文档库 最新最全的文档下载
当前位置:文档库 › 完全非弹性碰撞动能损失最大的证明

完全非弹性碰撞动能损失最大的证明

完全非弹性碰撞动能损失最大的证明
完全非弹性碰撞动能损失最大的证明

完全非弹性碰撞动能损失最大的证明

(利用初等函数证明)

在碰撞中,系统动量守恒。但动能损失不一样。

完全弹性碰撞,碰撞前后,系统总动能不损失。

非弹性碰撞,损失一部分动能。

两个物体碰撞后,不分开,以同一速度运动,叫做完全非弹性碰撞。此时动能损失最大。下面是证明过程。

条件:质量m 1,速度v 1,与质量m 2,速度v 2物体发生碰撞,碰后,m 1速度变为v 1/,m 2速度变为v 2/。

由动量守恒:m 1 v 1+m 2 v 2=m 1 v 1/+m 2 v 2/……(1) 损失动能:)2

121()212

1(2/222/11222211v m v m v m v m E +-+=?……(2) 令p = m 1 v 1+m 2 v 2 ,22221112121v m v m E +=,2/222/1122121v m v m E +=,p 和E 1确定,只需证明E 2最小的条件,即可得到最大的动能损失的条件。

利用(1)式可得:2/11/2

m v m p v -=……(3) 将(3)带入E 2,得:2

2

/112/1211222)(m p v pm v m m m E +-+=,可见分子部分为关于v 1/的函数。令2/112

/1211/12)()(p v pm v m m m v f +-+=,只需求出)(/1v f 的最小值即可。二次函数开口向上,顶点坐标值对应)(/1v f 最小。 即当2

1/12m m p a b v +=-=时,)(/1v f 最小,则此时E 2最小,△E 最大。 将v 1/带入(1)式得:2

1/1/2m m p v v +==。 即:碰撞后两物体不分开以相同速度运动,损失的动能最大。

如果学习了微积分,可以利用求导更容易得到证明。此处略。

完全弹性碰撞后的速度公式

如何巧记弹性碰撞后的速度公式 一、“一动碰一静”的弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度? 图1 设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m1v1=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得: m1v1= (m1+m2) v共 解出v共=m1v1 /(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前 的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式 解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式。再结合①式也可很 容易解得⑥⑦式。 二、“一动碰一动”的弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度? 图2 设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m1v1+m2v2=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦ 要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可等效成m1以速度v1去碰静 止的m2球,再同时加上m2球以速度碰静止的m1球。因此由前面“一动碰一静”的弹性碰撞公式,可得两球碰撞后各自的速度+; +,即可得到上面的⑥⑦式。 另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度 v1- v2等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式,再结合①式可解得⑥⑦式。

