文档库 最新最全的文档下载
当前位置:文档库 › Jupiter

Jupiter

Jupiter
Jupiter

Jupiter 5V GPS Receiver, v2.30 Software Release TU30-D140

Conexant’s Jupiter Global Positioning System (GPS) receiver is a single-board, 12 parallel-channel receiver engine intended as a component for an Original Equipment Manufacturer (OEM) product. The receiver (shown in Figures 1 and 2) continuously tracks all satellites in view, thus providing accurate satellite positioning data. It is designed for high performance and maximum flexibility in a wide range of OEM configurations including handhelds, panel mounts, sensors, and in-vehicle automotive products.

The highly integrated digital receiver uses the Zodiac chip set composed of two custom Conexant devices: the Gemini/Pisces Monopac? and the Scorpio Digital Signal Processor (DSP). These two custom chips, together with suitable memory devices and a minimum of external components, form a complete low-power, high-performance GPS receiver solution for OEMs.

The Jupiter receiver decodes and processes signals from all visible GPS satellites. These satellites, in various orbits around the Earth, broadcast radio frequency (RF) ranging codes and navigation data messages. The receiver uses signals from all available satellites to produce a highly accurate and robust navigation solution that can be used in a wide variety of end product applications.

The Jupiter is packaged on a miniature printed circuit board intended for harsh industrial applications. The receiver requires conditioned DC power and a GPS signal from a passive or active antenna. The Jupiter receiver is available with a straight OSX, a right angle OSX, or a right angle SMB RF connector.

The all-in-view tracking of the Jupiter receiver provides robust performance in applications that require high vehicle dynamics and in applications that operate in areas of high signal blockage such as dense urban centers. The receiver continuously tracks all visible GPS satellites and uses all the measurements to produce an overdetermined, smoothed navigation solution. This solution is relatively immune to the position jumps induced by blockage that can occur in receivers with fewer channels.Features

?OEM product development is fully supported through applications engineering

?One of the smallest, most compact GPS receiver footprints measuring 2.800” x 1.600” x

0.442” (approximately 71 x 41 x 11 mm)?Twelve parallel satellite tracking channels for fast acquisition and reacquisition ?Support for true NMEA-0183 data protocol ?Direct, differential RTCM SC-104 data

capability to dramatically improve positioning

accuracy (in both Conexant binary and NMEA

host modes)

?Enhanced algorithms provide superior

navigation performance in “urban canyon” and

dense foliage environments ?Adaptive threshold-based signal detection for improved reception of weak signals ?Static navigation enhancements to minimize wander due to Selective Availability (SA)?Compatible with passive antennas for lowest total system cost or active antennas for

installation flexibility

?Maximum navigation accuracy achievable with the Standard Positioning Service (SPS)?Enhanced TTFF upon power-up when in a “Keep-Alive” power condition before start-up ?Meets rigorous shock and vibration

requirements

?Automatic Altitude Hold Mode from Three-Dimensional to Two-Dimensional navigation ?Automatic cold start acquisition (when no initialization data is entered by the user)?Maximum operational flexibility and

configurability via user commands over the

host serial port

?Ability to accept externally supplied

initialization data, including almanacs and

ephemerides, over the host serial port ?User selectable satellites

?User selectable visible satellite mask angle ?Different RF connectors available ?Standard 2x10 pin-field I/O connector ?Operation/storage over an extended

temperature range (–40° C to +85° C)

Figure 1. The Conexant Jupiter GPS Receiver (-391) With Right Angle SMB RF Connector

(Top View – Shown Approximately 1.5x Actual Size)

Figure 2. The Conexant Jupiter GPS Receiver (-391) With Right Angle SMB RF Connector (Bottom View – Shown Approximately 1.5x Actual Size)

The 12-channel architecture provides rapid Time-To-First-Fix (TTFF) under all startup conditions. While the best TTFF performance is achieved when time of day and current position estimates are provided to the receiver, the flexible signal acquisition system takes advantage of all available information to provide a rapid TTFF. Acquisition is guaranteed under all initialization conditions as long as visible satellites are not obscured.

To minimize TTFF when prime power is removed from the receiver, an external OEM-supplied DC supply voltage is required to maintain power to the Static Random Access Memory (SRAM) and to the Real-Time Clock (RTC). In this case, the shortest possible TTFF is achieved by using the RTC time data and prior position data stored in the receiver’s SRAM.The receiver supports Two-Dimensional (2-D) operation when less than four satellites are available or when required by operating conditions. Altitude information required for 2-D operation is determined by the receiver or may be provided by the OEM application.

Communication with the receiver is established through two identical, independent, asynchronous serial I/O ports that support full duplex data communication. The receiver’s primary serial port (the host port) outputs navigation data and accepts commands from the OEM application in National Marine Electronics Association (NMEA-0183) format or Conexant binary message format.

Figure 3. Jupiter Receiver Architecture

The secondary port (the auxiliary port) is configured to accept Differential GPS (DGPS) corrections in the Radio Technical Commission For Maritime Services (RTCM SC-104) format (a summary of the supported RTCM message types is listed in Table 10). A complete description of the serial data interface is contained in the Conexant document, Zodiac GPS Receiver Family Designer’s Guide.

Receiver Architecture. The functional architecture of the Jupiter receiver is shown in Figure 3. The receiver design is based on the Conexant Zodiac chip set: the Gemini/Pisces Monopac TM and the Scorpio DSP, which contain the required GPS functionality. The Gemini/Pisces Monopac TM contains all the RF downconversion and amplification circuitry, and presents the In-Phase (I) and Quadrature-Phase (Q) Intermediate Frequency (IF) sampled data to the Scorpio device. The Scorpio device contains an integral microprocessor and all the required GPS-specific signal processing hardware. Memory and other external supporting components configure the receiver into a complete navigation system.

Product Applications

The Jupiter GPS receiver is suitable for a wide range of OEM highly integrated GPS design applications such as:?Handheld GPS receiver applications

?Automotive applications

?Marine navigation applications

?Aviation applications

?Timing applications Figure 4 illustrates a typical architecture used to integrate the receiver with an applications processor that drives peripheral devices such as a display and keyboard. The interface between the applications processor and the receiver is through the serial data interface.

