State Width (S):The numbers of electrical degrees between transitions in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90°e.

State Width Error (D S):The deviation, in electrical degrees, of each state width from its ideal value of 90°e. Commutation Accuracy (D I):The deviation, in mechanical degrees, after shaft rotates passing the reference point (Index channel) to the first Channel-U pulse. The measurement from middle of Channel-I to rising edge of Channel-U.

Phase (f): The numbers of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally 90°e for quadrature output.

This value is nominally 90°e for quadrature output.

Phase Error (Df): The deviation of the phase from its ideal value of 90°e.

Direction of Rotation: When the codewheel rotates in the clockwise direction viewing from top of the module(direction from pin U to B), channel A will lead channel B. If the codewheel rotates in the opposite direction (direction from pin B to U), channel B will lead channel A.

Optical Radius (Rop):The distance from the codewheel’s center of rotation to the optical center (O.C.) of the encoder module.

Index Pulse Width (Po):The number of electrical degrees that an index is high with reference to channel A or channel B during one full shaft rotation.

AEDB-9340 Technical Specifications

Absolute Maximum Ratings

Parameter Symbol Min.Max.Units Notes Storage Temperature T S-4085°C

Operating Temperature T A-1085°C

Supply Voltage V CC-0.57Volts

Recommended Operating Conditions

Parameter Min.Typ.Max.Units Notes Temperature-102585°C

Supply Voltage (Detector) 4.5 5.0 5.5Volts Ripple < 100 mVpp Operating Frequency

1250 CPR75kHz Velocity (rpm) x N/60 2500 CPR150kHz

Shaft Radial Play Plus Eccentricity±0.025mm TIR

Shaft Axial Play±0.100mm

Electrical Characteristics

Electrical Characteristics over Recommend Operating Range, Typical at 25°C

Parameter Symbol Min.Typ.Max.Units Notes

Supply Current I CC406080mA

High Level Output Voltage V OH 2.4V

Low Level Output Voltage V OL0.4V

Rise Time t r200ns C L = 14 pF

Fall Time t f20ns

Loading Capacitance C LOAD47pF

Encoding Characteristics

Encoding Characteristics over the Recommended Operating Conditions and Mounting tolerances. These charac-teristics include codewheel contribution. The typical values are average over the full rotation of the codewheel tested at 25°C, 500 RPM, 5V.

Parameter Symbol Minimum Typical Maximum Units Pulse Width Error D P750°e

Logic State Width Error D S550°e Phase Error Df225°e Cycle Error D C2050°e Position Error DQ2050min. of arc Index Pulse Width

1000/1024/1250 CPR P090150360°e

2000/2048/2500 CPR P0180300540°e

Commutation Characteristics (Channel U, V, W)

Encoding Characteristics over the Recommended Operating Conditions and Mounting Conditions. These characteristics include codewheel contribution. The typical values are average over the full rotation of the codewheel.

Parameter Symbol Minimum Maximum Units Commutation Format Three Phase 4, 6, or 8 poles

Commutation Accuracy

(Middle of Channel I to Channel U)D I-1+1°mechanical Commutation Accuracy (Channel U,V and W)D UVW-2+2°mechanical

Device Pinout

Pin #1 start from left side.

Pin Function

1U

2I

3V

4W

5Ground

6V CC

7A

8

B

Package Dimensions

Note: All dimensions are given in mm.

Figure 1a. 1000/1024/1250/2000/2048/2500 CPR encoder module dimensions

? 1.000

?TOP VIEW

Package Dimensions, continued

TOP VIEW Note: All dimensions are given in mm.

Figure 2a. 1250/2500 CPR encoder module with codewheel dimensions

Mounting Considerations

C

BOTTOM VIEW

RECOMMENDED SCREW SIZE: M1.6 x 0.35

RECOMMENDED MOUNTING SCREW TORQUE: 1Lbin (0.113 Nm)

NOTES:

1. ALL DIMENSIONS ARE GIVEN IN mm.

2. USE ALIGNMENT TOOL HEDS-8952 TO MOUNT THE ENCODER WITH RESPECT TO SHAFT CENTER.

3. REFER TO AEDB-9340 SERIES APPLICATION NOTE FOR STEP BY STEP ALIGNMENT AND INSTALLATION PROCEDURE. Figure 2b. 1250/2500 CPR encoder mounting considerations

Package Dimensions

TOP VIEW NOTE: ALL DIMENSIONS ARE GIVEN IN mm.