弹性碰撞和完全非弹性碰撞专题训练

弹性碰撞和完全非弹性碰撞专题训练 1.在宇宙间某一个惯性参考系中,有两个可视为质点的天体A B 、,质量分别为m 和M ,开始时两者相距为0l ,A 静止,B 具有沿AB 连线延伸方向的初速度0v ,为保持B 能继续保持匀速直线运动,对B 施加一个沿0v 方向的变力F .试求: (1)A B 、间距离最大时F 是多少应满足什么条件 (2)从开始运动至A B 、相距最远时力F 所做的功. 2.如图3-4-14所示,有n 个相同的货箱停放在倾角为θ的斜面上,每个货箱长皆为L ,质量为m 相邻两货箱间距离也为L ,最下端的货箱到斜面底端的距离也为L ,已知货箱与斜面间的滑动摩擦力与最大静摩擦力相等,现给第一个货箱一初速度0v ,使之沿斜面下滑,在每次发生碰撞的货箱都粘在一起运动,当动摩擦因数为μ时,最后第n 个货箱恰好停在斜面 底端,求整个过程中由于碰撞损失的机械能为多少 3.如图3-4-15所示,质量0.5m kg =的金属盒AB ,放在光滑的水平桌面上,它与桌面间的动摩擦因数0.125μ=,在盒内右端B 放置质量也为0.5m kg =的 长方体物块,物块与盒左侧内壁距离为0.5L m =,物块与盒之间无摩擦.若在A 端给盒以水平向右的冲量1.5N s ?,设盒在运动过程中与物块碰撞时间极短,碰撞时没有机械能损失.(210/g m s =)求: (1)盒第一次与物块碰撞后各自的速度; (2)物块与盒的左端内壁碰撞的次数; (3)盒运动的时间; 4.宇宙飞船以4010/v m s =的速度进入均匀的宇宙微粒尘区,飞船每前进310s m =,要与410n =个微粒相撞,假如每个微粒的质量为7210m kg -=?,与飞船相撞后吸附在飞船上,为使飞船的速率保持不变,飞船的输出功率应为多大 5.光滑水平面上放着质量1A m kg =的物块A 与质量2B m kg =的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A B 、间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能49p E J =,在A 、B 间系一轻 质细绳,细绳长度大于弹簧的自然长度,如图3-4-16所示。放手后B 向右运动,绳在短暂时间内被拉断,之后B 冲上与水平面相切的竖直半圆光滑轨道,其半径0.5R m =,B 恰能到达最高点C 。取210/g m s =,求: (1)绳拉断后瞬间B 的速度B v 的大小; (2)绳拉断过程绳对B 的冲量I 的大小; (3)绳拉断过程绳对A 所做的功W ; 6.如图3-4-17所示,一倾角为0 45θ=的斜面固定于地面,斜面顶端离地面的高度01h m =,斜面底端有一 垂直于斜而的固定挡板。在斜面顶端自由释放一质量0.09m kg =的小物块(视为质点)。小物块与斜面之间的动摩擦因数0.2μ=,当小物块与挡板碰撞后,将以原速返回。重力加 速度2 10/g m s =。在小物块与挡 板的前4次碰撞过程中,挡板给予小物块的总冲量是多少 7.如图3-4-18所示中有一个竖直固定在地面的透气圆筒,筒中有一劲度为k 的轻弹簧,其下端固定,上端连接一质量为m 的薄滑块,圆筒内壁涂有一层新型智能材料——ER 流体,它对滑块的阻力可调.起初,滑块静止,ER 流体对其阻力为0,弹簧的长度为L ,现有一质量也为m 的物体从距地面2L 处自由落下,与滑块碰 撞后粘在一起向下运动.为保证滑块 做匀减速运动,且下移距离为2mg k 时速度减为0,ER 流体对滑块的阻力须随滑块下移而变.试求(忽略空气阻力): (1)下落物体与滑块碰撞过程中系统损失的机械能; (2)滑块向下运动过程中加速度的大小; (3)滑块下移距离d 时ER 流体对滑块阻力的大小. 8.某同学利用如图3-4-19所示的装置验证动量守恒定律。图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为1:2。当两摆均处于自由静止状态时,其侧面刚好接触。向右上方拉动B 球使其摆线伸直并与竖直方向成045角,然后将其由静止释放。结果观察到两摆球粘在一起摆动,且最大摆角成030,若本实验允许的最大误差为4%±,此实验是否成功地验证了动量守恒定律 9.如图3-4-20(a )所示,在光滑绝缘水平面的AB 区域内存在水平向右的电场,电场强度E 随时间的变化如图3-4-20(b )所示.不带电的绝缘小球2P 静止在O 点.0t =时,带正电的小球1P 以速度0t 从 A 点进入A B 区域,随后与2P 发生正碰后反弹,反弹速度大小是碰前的2 3 倍,1P 的质量为1m ,带电量为q ,2P 的 质量215m m =,A 、O 间距为0L ,O 、B 间距043 L L =. 已知 2 000100 2,3qE v L T m L t ==. 图 图 3-4-16 图 3-4-18 图 3-4-17 图 3-4-15 图 3-4-14

高中物理公式推导(完全弹性碰撞后速度公式的推导)

高中物理公式推导一 完全弹性碰撞碰后速度的推导 1、简单说明: 1m 、2m 为发生碰撞的两个物体的质量,1v 、2v 为碰撞前1m 、2m 的速度,'1v 、' 2v 为碰撞后 1m 、2m 的速度。 2、推导过程: 第一,由动量守恒定理,得 ' 2'1 122112v m v m v m v m +=+ (1) 第二,由机械能守恒定律,得 2'22'112222112 2 1212121v m v m v m v m +=+(2) 令 12/m m k =,(1)、(2)两式同时除以1m ,得 ' ' 1 212kv v kv v +=+ (3) 2 '2 '1 2 2212 kv v kv v +=+ (4) (3)、(4)两式变形,得

( ) 2 ' '1 1--2v v k v v = (5) ()()()( ) 2 ' 2' '1 1 '1 1 22 -v v v v k v v v v -+=+ (6) 将(5)式代入(6)式,得 2' ' 1 12v v v v +=+ (7) 联立(5)、(7)两式,将' 1v 、 ' 2v 移到方程的左侧,则有 21' '1 2kv v kv v +=+ (8) 21' '1 --2v v v v += (9) 由(8)-(9),得 ()()21' 1-212 v k v v k +=+ 21' 11-122v k k v k v +++= 21212112' 1/1 -/1/22v m m m m v m m v +++= 2121 21121' -22v m m m m v m m m v +++= (10) 或者 ()2 12 1211' -22m m v m m v m v ++= (10)