Technical Description

General Information. The Jupiter GPS receiver requires +5V primary DC input power. The receiver can operate from either an active or passive GPS antenna, supplied by the OEM, to receive L1 band frequency GPS carrier signals.

Since the receiver determines its position by ranging signals from three or more GPS satellites orbiting the Earth, its antenna must have reasonable visibility of the sky. This is generally not a problem when the receiver is used outdoors in the open. However, when used indoors or inside of an automobile, the antenna should be positioned in such a way as to have an unobstructed “view” of the sky. To establish an initial navigation fix, the receiver requires a minimum of three satellites in track with good geometry (Geometric Dilution of Precision [GDOP]

<10).

If satellite signals are blocked, the length of time for the receiver to receive those signals and determine its position is longer. If fewer than three satellites are being tracked, or if the satellite geometry is degraded, signal blockage may result in a failure to navigate.

Figure 4. Typical Jupiter/OEM Architecture Table 1. Jupiter Receiver Signal Acquisition

Time-To-First-Fix Initial Error Uncertainties (3 Sigma)

Maximum

Almanac Age

Maximum

Ephemeris

Age

Satellite

Acquisition

State

Typical

(minutes)

90% Probable

(minutes)

Position (km)Velocity

(m/sec)

Time

(minutes)

Weeks Hours

Warm Initialized Cold Frozen 0.30

0.8

2.0

(*)

0.4

1.0

2.5

(*)

100

100

N/A

N/A

75

75

N/A

N/A

5

5

N/A

N/A

1

1

1

N/A

4

N/A

N/A

N/A

N/A = Not available in real-time to the receiver. Note that times are valid at 25 degrees Celsius with no satellite signal blockage.

(*) = Frozen start is considered to be a recovery mode. An “out-of-the-box” board that has not operated for a significant amount of time (months) may approximate this state because the data in EEPROM may be valid but expired or partially complete.

Satellite Acquisition. The Jupiter GPS receiver supports four types of satellite signal acquisition depending on the availability of critical data. Table 1 provides the corresponding TTFF times for each of the following acquisition states.

?Warm Start. A warm start results from a software reset after a period of continuous navigation or a return from a

short idle period (i.e., a few minutes) that was preceded by

a period of continuous navigation. In this state, all of the

critical data (position, velocity, time, and satellite

ephemeris) is valid to the specified accuracy and available in SRAM.

?Initialized Start. An initialized start typically results from user-supplied position and time initialization data or

continuous RTC operation with an accurate last known

position available from EEPROM. In this state, position and time data are present and valid but ephemeris data validity has expired.?Cold Start. A cold start acquisition state results when position and/or time data is unknown, either of which

results in an unreliable satellite visibility list. Almanac

information is used to identify previously healthy satellites.?Frozen Start. A frozen start acquisition state occurs if there are no valid internal data sources available.

Navigation Modes. The Jupiter GPS receiver supports three types of Navigation Mode operations: Three-Dimensional (3-D), Two-Dimensional (2-D), and DGPS. Each of these modes is briefly described below:

?Three-Dimensional Navigation (3-D). The receiver defaults to 3-D navigation whenever at least four GPS

satellites are being tracked. In 3-D navigation, the receiver computes latitude, longitude, altitude, and time information from satellite measurements. The accuracies that can be

obtained in 3-D navigation are shown in Table 2.

Jupiter GPS Receiver TU30-D140-371/381/391

Table 2. GPS Receiver Navigational Accuracies

Position (meters)Velocity

Horizontal3-D Vertical(meters/sec)

CEP(2 dRMS)3-D (2 sigma) Full Accuracy C/A255093780.1

Standard Positioning Service (SPS)50100

(95%)

200

(95%)

173

(95%)

Note 1

Note 1: Velocity accuracies for SPS are not specified for the GPS system.

?Two-Dimensional Navigation (2-D). When less than four GPS satellite signals are available and when a fixed value

of altitude can be used to produce an acceptable

navigation solution, the Jupiter receiver enters the 2-D

navigation mode from 3-D navigation. The receiver uses a

fixed value of altitude determined either during prior 3-D

navigation or as provided by the OEM. Forced operation in 2-D mode can be commanded by the OEM.

In 2-D navigation, the navigational accuracy is primarily

determined by the relationship of the fixed value of altitude to the true altitude of the antenna. If the fixed value is

correct, the horizontal accuracies shown in Table 2 apply.

Otherwise, the horizontal accuracies degrade as a function of the error in the fixed altitude.

?DGPS Navigation. DGPS corrections must be compliant with the RTCM recommended standards for differential

Navstar GPS service, also known as RTCM SC-104. DGPS corrections are processed through the receiver’s Auxiliary

serial port (port 2). DGPS corrections are also processed

using Conexant binary message 1351 (refer to the Zodiac

GPS Receiver Family Designer’s Guide) through the

receiver’s Host serial port (port 1). Binary message 1351

contains RTCM data.

Depending on the DGPS configuration, navigational

accuracies can be improved dramatically in 3-D DGPS

mode and the Jupiter supports the accuracies described in the RTCM SC-104 document.

Power Modes And Power Sequencing Requirements. The Jupiter receiver has three power modes: Off, Operate, and “Keep-Alive.” Table 3 summarizes the signal conditions and current requirements for each of these modes. The Off mode assumes that neither primary power nor external “Keep-Alive”voltage is available.

The Off mode implies that the receiver is completely de-energized. The Operate mode implies that the receiver is completely energized. The “Keep-Alive” mode implies that primary power has been removed but that an external DC voltage source is provided for backup of the SRAM and RTC.?Off mode. The receiver is completely de-energized including all DC supply input signals, serial data input

signals, and control input signals.

?Operate mode. The receiver enters its Operate power mode when the receiver’s components are fully energized

at +5 ± 0.25 VDC. The M_RST control signal must be

asserted or at a CMOS “high” logic level.

?“Keep-Alive” mode. From Operate mode, the receiver enters a “Keep-Alive” mode when PWRIN voltage is

removed, provided that an external DC supply voltage is

available at the VBATT signal input. In this state, the

external voltage supply provides power for the SRAM and

RTC. If the board is subsequently powered up from this

state, the receiver uses the current time maintained by the RTC as well as critical satellite data stored in SRAM to

achieve rapid TTFF.