Figure 3a. 1024/2048 CPR encoder module with codewheel dimensions

Mounting Considerations

BOTTOM VIEW

RECOMMENDED SCREW SIZE: M1.6 x 0.35

RECOMMENDED MOUNTING SCREW TORQUE: 1Lbin (0.113 Nm)

NOTES:

1. ALL DIMENSIONS ARE GIVEN IN mm.

2. USE ALIGNMENT TOOL HEDS-8951 TO MOUNT THE ENCODER WITH RESPECT TO SHAFT CENTER.

3. REFER TO AEDB-9340 SERIES APPLICATION NOTE FOR STEP BY STEP ALIGNMENT AND INSTALLATION PROCEDURE. Figure 3b. 1024/2048 CPR encoder mounting considerations

Package Dimensions

TOP VIEW NOTE: ALL DIMENSIONS ARE GIVEN IN mm.

Figure 4a. 1000/2000 CPR encoder module with codewheel dimensions

Mounting Considerations

BOTTOM VIEW

RECOMMENDED SCREW SIZE: M1.6 x 0.35

RECOMMENDED MOUNTING SCREW TORQUE: 1Lbin (0.113 Nm)

NOTES:

1. ALL DIMENSIONS ARE GIVEN IN mm.

2. USE ALIGNMENT TOOL HEDS-8950 TO MOUNT THE ENCODER WITH RESPECT TO SHAFT CENTER.

3. REFER TO AEDB-9340 SERIES APPLICATION NOTE FOR STEP BY STEP ALIGNMENT AND INSTALLATION PROCEDURE. Figure 4b. 1000/2000 CPR encoder module mounting considerations

RIGHT VIEW

NOTES:

1. ALL DIMENSIONS ARE GIVEN IN mm.

2. CODEWHEEL GAP IS ALIGNED AT 0.2 mm FROM DATUM A.

Figure 5. 1000/1024/1250/2000/2048/2500 CPR encoder module and codewheel mounting considerations

Codewheel Mechanical Drawing

Figure 6. Codewheel and hub dimensions

+0.01

–0

SECTION A - A NOTES:

ALL DIMENSIONS ARE GIVEN IN MILLIMETERS (mm).

? B = HUB INTERNAL DIAMETER (BASED ON THE SHAFT DIAMETER OPTION SELECTED).

? A= CODEWHEEL OUTER DIAMETER.

CODEWHEEL CPR OUTER DIAMETER

1250/2500 35 mm

1024/2048 29.4 mm

1000/2000 29 mm

Output Waveform Specifications

INDEX AND COMMUTATION SIGNALS Figure 7. Output waveform specification of 2 pole pairs (= 4 poles) for counterclockwise rotation, viewed from the top.

Note: In the above waveform, quadrature signals A,B are not drawn

to scale with respect to index pulse and commutation signals.

Pole vs. State Width Table

Number of States/State Width

Pole Mechanical Revolution (Mechanical Degree) 41230

61820

82415

For product information and a complete list of distributors, please go to our website: https://www.wendangku.net/doc/1217632711.html,

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.Data subject to change. Copyright ? 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0248EN AV02-0075EN January 9, 2007

Alignment Tool

HEDS-8950 – Alignment tool for 1000/2000 CPR HEDS-8951 – Alignment tool for 1024/2048 CPR HEDS-8952 – Alignment tool for 1250/2500 CPR

Note: Options highlighted in RED are currently available to order.Contact factory for enquiries on the rest of the options.

Encoder Only

Encoder Bundled with Codewheel

Pole Pair A – 2 Pole Pairs B – 3 Pole Pairs C – 4 Pole Pairs

AEDB-9340 –

CPR W = 2500 CPR U = 2048 CPR T = 2000 CPR L = 1250 CPR J = 1024 CPR B = 1000 CPR

Shaft 02 = 3 mm 04 = 5/32 in 05 = 3/16 in 06 = 1/4 in 11 = 4 mm 14 = 5 mm 12 = 6 mm 13 = 8 mm 15 = 10 mm

AEDS-9340 –

– 00

CPR W = 2500 CPR U = 2048 CPR T = 2000 CPR L = 1250 CPR J = 1024 CPR B = 1000 CPR

Ordering Information

相关文档