完全非弹性碰撞动能损失最大的证明方法

完全非弹性碰撞动能损失最大的证明方法 方法一:用柯尼希定理很容易证明 (柯尼希定理:一个质点系的总动能,等于它的质心动能与各质点相对于质心的动能之和。E=E1+E2) 在碰撞前,系统的总动能E 等于质心动能与各质点相对于质心的动能之和。而在碰撞过程中以及碰撞以后,两物体的质点的速度是不变的,不管碰撞是弹性的还是非弹性的都是如此。因为碰撞中两物体之间的作用力,是系统内部的力,即内力,是不能改变系统总动量的,当然也不能改变系统质心的速度,所以不能改变质心的动能。所以,不管是什么类型的碰撞,都不能改变质心动能E1。 在碰撞以后,如果两物体粘在一起,动能E2为0,即完全非弹性碰撞. 所以碰撞为完全非弹性碰撞时,E=E1.系统损失机械能最多. 方法二:数学计算法 首先,两个都有速度太难算了,不如引入相对速度v(v=v1-v2).则原题简化为A 以v 的速度向静止的B 运动 根据动量守恒定律:b a v m v m v m 211+= 根据能量守恒定律,则有E mv mv mv b a ++=2222 12121 (E 为能量损失) 消去vb,化简得:02)(2)(1 22121221=+---+m Em v m m vv m v m m a a 关于a v 的二次方程有解,则0≥?即:) (2212 21m m v m m E +≤ 当取等号时,E 最大.2 11m m v m v a += 代入动量守恒式得:vb=va 所以此时为完全非弹性碰撞. 算得好辛苦啊!!! E<或=m1m2v^2/(2m1+2m2) 当取等号时,E 最大. 下面开始讲如何算出:va=m1v/(m1+m2) 把E=m1m2v^2/(2m1+2m2)代入 (m1+m2)va^2-2m1vva-(m2-m1)v^2+2Em2/m1=0 化简得:(m1+m2)va^2-2m1vva+(m1v)^2/(m1+m2)=0 这步应该不难得到,带进去时发现有两项通分后可以使方程大大简化. 接着对该方程两边同乘以(m1+m2)得: [(m1+m2)va]^2-2(m1+m2)m1vva+(m1v)^2=0 观察发现它竟然是一个完全平方式!! [(m1+m2)va-m1v]^2=0

[完全]弹性碰撞后的速度公式资料

[完全]弹性碰撞后的 速度公式

如何巧记弹性碰撞后的速度公式 一、“一动碰一静”的弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度? 图1 设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m 1v 1 =m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得: m 1v 1 = (m1+m2)v共 解出v共=m1v1/(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大 一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住, ⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相 对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤ 式。再结合①式也可很容易解得⑥⑦式。 二、“一动碰一动”的弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度? 图2 设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m 1v 1 +m2v2=m1v1'+m2v2'① ② 由 ①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦ 要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可等 效成m1以速度v1去碰静止的m2球,再同时加上m2球以速度碰静止的m1球。 因此由前面“一动碰一静”的弹性碰撞公式,可得两球碰撞后各自的速度 +;+,即可得到上面的⑥⑦式。

一个完全非弹性碰撞的实用推论(参照类别)

一个完全非弹性碰撞的实用推论 一、 在动量守恒模块的学习中,高中阶段主要分为完全弹性碰撞和完全非弹性碰撞这两种基本题型,解题用到的规律是动量守恒和能量守恒,完全弹性碰撞中,对于运动物体碰静止物体的模型,我们可以把v 1=2121m m m m +-v 0 v 2=2 112m m m +v 0, 作为推论,由此避免动量守恒和能量守恒方程组的联立,从而减小了运算量,那么在完全非弹性碰撞中,我们是否也能导出一个结论性的推论从而避免联立方程组,简化计算呢? 二、结论推导 在处理可以等效成“完全非弹性碰撞”模型的问题时,我们发现:动能的损失是连接已知量和待求量的桥梁。如果通过动量守恒和能量守恒这两大基本规律推导出动能损失的一般表达式,作为处理完全非弹性碰撞模型的一个实用推论,那么此推论便可以对我们的解题有所帮助。 推导过程如下: 在光滑水平面上,滑块A 、B 发生完全非弹性碰撞,滑块A 质量为m 1,速度为v 1,滑块B质量为m 2,速度为v 2, v 1 v 2方向相同且在一条直线上,v1>v2 。 动量守恒:m 1 v 1 +m 2 v 2= (m 1+ m 2)v ① 能量守恒:21m 1 v 12 +21m 2 v 22=2 1 (m 1+ m 2)v 2+ΔE ② 将①式代入②式ΔE= 21m 1 v 12 +21m 2 v 22-)(2)(21221m m m m v ++ 上式合并同类项得(读者可自行推导) ΔE=)2()(2212221212 1v v v v m m m m -++ 动能损失ΔE=221212 1)()(2v v m m m m -+ 上式中,“v 1-v 2”表示碰前两滑块的相对速度, 212 1m m m m +是两质量的调合平均值,我们把它 叫做折合质量。 三、结论应用 从此结论中可以看出,当两物体发生完全非弹性碰撞时,动能的损失可以写成ΔE=21 212 1m m m m +u 2, 其中u 2 是两滑块相对速度绝对值的平方。这个损失的动能可以转化为焦耳热,也可以转化为弹性势能,重力势能。当题目可以等效成“完全非弹性碰撞”模型(当题目中出现“弹簧达到最大压缩量时” “求物块上升的最大高度” “物块恰好不从木板上掉下”,“两物体恰好共速”“两物块粘连在一起运动”时一般等效成完全非弹性碰撞模型)时,一般可利用此结论求解或者简化运算。 例一、结论的简单应用 物块A 以初速度v 滑到小车B 上运动,A 质量为m 1,B 质量为m 2,