Caution:During the OFF or “Keep-Alive” modes, de-energizing

(i.e., not driven to a CMOS “high” level) the following

I/O functions is recommended:

?Master Reset (pin J1-5).

?NMEA Protocol Select (pin J1-7).

?ROM Default Select (pin J1-8).

?Time Mark Pulse (pin J1-19).

?Host Port Serial Data Output and Input (pins J1-11 and 12).?Auxiliary Port Serial Data Input (pin J1-15).

Violation of the specified operating voltages results in erratic receiver operation. The voltage threshold level at which the receiver’s power supervisory circuit places the receiver’s microprocessor in reset is +4.5 (+0/-0.2) VDC, in which case PWRIN continues to supply power to the receiver. No damage occurs if PWRIN dwells in this uncertainty region, but power dissipation is affected. Also, critical SRAM data and RTC time keeping may become corrupted, affecting TTFF when the receiver is returned to normal operating conditions.

Table 3. Jupiter GPS Receiver External Power Requirements

(Typical, Measured at 25° C)

Input Voltage Requirement By Mode

Operate“Keep-Alive”

(5 VDC)“Keep-Alive”

(3 VDC)

PWRIN Voltage+5 ± 0.25V0V or GND0V or GND PWRIN current (Typical)195mA

(975mW)

N/A N/A

PWRIN current (Maximum)230mA

(1150mW)

N/A N/A PWRIN Ripple P-P100mV N/A N/A VBATT Voltage Note 1+5 ± 0.25V+3 ± 0. 50V VBATT Current N/A75μA40μA VBATT Maximum Power N/A0.38mW0.12mW Note 1: VBATT should not exceed PWRIN while in Operate Mode.

Power-Up Sequencing. The power-up sequence for the Jupiter receiver is the same from either the OFF mode or the “Keep-Alive” mode. Primary DC power, as specified in Table 3, is applied to the PWRIN pin of the receiver’s OEM interface connector by the host system. If the M_RST pin on the interface connector is asserted high when DC power is applied, the receiver begins normal operation after 200 ms.

Technical Specifications

Operational Characteristics__________________________

Signal Acquisition Performance. Refer to Table 1. The values shown are based on unobscured satellite signals.

Accuracy. Accuracy is a function of the entire Navstar system and geometry of the satellites at the time of measurement. In general, individual receivers have very little influence over the accuracy provided. Navigational accuracies using Full Accuracy C/A Code (SA Off) and the SPS (SA On) are shown in Table 2. These accuracies are based on a Position Dilution of Precision (PDOP) of 6.0 and the maximum vehicle dynamic of 500 m/sec.

Solution Update Rate. Once per second.

Reacquisition. 2 seconds typical with a 10 second blockage.

RTCM SC-104 Differential Compatibility. Direct data input over the Auxiliary serial port or indirect data input using Conexant binary message 1351 over the Host serial port (refer to the Zodiac GPS Receiver Family Designer’s Guide for details).

Time Mark. Once per second.

Serial Data Output Protocol. Conexant binary serial I/O messages or NMEA-0183 serial I/O messages.Power Requirements_________________________________

Regulated power for the Jupiter GPS receiver is required according to the information provided in Table 3.

When the receiver is operated with an active GPS antenna, the antenna’s maximum preamp “pass-through” current is 50 mA at voltages up to +12V. This current must be limited outside of the receiver.

Radio Frequency Signal Environment___________________

RF Input. 1575.42 MHz (L1 band) at a level between –130 dBW and –163 dBW. The RF input connects to an OSX high-retention female connector for the -371 and -381 configurations or an SMB high retention female connector for the –391 configuration.

Burnout Protection. –10 dBW signal within a bandwidth of 10 MHz centered about the L1 carrier frequency.

Physical___________________________________________

Dimensions. 2.800” x 1.600” x 0.442” (71 mm x 41 mm x 11 mm) with 3 RF connector options: straight OSX, right angle OSX, or right angle SMB. The Jupiter board also provides a standard 2x10 pin-field I/O connector.

Weight. 0.85 ounces (23.8 gm)

Environmental______________________________________

Cooling (operating/storage). Convection

Temperature (operating/storage). –40°C to +85°C

Humidity. Relative humidity up to 95% noncondensing or a wet-bulb temperature of +35° C, whichever is less.

10

100

10-1

10

-2

10-310-410-510

-6

10

1

10

2

10

3

10

4

5 Hz

15 Hz

80 Hz

100 Hz

500 Hz

2000 Hz

C301

G 2Hz

Vibration Frequency (Hz)

Figure 5. SAE Composite Curve (Random Noise)

Altitude (operating/storage). –1000 feet to 60,000 feet.Maximum Vehicle Dynamic . 500 m/sec (acquisition and navigation).

Vibration . Full Performance, see the composite SAE curve in Figure 5. Survival, 18G peak, 5 msec duration.

Shock . Shipping (in container): 10 drops from 75 cm onto a concrete floor.

RF Connector ______________________________________The RF connector is a 50 Ohm standard straight OSX

subminiature, snap-on coaxial RF jack receptacle. Optional right angle OSX and SMB connectors are also available.

OEM Interface Connector ____________________________The OEM communications interface is a dual row, straight 2x10pin field connector header. The pins are spaced on 2.0 mm (0.0787 in) centers and the pin lengths are 7.62 mm (0.300 in)on the board configuration containing a straight or right angle OSX RF connector. The pin lengths are 10.16 mm (0.400 in) on the board configuration containing the right angle SMB

connector. Figure 6 diagrams the pin 1 reference location (pin 4is not installed).

Mechanical Layout__________________________________A mechanical drawing for the Jupiter 5V GPS receiver board is shown in Figure 7.

ESD Sensitivity

The Jupiter GPS receiver contains Class 1 devices. The following Electrostatic Discharge (ESD) precautions are recommended:

? Protective outer garments

? Handle device in ESD safeguarded work area ? Transport device in ESD shielded containers ? Monitor and test all ESD protection equipment

Treat the Jupiter GPS receiver as extremely sensitive to ESD.