高考物理碰撞中“一动一静”一维弹性碰撞模型复习

高考物理碰撞中“一动一静”一维弹性碰撞模型复习 摘要:一运动的物体与一静止的物体发生弹性碰撞构成一种重要碰撞模型,即“一动一静”一维弹性碰撞模型,碰撞过程动量、机械能守恒,碰后两物体速度可求.两物体通过弹簧弹力作用,把一物体的动能转移给另一物体;或一物体在另一物体表面运动,通过物体间的弹力作用,把一物体的动能转移给另一物体也可构成“隐蔽”的“一动一静”一维弹性碰撞模型. 关键词:“一动一静”一维弹性碰撞,动量守恒,机械能守恒,动能,弹性势能,重力势能。 2017届全国考纲把选修3-5由先前的选考内容角色变换成必考内容角色,这要求我们广大高三物理老师提高对选修3-5复习的重视程度,下面谈谈我如何复习选修3-5动量中“一动一静”一维弹性碰撞重要模型,不足之处请同仁指正. 一运动的弹性小球碰撞一静止的弹性小球,两小球接触碰撞过程中相互作用的力较大,时间又短,系统动量守恒;两小球从开始接触到共速这短暂过程中小球的动能向小球的弹性势能转化,两小球从共速到开始分离这短暂过程中小球的弹性势能向小球的动能转化,系统机械能也守恒. 如图,在光滑的水平面上质量m1、速度v1弹性小球1向右运动与质量m2、静止弹性小球2发生正碰. 设m1、m2碰撞分离后的速度分别为v’1、v’2 系统动量守恒m1v1=m1v’1+m2v’2 系统机械能守恒1 2 m1v12 = 1 2 m1v’12+ 1 2 m2v’22 解得错误!或错误!(增根舍去) (Ⅰ)当m1>m2时,v’1与v1同向(大撞小,同向跑);当m1>>m2时,v’1≈v1、v’2≈2v1(Ⅱ)当m1=m2时,v’1与v1换速,即v’1=0、v’2=v1 (Ⅲ)当m1

(完全)弹性碰撞后的速度公式

如何巧记弹性碰撞后得速度公式 一、“一动碰一静”得弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1得小球,以速度v1与原来静止得质量为m 2得小球发生对心弹性碰撞,试求碰撞后它们各自得速度? 图1 设碰撞后它们得速度分别为v1'与v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m1v1=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式得右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时得共同速度v共,由动量守恒定律得: m1v1= (m1+m2) v共 解出v共=m1v1 /(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前得弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好就是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式得分子容易写成m2-m1,则可根据质量m1得乒乓球以速度v1去碰原来静止得铅球m2,碰撞后乒乓球被反弹回,因此v1'应当就是负得(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”得实验中,要求入射球得质量m1大于被碰球得质量m2,也可由⑥式解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再就是原来得v1'了。 另外,若将上面得⑤式变形可得:,即碰撞前两球相互靠近得相对速度v1-0等于碰撞后两球相互分开得相对速度。由此可轻松记住⑤式。再结合①式也可很容易解得⑥⑦式。 二、“一动碰一动”得弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2得两球发生对心弹性碰撞,碰撞前速度分别为v1与v2,求两球碰撞后各自得速度? 图2 设碰撞后速度变为v1'与v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m1v1+m2v2=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦

完全非弹性碰撞动能损失最大的证明

完全非弹性碰撞动能损失最大的证明 (利用初等函数证明) 在碰撞中,系统动量守恒。但动能损失不一样。 完全弹性碰撞,碰撞前后,系统总动能不损失。 非弹性碰撞,损失一部分动能。 两个物体碰撞后,不分开,以同一速度运动,叫做完全非弹性碰撞。此时动能损失最大。下面是证明过程。 条件:质量m 1,速度v 1,与质量m 2,速度v 2物体发生碰撞,碰后,m 1速度变为v 1/,m 2速度变为v 2/。 由动量守恒:m 1 v 1+m 2 v 2=m 1 v 1/+m 2 v 2/……(1) 损失动能:)2 121()212 1(2/222/11222211v m v m v m v m E +-+=?……(2) 令p = m 1 v 1+m 2 v 2 ,22221112121v m v m E +=,2/222/1122121v m v m E +=,p 和E 1确定,只需证明E 2最小的条件,即可得到最大的动能损失的条件。 利用(1)式可得:2/11/2 m v m p v -=……(3) 将(3)带入E 2,得:2 2 /112/1211222)(m p v pm v m m m E +-+=,可见分子部分为关于v 1/的函数。令2/112 /1211/12)()(p v pm v m m m v f +-+=,只需求出)(/1v f 的最小值即可。二次函数开口向上,顶点坐标值对应)(/1v f 最小。 即当2 1/12m m p a b v +=-=时,)(/1v f 最小,则此时E 2最小,△E 最大。 将v 1/带入(1)式得:2 1/1/2m m p v v +==。 即:碰撞后两物体不分开以相同速度运动,损失的动能最大。 如果学习了微积分,可以利用求导更容易得到证明。此处略。

完全非弹性碰撞模型及其应用

完全非弹性碰撞模型及其 应用 Prepared on 22 November 2020

作者E-mail:Tel : “完全非弹性碰撞”模型及其应用 湖北省沙市中学刘军434000 在高中物理学习中,面对浩如烟海的习题,学生只有做好题后总结,把握某一类型问题的共同特征和遵循的共同规律,才能做到事半功倍,以一挡十.在习题教学中,教师则不仅要引导学生善于从具体问题的分析中抽象出其所适用的一般模型和遵循的基本规律,而且要引导学生善于结合具体问题的特殊条件,灵活地运用模型和规律.下面以“完全非弹性碰撞模型”为例,在分析不同情景问题时,联想模型,通过类比和等效的方法,从而抓住问题的物理本质,使问题迅速得到解决. 一、“完全非弹性碰撞”模型 如图1,质量为1m 、2m 的两大小相同的球分别以速度1v 、2v 在光滑的水平面上沿一直线运动,其中12>v v ,两球碰撞后粘合在一起以速度v 一起运动. 系统碰撞前后动量守恒有: v m m v m v m )+(=+212211. 碰撞后系统动能损失:221222211)(2 1-2121v m m v m v m E k ++=?. 上面就是典型的“完全非弹性碰撞”模型,在一些力学综合问题中,有很多两物体间的相互作用过程就与上面两球的碰撞过程类似,具有以下共同特点:①相互作用后两物体具有共同速度;②作用前后系统动量守恒(或在某一方向守恒);③作用后系统有动能损失,损失的动能转化为其它形式的能. 图1 m

二、“类完全非弹性碰撞”实例分析 1.物块未滑落木板 例1 如图2所示,质量为M 的平板小车放在光滑水平面上,平板右端上放有质量为m 的木块,它们之间的动摩擦因数为μ, 现使平板小车和木块分别向右和向左运动,初速度大 小均为0v ,设平板足够长,且M >m ,求木块相对平 板右端滑行的距离。 解析:木块在小车上的运动分两阶段:首先,木块和小车都做匀减速运动,木块速度先减为零,木块速度减为零时,小车仍有向右速度;之后,木块开始向右做匀加速运动,小车继续向右做匀减速运动,木块相对小车仍在远离其右端,直至木块与小车速度相等后,二者一起向右匀速运动. 设木块与小车的最终速度为v ,以向右为正,由动量守恒定律有: v m M mv Mv )(00+=-① 设物块相对小车右端滑行距离为△S ,因木块相对小车无往复运动,则由功能关系有: 22020)(2 12121v m M Mv mv s mg +-+=?μ② 联立①、②解得:20)(2v g M m M s +=?μ. 简评:此题中两物体间通过摩檫力发生相互作用,最终两物体具有共同速度,系统损失的动能转化为系统内能. 2.子弹未打穿木块 例2 质量为M 的木块被固定在光滑水平面上,一颗质量为m 的子弹以初速0v 水平飞来穿透木块后的速度变为2 0v ,现使木块不固定,可以在光滑水平面图2

碰撞速度公式

由于弹性碰撞后的速度公式不好推导,该公式又比较繁杂不好记。因此导致这类考题的得分率一直较低。下面探讨一下该公式的巧记方法。 一、“一动碰一静”的弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度? 图1 设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m1v1=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得: m1v1= (m1+m2)v共 解出v共=m1v1 /(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前 的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式

解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。 另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式。再结合①式也可很容易解得⑥⑦式。 二、“一动碰一动”的弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度? 图2 设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m1v1+m2v2=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦ 要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可等效成m1以速度v1去碰静止的m2球,再同时加上m2球以速度碰静止的m1球。因此由前面“一动碰一静”的弹性