Hardware Interface

The electrical interface for the Jupiter receiver is a standard 2x10 pin field connector header that is used for all data input and output. A pinout description for this connector is provided in Table 4.

The following paragraphs describe the function of each pin on the 2x10 pin field interface connector. These functions are divided into three groups: Configuration and timing signals,serial communication signals, and DC input signals.

Configuration And Timing Signals______________________Pin J1-5: Master Reset (M_RST) – Active Low

This signal allows the OEM to generate a system hardware reset to the receiver. This signal is capable of being driven directly by an external microprocessor or by external logic without the need for any external pull-up or pull-down resistors.The OEM can generate a system reset to the receiver by pulling the M_RST control signal low to ground.

Note:The M_RST signal must be pulled to a CMOS logic

“high” level coincident with, or after, the application of prime DC power for the receiver to enter its Operate mode. The M_RST must be held at ground level for a minimum of 150 nanoseconds to assure proper generation of a hardware reset to the receiver.

20219

1

Card C404

Figure 6. 2x10 Pin Field Connector (J1) Pin 1 Reference Location (Top View)Table 4. Jupiter Receiver Standard 2x10 Pin Field OEM Interface Connector Pinout

Pin #

Name

Description

Pin #

Name

Description

1PREAMP Preamp power input 11SDO1Serial data output port #12PWRIN_5Primary +5 VDC power input 12SDI1Serial data input port #13VBATT Battery backup voltage input 13GND Ground

4N/C Reserved (no connect)14N/C Reserved (no connect)5M_RST Master reset input (active low)15SDI2Serial data input port #26N/C Reserved (no connect)16GND Ground 7GPIO2NMEA protocol select 17GND Ground 8GPIO3ROM default select 18GND Ground

9GPIO4Reserved (no connect)19TMARK 1 PPS time mark output 10

GND

Ground

20

10KHZ

10 kHz clock output

This signal can also be used to provide control of the Jupiter receiver’s Operate mode without removing primary input power from the receiver. When M_RST is pulled to ground, the receiver enters a low power state for as long as the M_RST signal is asserted low. In this state, a portion of the receiver’s RF circuitry is de-energized, the SRAMs are transitioned into their low power data retention state, and the RTC device is

maintained. When the receiver is placed into this low power state through the use of the M_RST control signal, the receiver continues to draw current from the primary input power (PWRIN)but at a reduced level.

When the M_RST signal is subsequently asserted high by the OEM, RF power is re-applied, a system reset is generated after a 0.25 second delay, and the receiver is returned to its normal Operate mode.

Pin J1-6: Reserved

This signal is reserved and NO electrical connections should be made to the OEM application.

Note:All pins designated as GPIO pins (J1-7, J1-8, and J1-9)

are only examined by the receiver at the time the receiver is reset with either: a hardware reset signal (J1-5); by removing and reapplying power; or by sending a software reset message (Conexant binary message 1303). For settings on these pins to be effective, they must be set immediately before a reset occurs.

Pin J1-7: NMEA Protocol Select (GPIO2)

The Jupiter receiver has two hardware selectable message protocols that may be used to communicate over the host serial I/O port. These message protocols are a Conexant binary message format and a NMEA ASCII message format.When this signal is pulled “low,” the receiver communicates over the host serial port using the NMEA message format (4800 bps,no parity, 8 data bits, and 1 stop bit).

When this signal is pulled “high,” the receiver communicates over the host serial I/O port using the format determined by the setting of the Read-Only Memory (ROM) Default Select pin (J1-8).

Binary and NMEA messages are both described in the

Conexant document, Zodiac GPS Receiver Family Designer’s Guide.

Pin J1-8: ROM Default Select (GPIO3)

This signal determines whether the message format, host port communication settings, receiver default message set, and initialization data parameters are obtained from default values stored in ROM or from user-configurable settings stored in SRAM/EEPROM. If this signal is pulled “low,” the ROM-based factory default values are used.

Jupiter GPS Receiver TU30-D140-371/381/391

Figure 7. Mechanical Drawing of the Jupiter 5V GPS Receiver Board

TU30-D140-371/381/391Jupiter GPS Receiver

Note:When the ROM defaults select signal (GPIO3) is pulled “low,” each power cycle or reset of the receiver results in

a longer TTFF. This is because the receiver uses default

initialization parameters stored in ROM rather than the

current initialization parameters that may be available in

SRAM or EEPROM.

The default values for NMEA protocol are 4800 bps Rx/Tx, no parity, 8 data bits, and 1 stop bit. The default values for binary protocol are 9600 bps Rx/Tx, no parity, 8 data bits, and 1 stop bit.

If this signal is pulled “high,” the port configuration parameters are accessed in the following priority:

1.If SRAM checksums are valid, the communication

parameters and initialization data parameters are read from SRAM.

2.If SRAM checksums are invalid and EEPROM checksums

are valid, the communication parameters and initialization

data parameters are read from EEPROM.

3.If SRAM checksums are invalid and EEPROM checksums

are invalid, the default values in ROM are used.

The relationship between the user-selectable functions (GPIO2 and GPIO3) is shown in Table 5.

Pin J1-9: Reserved (GPIO4)

This signal is reserved and NO electrical connections should be made to the OEM application.Pin J1-14: Reserved

This signal is reserved and NO electrical connections should be made to the OEM application.

Note:Both the configuration and timing signals, and the serial communication signals described in the next two

sections must be applied according to the limits shown in

Table 6.

Pin J1-19: UTC Time Mark Pulse (TMARK)

The Time Mark output provides a one pulse-per-second (1 pps) signal to the OEM application processor. When the receiver provides a valid navigation solution, the rising edge of each TMARK pulse is synchronized with the UTC one second epochs to within ±300 nsec (3σ).

When the receiver operates using the Conexant binary message protocol, the receiver’s software produces a message containing the UTC time associated with each time mark pulse. The relationship between the UTC Time Mark Pulse Output message and the TMARK pulse is shown in Figure 8. When the receiver’s serial data communication port is set to 9600 bps, the UTC Time Mark Pulse Output message precedes the TMARK pulse by 400 to 500 ms (typically).

The TMARK pulse waveform is shown in Figure 9. This signal is a positive logic, buffered CMOS level output pulse that transitions from a logic “low” condition to a logic “high” at a 1 Hz rate. The TMARK output pulse rise time is typically less than

2 ns and the pulse duration is typically 25.6 ms.

Table 5. Jupiter Receiver Serial Port Configuration Truth Table

NMEA Protocol

Select

(Pin 7)ROM Default

Select

(Pin 8)

Result

00NMEA message format; host port communication settings = 4800 bps, no parity, 8 data bits, 1

stop bit. The receiver operates from default initialization values stored in ROM and outputs the

default NMEA message set from ROM.

01NMEA message format; host port communication settings = 4800 bps, no parity, 8 data bits, 1

stop bit. The receiver selects the default NMEA output message set and uses initialization

values from the data stored in SRAM or EEPROM (Note 1).

10Binary message format; host port communication settings = 9600 bps, no parity, 8 data bits, 1

stop bit. The receiver operates from default initialization values stored in ROM.

11Data stored in SRAM or EEPROM determines message format, host port communication

settings, and default message set (Note 1).

Note 1: For further information, refer to the description of the ROM Default Select pin (J1-8) below.

Jupiter GPS Receiver TU30-D140-371/381/391

Table 6. Jupiter GPS Receiver Digital Signal Requirements

Symbol

Parameter

Limits (Note 1)

Units

PWRIN_5Primary Power Input to the Jupiter (+5 VDC) 4.75 to 5.25

volts VIH (min)Minimum High-Level Input Voltage 0.7 x PWRIN volts VIH (max)Maximum High-Level Input Voltage PWRIN volts VIL (min)Minimum Low-Level Input Voltage –0.3volts VIL (max)Maximum Low-Level Input Voltage 0.3 x PWRIN volts VOH (min)Minimum High-Level Output Voltage 0.8 x PWRIN volts VOH (max)Maximum High-Level Output Voltage PWRIN volts VOL (min)Minimum Low-Level Output Voltage 0

volts VOL (max)Maximum Low-Level Output Voltage 0.2 x PWRIN volts tr, tf Input Rise and Fall Time

50nanoseconds C out

Maximum Output Load Capacitance

25

picofarads

Note 1: PWRIN refers to a +5 VDC power input (PWRIN_5).

Figure 8. UTC Time Mark Pulse Output Message/UTC TMARK Pulse Relationship

TU30-D140-371/381/391Jupiter GPS Receiver

Figure 9. Jupiter GPS Receiver Time Mark Pulse Waveform

Pin J1-20: 10 kHz UTC Synchronized Clock

The UTC TMARK pulse starts on the rising edge of the 10 kHz clock pulse most closely associated with the start of the GPS second, and falls on the 256th pulse after the start. Figure 10 shows the relationship between the start of the UTC TMARK pulse and the 10 kHz clock. This clock signal is a positive logic, buffered CMOS output.

Serial Communication Signals________________________ Note:Both serial ports have default settings for baud rate, parity, data, and stop bits. However, either port can be

reconfigured to standard rates, parity, and number of bits

using the Conexant binary message 1330.

Pins J1-11 and 12: Host Port Serial Data Output And Input (SDO1 and SDI1)

The host port consists of a full-duplex asynchronous serial data interface. Both binary and NMEA initialization and configuration data messages are transmitted and received across this port. When the NMEA Protocol Select pin (J1-7) is “low” during reset initialization, the Host port is set to NMEA protocol, 4800 baud, no parity, 8 data bits, and 1 stop bit. Otherwise, the last saved setting is used.

If there is no last saved setting, the port is set to Conexant binary protocol, 9600 baud, no parity, 8 data bits, and 1 stop bit. The OEM application must provide any Line Driver/Line Receiver (LD/LR) circuitry to extend the range of the interface. Port idle is nominally a CMOS logical high (+5 VDC).Pin J1-15: Auxiliary Port Serial Data Input (SDI2)

The auxiliary port consists of a second half-duplex asynchronous serial data interface. This port is configured to receive RTCM DGPS correction data messages.

When the NMEA Protocol Select pin (J1-7) is “low” during reset initialization, the Auxiliary Port Serial Data input defaults to 9600 baud, no parity, 8 data bits, and 1 stop bit. Otherwise, the last saved setting is used.

The OEM application must provide any LD/LR circuitry to extend the range of the interface. Port idle is nominally a CMOS logical high (+5 VDC).

DC Input Signals____________________________________ Pin J1-1: Preamp Power Input (PREAMP)

The OEM may optionally supply power to a preamplifier using the antenna cable center conductor. The maximum voltage is +12 VDC and the current must not exceed 50 mA. If the OEM uses a passive antenna, Conexant recommends that this pin be grounded to help reduce noise in the RF input.

Warning:Do not apply power to a passive antenna or

damage to the receiver may occur.

Pin J1-2: Power Input (PWRIN_5)

This signal is the primary power input to the Jupiter receiver. Regulated DC power requirements are shown in Table 3.

Pin J1-3: Battery Backup Power Input (VBATT)

This signal is used to provide a DC power input to the SRAM and RTC devices only. The receiver automatically switches to the VBATT input signal when primary DC power (PWRIN) is removed from the board.

Jupiter GPS Receiver TU30-D140-371/381/391

C305

Figure 10. 10 kHz Clock Waveform/UTC TMARK Pulse Relationship

This feature is intended to provide the receiver with a “warm start” capability by maintaining an accurate time source and using position and satellite data stored in SRAM after prime input power (PWRIN) has been removed from the receiver.

In the standby mode, the receiver draws only a few microamps (see Table 3). This current level is appropriate for battery use. However, the battery voltage must be equal to, or less than, the normal PWRIN voltage so that during periods when the receiver operates on normal power, the battery is not required to supply full SRAM power. Since the SRAM chips do not require more than 3V to maintain their memory, it is acceptable to supply them with a 3V battery even when the rest of the system is 5V. Pin J1-4: Reserved

This signal is reserved and no electrical connections should be made to the OEM application.