“一动一静”碰撞模型及解题技巧(经典)

“一动一静”碰撞模型及解题技巧(经典) 一、“一动一静”完全非弹性碰撞模型 建立模型 在光滑水平面上,质量为 的物体以初速度 去碰撞静止的物体 ,碰后两物体粘在一 起具有共同的速度,这种碰撞称为“一动一静”完全非弹性碰撞,此时系统动能损失最大。 (1)基本特征 碰后两物体速度相等,由动量守恒定律得: (2)功能关系 系统内力做功,实现系统动能与其它形式能量的转化。当两物体速度相等时,系统动能损失最大,即: ()2212112 1 21v m m v m E k +-=? 二、 应用 (1)滑动摩擦力做功,系统动能转化为内能 例1. 在光滑水平面上,有一静止的质量为M 的木块,一颗初动量为的子弹mv 0,水平射入木块,并深入木块d ,且冲击过程阻力(f )恒定。 解析:()m v m m v 1112=+ ()22121 21v m M mv E +-= 得:21) (2v M m mM E += 例2.如图所示,质量为M 的长木板静止在光滑水平面上,质量为m 的小物块以水平速度v0从长木板左端开始运动,为使小物块不从长木板右端滑落,长木板至少多长? 分析:小物块不从长木板上滑落的临界情况是,当小物块滑至长木板右端时,二者刚好具有共同速度,符合“一动一静”完全非弹性碰撞模型,系统损失的动能转化为系统产生的内能,结合摩擦生热公式可解出长木板的长度。 解:小物块不从长木板上滑落的临界情况是小物块滑至长木板右端时,二者刚好具有共同速度。据动量守恒定律: ()v m M mv +=0 据能量的转化与守恒: 2 2 0)(2 121 v m M mv mgL +-=μ

联立解得: )(220 m M g Mv L += μ 即为长木板的最小长度 例3.光滑水平面上静止一长木板A ,A 的两端各有一竖直挡板。另有一木块B (可视为质点)以的初速度v1=5m/s 向右运动,如图所示。若A 与B 之间的动摩擦因数μ=0.05,且A 与B 的质量相等,求B 在A 上滑行的总路程(假设B 与挡板碰撞时无机械能损失)。 解析:B 在A 上来回滑动并与两挡板发生碰撞,由于滑动摩擦力的作用,B 最终必停在A 上并与A 以共同的速度运动。A 与B 之间的相互作用即为“一动一静”完全非弹性碰撞。 解:设A 与B 的质量均为m ,系统动量守恒,有 mv mv 12= 能量的转化与守恒:μmgs mv mv =-121 22122 · 解以上两式得:s v g m ==??=122 45400510125μ..() (2)重力做功,系统动能转化为重力势能 例4. 在光滑水平面上静止一质量为M 的斜面体,现有一质量为m 的小球以水平速度 滑上斜面,如图2所示。若斜面足够长且光滑, 求小球能在斜面上滑行的最大高度。 分析:小球滑上斜面后,只要小球水平方向的分速度大于斜面体的速度,小球将继续上滑,高度将继续增加,重力势能也继续增大。当二者的速度相等时,小球上升到最大高度,重力势能最大,系统动能的损失也最大。小球和斜面体之间的相互作用也可等效为“一动一静”完全非弹性碰撞,则 ()()2 2112 121v m M m v m gh v M m m v m +-= += 解以上两式得: 二、“一动一静”完全弹性碰撞模型 两小球弹性碰撞理论推导 设两个小球发生弹性碰撞

高中物理公式推导完全弹性碰撞后速度公式的推导

高中物理公式推导完全弹性碰撞后速度公式的 推导 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高中物理公式推导一 完全弹性碰撞碰后速度的推导 1、简单说明: 1m 、2m 为发生碰撞的两个物体的质量,1v 、2v 为碰撞前 1m 、2m 的速度,'1v 、'2v 为碰撞后1m 、2m 的速度。 2、推导过程: 第一,由动量守恒定理,得 ' 2'1122112v m v m v m v m +=+ (1) 第二,由机械能守恒定律,得 2'22'1122221122 1212121v m v m v m v m +=+(2) 令12/m m k =,(1)、(2)两式同时除以1m ,得 '' 1212kv v kv v +=+ (3) 2'2'122212 kv v kv v +=+ (4) (3)、(4)两式变形,得 ()2 ''11--2v v k v v = (5)