Pins J1-10, 13, 16, 17, and 18: Ground (GND)

DC grounds for the board. All grounds are tied together through the receiver’s printed wiring board (PWB) ground plane and should all be grounded externally to the receiver.

Software Interface

The host serial I/O port of the Jupiter’s serial data interface supports full duplex communication between the receiver and the OEM application. Data messages can be in the Conexant binary format or NMEA-0183 format. The receiver also contains an auxiliary port dedicated to direct processing of the RTCM SC-104 messages for DGPS corrections.

Binary Data Messages. All of the output and input binary messages for the Jupiter receiver are listed in Table 7, along with their corresponding message IDs. A complete description of each binary message is contained in the Conexant document, Zodiac GPS Receiver Family Designer’s Guide.

NMEA Data Messages. The Jupiter LP supports NMEA v2.01 data messages. All of the output and input NMEA messages for the Jupiter receiver are listed in Table 8 along with their corresponding message IDs. A complete description of each NMEA message is contained in the Conexant document, Zodiac GPS Receiver Family Designer’s Guide.

RTCM SC-104 Data Messages. Table 9 lists those messages defined in the RTCM SC-104 standard that are used by the Jupiter receiver to form a DGPS position solution (not all DGPS messages are necessary for DGPS operation).

TU30-D140-371/381/391Jupiter GPS Receiver

Table 7. Jupiter Receiver Binary Data Messages

Output Message Name Message ID Input Message Name Message ID Geodetic Position Status Output (*)1000Geodetic Position and Velocity Initialization1200 Channel Summary (*)1002User-Defined Datum Definition1210 Visible Satellites (*)1003Map Datum Select1211 Differential GPS Status1005Satellite Elevation Mask Control1212 Channel Measurement1007Satellite Candidate Select1213 ECEF Position Output1009Differential GPS Control1214 Receiver ID (**)1011Cold Start Control1216 User-Settings Output1012Solution Validity Criteria1217 Raw Almanac Output1040User-Entered Altitude Input1219 Raw Ephemeris Output1041Application Platform Control1220 Raw Ionospheric and UTC Corrections Output1042Nav Configuration1221 Built-In Test Results1100Raw Almanac Input1240 UTC Time Mark Pulse Output (*)1108Raw Ephemeris Input1241 Frequency Standard Parameters In Use1110Raw Ionospheric and UTC Corrections Input1242 Serial Port Communication Parameters In Use1130Perform Built-In Test Command1300 EEPROM Update1135Restart Command1303 EEPROM Status1136Frequency Standard Input Parameters1310 Frequency Standard Table Output Data1160Serial Port Communication Parameters1330 Error/Status1190Message Protocol Control1331

Factory Calibration Input1350

Raw DGPS RTCM SC-104 Data1351

Frequency Standard Table Input Data1360 (*) Enabled by default at power-up.

(**) Output by default once at power-up or reset.

Jupiter GPS Receiver TU30-D140-371/381/391

Table 8. Jupiter Receiver NMEA v2.01 Data Messages

Output Message Name Message ID Input Message Name Message ID Conexant Proprietary Built-In Test (BIT) Results BIT Conexant Proprietary Built-In Test (BIT) Command IBIT Conexant Proprietary Error/Status ERR Conexant Proprietary Log Control Message ILOG GPS Fix Data (*)GGA Conexant Proprietary Receiver Initialization INIT GPS DOP and Active Satellites (*)GSA Conexant Proprietary Protocol Message IPRO GPS Satellites in View (*)GSV Standard Query Message Q

Conexant Proprietary Receiver ID (**)RID

Recommended Minimum Specific GPS Data (*)RMC

Track Made Good and Ground Speed VTG

Conexant Proprietary Zodiac Channel Status (*)ZCH

(*) Enabled by default at power-up.

(**) Output by default once at power-up or reset.

Table 9. Jupiter Receiver RTCM SC-104 Data Messages

Message ID Title Used For DGPS Corrections?

1Differential GPS Corrections Yes

2Delta DGPS Corrections Yes

3Reference Station Parameters No

6Null Frame No

9Partial Satellite Set Differential Corrections Yes

TU30-D140-371/381/391Jupiter GPS Receiver Ordering Information

Model Name Manufacturing Part

Number

Product Revision

Jupiter

w/straight OSX

w/right angle OSX

w/right angle SMB TU30-D140

-371

-381

-391

? 2000, Conexant Systems, Inc. All Rights Reserved.

Information in this document is provided in connection with Conexant Systems, Inc. ("Conexant") products. These materials are provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Conexant’s Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, RELATING TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages resulting from such improper use or sale.

The following are trademarks of Conexant Systems, Inc.: Conexant?, the Conexant C? symbol, and “What’s Next in Communications Technologies”?. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.

Additional information, posted at https://www.wendangku.net/doc/1217806865.html,, is incorporated by reference.

Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to

tech.pubs@https://www.wendangku.net/doc/1217806865.html,. For technical questions, contact your local Conexant sales office or field applications engineer.

Further Information: literature@https://www.wendangku.net/doc/1217806865.html,

1-800-854-8099 (North America) 33-14-906-3980 (International) Web Site

https://www.wendangku.net/doc/1217806865.html,

World Headquarters Conexant Systems, Inc.

4311 Jamboree Road,

P.O. Box C

Newport Beach, CA 92658-8902 Phone:(949) 483-4600 Fax:(949) 483-6375

U.S. Florida/South America Phone:(727) 799-8406 Fax:(727) 799-8306

U.S. Los Angeles

Phone:(805) 376-0559 Fax:(805) 376-8180

U.S. Mid-Atlantic

Phone:(215) 244-6784 Fax:(215) 244-9292

U.S. North Central

Phone:(630) 773-3454 Fax:(630) 773-3907

U.S. Northeast

Phone:(978) 367-3200 Fax:(978) 256-6868

U.S. Northwest/Pacific West Phone:(408) 249-9696 Fax:(408) 249-7113

U.S. South Central

Phone:(972) 733-0723 Fax:(972) 407-0639

U.S. Southeast

Phone:(919) 858-9110 Fax:(919) 858-8669

U.S. Southwest

Phone:(949) 483-9119 Fax:(949) 483-9090 APAC Headquarters Conexant Systems Singapore, Pte. Ltd.

1 Kim Seng Promenade

Great World City

#09-01 East Tower

Singapore 237994

Phone:(65) 737 7355

Fax:(65) 737 9077 Australia

Phone:(61 2) 9869 4088 Fax:(61 2) 9869 4077 China

Phone:(86 2) 6361 2515 Fax:(86 2) 6361 2516Hong Kong

Phone:(852) 2 827 0181

Fax:(852) 2 827 6488

India

Phone:(91 11) 692 4780

Fax:(91 11) 692 4712

Korea - Seoul Office

Phone:(82 2) 565 2880

Fax:(82 2) 565 1440

Korea - Taegu Office

Phone:(82 53) 745 2880

Fax:(82 53) 745 1440 Europe Headquarters

Conexant Systems France

Les Taissounieres B1

1681 Route des Dolines

BP 283

06905 Sophia Antipolis Cedex France

Phone:(33 1) 41 44 36 50 Fax:(33 1) 93 00 33 03 Europe Central

Phone:(49 89) 829 1320

Fax:(49 89) 834 2734 Europe Mediterranean

Phone:(39 02) 9317 9911

Fax(39 02) 9317 9913 Europe North

Phone:(44 1344) 486 444 Fax:(44 1344) 486 555 Europe South

Phone:(33 1) 41 44 36 50 Fax:(33 1) 41 44 36 90 Middle East Headquarters Conexant Systems Commercial (Israel) Ltd.

P.O. Box 12660

Herzlia 46733

Israel

Phone:(972 9) 952 4064

Fax:(972 9) 951 3924 Japan Headquarters

Conexant Systems Japan Co., Ltd. Shimomoto Building

1-46-3 Hatsudai,

Shibuya-ku

Tokyo, 151-0061

Japan

Phone:(81 3) 5371 1567

Fax:(81 3) 5371 1501 Taiwan Headquarters

Conexant Systems, Taiwan Co., Ltd. Room 2808

International Trade Building

333 Keelung Road, Section 1 Taipei 110

Taiwan, ROC

Phone:(886 2) 2720 0282 Fax:(886 2) 2757 6760

国内外流体力学研究机构

国内外流体力学研究机构 2008-05-08 09:08:34|分类:C FD |标签:|字号大中小订阅 1.北京航空航天大学流体力学研究所 http://www.bu https://www.wendangku.net/doc/1217806865.html,/dept5/stress.htm 包括国家计算流体力学重点实验室(由李椿萱院士和张函信院士主持)和流体力学开放实验室 2. 美国布朗大学流体机械研究中心 http://www.cfm.b https://www.wendangku.net/doc/1217806865.html, 了解流体机械的诸多方面 3.美国ssesco公司CFD技术服务中心 https://www.wendangku.net/doc/1217806865.html,/files/cfd_main.html 美国一个著名的计算流体服务机构,解决C FD计算和工程问题的专家 4.英国Cra nfield大学CFD研究中心 http://www.cra https://www.wendangku.net/doc/1217806865.html,/sme/cfd/ 主要介绍C FD的在各个领域的应用。 5.欧洲流体湍流及燃烧研究协会(Europe an Research C ommunity On Flow, Turbulence And Combustion ) http://lmfwww.epfl.ch/lmf/ERC OFTAC/ 领导管理欧洲的流体,湍流及燃烧方面的科研教育和工业的联合组织。 6.美国国家航空和宇宙航行局 http://www.nasa.go v/ NASA的各项动态和进展,信息很多。 7. 加拿大计算流体力学学会(The CFD Society of Can ada ) http://www.cfdsc.ca/english/index.html 介绍计算流体力学的进展和应用 8. CFD免费软件下载中心(CFD codes list - free softwa re) http://www.cfdsc.ca/english/index.html CFD免费软件下载(ft p) 9. 美国普林斯顿大学空气动力学实验室(the Princeton Gas Dyn amics Lab ) http://www.p https://www.wendangku.net/doc/1217806865.html,/~gasd yn/index.ht ml 进行流体力学的前沿研究 10. 澳大利亚Monash 大学湍流研究所(The Turbulence Research Laborato ry at Monash Uni versity ) https://www.wendangku.net/doc/1217806865.html,.au/~julio/TRL/ 进行湍流的理论和实验研究及应用 11. 美国Syracuse 大学超音速中心(S yracuse University cente r for h ype rsonics)

jupiter-平原绫香(中日文+罗马音)

Every day I listen to my heart ひとりじゃない 深い胸の奥でつながってる 果てしない时を越えて辉く星が 出会えた奇迹教えてくれる Every day I listen to my heart ひとりじゃない この宇宙の御胸に抱かれて 私のこの両手で何ができるの? 痛みに触れさせてそっと目を闭じて 梦を失うよりも悲しいことは 自分を信じてあげられないこと 爱を学ぶために孤独があるなら 意味のないことなど起こりはしない 心の静寂に耳を澄まして 私を呼んだならどこへでも行くわ あなたのその涙私のものに 今は自分を抱きしめて 命のぬくもり感じて 私たちは谁もひとりじゃない ありのままでずっと爱されてる 望むように生きて辉く未来を いつまでも歌うわあなたのために Every day I listen to my heart hitori ja nai fukai mune no oku de tsunagatteru hateshinai toki wo koete kagayaku hoshi ga deaeta kiseki oshiete kureru Every day I listen to my heart hitori ja nai kono sora no go mune ni dakarete watashi no kono ryoute de nani ga dekiru no? itami ni furesasete sotto me wo tojite yume wo ushinau yori mo kanashii koto wa