()()()()2'2''1 1'1122-v v v v k v v v v -+=+ (6) 将(5)式代入(6)式,得 2''112v v v v +=+ (7) 联立(5)、(7)两式,将' 1v 、' 2v 移到方程的左侧,则有 21''12kv v kv v +=+ (8) 21' '1--2v v v v += (9) 由(8)-(9),得 212121121' -22v m m m m v m m m v +++= (10) 或者 ()2121211' -22m m v m m v m v ++= (10) 由(8)+k*(9),得 221212121' 21v m m m v m m m m v +++-= (11) 或者 ()2122121'21m m v m v m m v ++-= (11) 3、意外收获:

《类完全非弹性碰撞》教学设计

课题:人教版高中物理选修3-5 《类完全非弹性碰撞》教学设计 一、考点分析: 近几年的高考,碰撞问题是高考试题的重点和热点,同时它也是学生学习的难点。选修3-5模块之所以频频考察此类问题,是因为它所反映出来的物理过程、状态变化及能量关系,能够全方位地考查同学们的理解能力、逻辑思维能力及分析推理能力。 碰撞问题,由于碰撞时相互作用力“时间短、变化快、量值大”,外力远小于内力,所以碰撞过程动量守恒。碰撞问题中,完全非弹性碰撞是一种特殊的碰撞情况:形变完全不能够恢复,机械能损失达到最大,遵从动量守恒定律,还具有碰撞双方碰后的速度相等的运动学特征,而且是弹性碰撞所必经历之过程,可以说其个性极为突出。虽然近三年高考中主要考察弹性碰撞,但是鉴于完全非弹性碰撞的特殊性,二轮复习可以针对性的加强这方面内容的研究。 二、教学目标 知识与技能: (1)了解完全非弹性碰撞在碰撞过程中的个性特点。 (2)了解类完全非弹性碰撞的常见物理模型。 (3)能用动量、能量观点综合分析类完全非弹性碰撞问题。 过程与方法: 通过“慢镜头”体验一维碰撞过程中形变量与能量的演变过程,关注完全非弹性碰撞速度相等的运动学特征,感受碰撞系统机械能损失最大的能量特点。并将结论推广到一般模型的类完全非弹性碰撞问题。 情感态度价值观: 通过对类完全非弹性碰撞问题的研究,体会研究物理问题的一般方法。 三、教学重点: (1)完全非弹性碰撞问题的的运动学特征和能量特点。 (2)类完全非弹性碰撞模型的能量转化分析。 四、教学用具: ppt课件、多媒体辅助教学设备 五、教学过程: 1、导入新课 同学们通过前面的学习,对碰撞问题已经有了深刻的理解。碰撞现象是物理学中极为常见的物理现象,大到宇宙中的天体,小到微观粒子,以及我们的日常生活,可以说碰撞现象无处不在。碰撞问题也是形形色色、繁杂多样,其中有一类问题个性鲜明,特点突出,我们这节课就来探讨这一类型的问题:完全非弹性碰撞问题及类完全非弹性碰撞问题。 2、进行新课 一、碰撞过程回顾 从系统碰撞过程中是否有动能损失可以将碰撞问题分成两大类:弹性碰撞和非弹性碰撞;我们先来回顾一下碰撞的全过程: 最简单的弹性碰撞模型(一静一动): 以光滑水平地面上质量为m1、速度为v的小球A与质量为m2的静止小球B发生正面弹性

弹性碰撞一动一静专题

一动一静弹性碰撞专题 机械波损失的几种形式:1摩擦产热2硬碰碰撞热3软碰撞---弹簧的弹性势能(自由---压缩最短—伸长- 恢复自由)4软碰撞电场的存在转化为电势能(离开电场时电势能消失)5电磁感应---产生电流 命题特点:能的转化和守恒弹簧的特征设置过程系统机械能转化为弹簧弹性势能然后又释放弹性势能满足一动一静弹性的条件 熟练记住:此条件下碰后两个物体的速度表达式 例题1.如图所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹射中并且嵌入其中。已知物体B的质量为m,物体A的质量是物体B的质量的3/4,子弹的质量是物体B的质量的1/4 ①求弹簧压缩到最短时B的速度。 ②弹簧的最大弹性势能。(3)弹簧恢复原长时,两滑块的速度 例题2如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间。A的质量为,B、C的质量都为,三者都处于静止状态,现使A以某一速度向右运动, 求和之间满足什么条件才能使A只与B、C 各发生一次碰撞。设物体间的碰撞都是弹性的 例题3如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中: (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能. 例题4如图所示,水平地面上有两个静止的小物块a和b,其连线与墙垂直:a和b相距l;b与墙之间也相距l;a的质量为m,b的质量为m,两物块与地面间的动摩擦因数均相同, 现使a以初速度向右滑动,此后a与b发生弹性碰撞,但b没有与墙发生碰撞,重力加速度大小为g,求物块与地面间的动摩擦力因数满足的条件。

完全弹性碰撞

§3-7 完全弹性碰撞 完全非弹性碰撞 一、碰撞(Collision ) 1.基本概念: 碰撞,一般是指两个或两个以上物体在运动中相互靠近,或发生接触时,在相对较短的时间内发生强烈相互作用的过程。 碰撞会使两个物体或其中的一个物体的运动状态发生明显的变化。 碰撞过程一般都非常复杂,难于对过程进行仔细 分析。但由于我们通常只需要了解物体在碰撞前后运动状态的变化,而对发生碰撞的物体系来说,外力的作用又往往可以忽略,因而可以利用动量、角动量以及能量守恒定律对有关问题求解。 2.特点: 1)碰撞时间极短 2)碰撞力很大,外力可以忽略不计,系统动量守恒 3)速度要发生有限的改变,位移在碰撞前后可以忽略不计 3.碰撞过程的分析: 讨论两个球的碰撞过程。碰撞过程可分为两个过程。开始碰撞时,两球相互挤压,发生形变,由形变产生的弹性恢复力使两球的速度发生变化,直到两球的速度变得相等为止。这时形变得到最大。这是碰撞的第一阶段,称为压缩阶段。此后,由于形变仍然存在,弹性恢复力继续作用,使两球速度改变而有相互脱离接触的趋势,两球压缩逐渐减小,直到两球脱离接触时为止。这是碰撞的第二阶段,称为恢复阶段。整个碰撞过程到此结束。 4.分类:根据碰撞过程能量是否守恒 1)完全弹性碰撞:碰撞前后系统动能守恒(能完全恢复原状); 2)非弹性碰撞:碰撞前后系统动能不守恒(部分恢复原状); 3)完全非弹性碰撞:碰撞后系统以相同的速度运动(完全不能恢复原状)。 二、完全弹性碰撞(Perfect Elastic Collision ) 在碰撞后,两物体的动能之和(即总动能)完全没有损失,这种碰撞叫做完全弹性碰撞。 解题要点:动量、动能守恒。 问题:两球m 1,m 2对心碰撞,碰撞前 速度分别为2010,v v ,碰撞后速度变为21,v v 动量守恒 2021012211v m v m v m v m (1) 动能守恒 2 20221012222112 1212121v m v m v m v m (2) 由(1) 22021011v v m v v m (3) 由(2) 2 2 2202210211v v m v v m (4) 由(4)/(3) 202101v v v v

第04章 相对论完全非弹性碰撞

相对论(完全非弹性)碰撞 相对论碰撞:兹有两粒子A 、B 在同一直线上运动。粒子A 静止质量为01m ,粒子B 静止质量为02m 。粒子A 速度为1v ,粒子B 以速度2v 与A 发生正碰撞12v v >。设碰撞后两粒子粘合在一起组成一复合粒子。求:复合粒子的质量、动量和动能以及运动速度和静止质量。 解: (1)假设复合粒子的质量为M ,则由“质量守恒”或“能量守恒”有 质量守恒 等价地表达为 能量守恒 (2)假设复合粒子的动量为P ,则由“动量守恒”有 (3)假设复合粒子的速度为V ,则由V M P ?= 有 ? -+ -= ?-+ ?-= ?=2 2022 1012 2 20212 101)(1)(1)( 1)(1;c v m c v m M v c v m v c v m P V M P

(4)假设复合粒子的静止质量为0M ,则有动能 202c M c M E k ?-?= 由于 2 0)(1c V M M -= ,所以得到2 0)(1c V M M -?= 于是得到 2 2022 101 2 2 20212 101 2 2022 1012 22)( 1)(1)(1)(1;)(1)(1)(1c v m c v m v c v m v c v m V c v m c v m M c c V M c M E k -+ -?-+ ?-= -+ -= ?-?-?= 从而得到 复合粒子的动能: (5)假设复合粒子的静止质量为0M ,则有静止质量 20)(1c V M M -?=

由于2 2022 101 2 2 20212 101 2 2022 101)( 1)(1)( 1)(1;)( 1)(1c v m c v m v c v v c v V c v m c v m M -+ -?-+ ?-= -+ -= 从而得到复合粒子的静止质量: ? ?-+ ?-?- -+ -==2 22 20212 1012 22 2022 10102012100 0201210])( 1)(1[1])( 1)(1[ ),;,(),;,(v c v m v c v m c c v m c v m m m v v M M m m v v M 关于复合粒子的静止质量的 讨论: 例0:0020121 ;6.0,0m m m c v v ==?== 00000222 3 ),;6.0,0(m m m m c M ?>??= ? 例1:02010201 ),;,(m m m m v v M += 当且仅当 21v v v == 例2:0 201 ,v v v v =-= 02012 2 2002012 022 010201000)2(112),;,(m m v c v c m m m m m m v v M +>+?? -???++=-

相关文档
相关文档 最新文档