基于服务蓝图的呷哺呷哺服务过程研究

基于服务蓝图的呷哺呷哺服务过程研究 北京工商大学研一企业管理1班高翁玉10011313448 【摘要】伴随着我国餐饮业的发展,各类型的饭店数量剧增,中式快餐也迅速发展,服务质量和管理水平不如人意的问题凸显了出来。本文主要以呷哺呷哺的吧台式火锅为例,运用目前日渐成熟的服务蓝图法对呷哺呷哺整个服务过程进行详细分析,旨在得出服务失败的关键点,并对其进行针对性改进,达到提高服务质量的目的。 【关键词】服务流程服务质量服务蓝图呷哺呷哺 质量是企业的生命线,质量管理是企业管理的一个重要方面。现代质量管理发展基本上经历了质量的事后检验阶段、统计质量控制阶段以及全面质量管理阶段。但是由于服务不同于有形产品,它具有无形性、顾客参与服务生产过程、服务的生产与消费同步发生等特征,因此服务质量是以顾客感知为导向的,我们通常以顾客满意度来衡量服务质量。在服务质量控制上也相对困难,20世纪80年代在美国学者Lynn Shostack和Jane Kingman-Brunkage等专家的努力下,服务蓝图法(Blueprinting Technique)应运而生。本文主要通过对呷哺呷哺的案例分析,介绍如何应运服务蓝图法提升服务质量。 1.服务蓝图简介 服务蓝图是一种服务系统图,它详细地描绘了服务系统的如下几个方面:顾客消费行为过程、服务实施过程(服务传递过程)、顾客接触点、顾客与服务员的角色、服务中的有形展示等。服务蓝图与其他流程图最为显著的区别是包括了顾客及其看待服务过程的观点。实际上,在设计有效的服务蓝图时,值得借鉴的一点是从顾客对过程的观点出发,逆向工作导入实施系统。每个行为部分中的方框图表示出相应水平上执行服务的人员执行或经历服务的步骤。服务蓝图的作用主要有:用于设计新服务;用于服务管理创新与服务质量提升;用于培训;用于标准管理与知识管理;用于可视化管理等等。 服务蓝图的基本构成要素包括四个方面:四种行为、连接行为的流向线、分割行为的三条分界线和设置在顾客行为上方的有形展示,如图1所示。

平民人像:尤比切尔 Jupiter

平民人像:尤比切尔Jupiter 前几天收了两个俄头,50 2.8小微距,和尤比切尔Jupiter-9 85mm/F2,本不是有心,既然收了,就上网查了一下资料,也试拍了几张片,发现效果不错,共享出来,给有意此头的摄友一点参考。为方便参考,图片后期略调整曝光,缩图,没有剪裁和锐化等其他操作。----------- 一些参数,和评价,都是网上收集的,有些实在找不到出处,所以没标:画面尺寸;24X36. 焦距:84.51mm. 光圈比:1:2 光圈为2-16 光圈叶片:15片 光学结构:6片4组.

对焦范围:0.8-无限远. 视角:28度50分. 重量:360克(也有资料说380克) 体积:69x72毫米 滤镜尺寸:49*0.75 镀膜状况;多层镀膜(MC标识,也有没MC的“白头”)1933年苏联仿制二战前Carl Zeiss Sonnar 85mmF2镜头,属135相机类型中焦镜头,因系出名门,所以Jupiter 9的成像一流,即便在黑白的时代所设计的光学系统,在彩色的今天仍能很好的运作,当然因镜片镀膜技术的问题,抗耀光能力较差,但便宜的价格与经细的作工跟扎实的用料(全镜无一丝塑料件),加上高达15片的光圈叶片(这在现代镜头中是找不到了),使作像拍摄有很好的表现,当然避开强逆光及加上合适的遮光罩是必要的.Jupiter 9镜头的机械构造较简单,因子早期设计,所以无光圈自动顶针,必须手动收缩光圈,但为因应拍摄方便,光圈调节环有两个,除一个做实际光圈大小调节,令一个环做光圈默认值极限,所以在预设好光圈值后,调节此环可在预设光

圈值与全开光圈之间变换,减少拍摄时还须濒濒看光圈值的 麻烦. --- 尤彼切尔85/2 网摘:香港著名摄影家和摄影器材评论家吴文雄先生,在2000年9月份的《照相机》杂志上发表一文《用镜漫谈》,其中推荐了俄罗斯著名的85F2.0人像镜头,现在摘录其中精妙之言以飨诸位影友。古人云;工欲善其事,必先利其器,所谓利者,本人解释为利器和如何使用利器的利用两方面,换句话说,有利器不会利用的话,也等于没有利器。本人现在以拍摄人像为主,提起人像,它是易拍而难精的一种,前人云:摄影应以人像开始而以人像为终结。拍人像对于选用镜头是有一定标准的,概言之,要结像细致,要反差较小,要较大光圈,要色彩还原好,要能拍出人像的质感例如皮肤感,要成像后画面出现立体感,这样的镜头才是好镜头,镜头厂家为此制造出人像镜头。拍摄某种题材是有某种法则的,人像也是如此,一般拍摄人像时,摄影者和被摄影者之间的距离最好在3-5m之间,因为保持这样的距离,容易两者之间的沟通和对话。为此,有人建议,用镜要有以下区别:

数字音频处理器中文使用说明

MAXIDRIVER3.4数字音频处理器 ALTO MAXIDRIVER3.4数字处理器是集增益、噪声门、参数均衡、分频、压缩限 幅、延时为一体的全功能数字音频处理器,具有2个输入通道和6个输出通道,本机内设10种工厂预设的分频模式,64个用户程序数据库位置以及利用多媒体卡(MMC)进行128个用户程序外置储存的功能。MAXIDRIVER3.4是新一代全数字音 频处理器,采用分级菜单形式,操作非常方便。 功能键介绍 前面板 1、MODE---分级菜单选择,按动时循环选择PRESET(预设)、DELAY(延时)、EDIT(编辑)、UTILITY(系统设置)菜单功能。同时相对应的LED指示灯会被点亮。这时可以进入所选择的菜单进行参数编辑。 2、LED指示灯---当你用MODE键选择需要编辑的菜单时,相对应的LED指示 灯会被点亮。 3、2X16位LCD显示屏---显示正在编辑或查看的系统参数或系统状态。 4、数据轮---转动这个数据轮可以调节需要编辑的参数的数值,顺时针旋转提高数值,逆时针旋转减低数值。 5、PREV/NEXT---前翻/后翻键,每个主菜单下面都有若干个子菜单,通过按动这两个按键可以向前或向后选择所需要进行编辑的子菜单。 6、NAVIGATION CURSOR KEYS---光标移动键,每个子菜单中都有若干个可以 编辑的参数选择,按动这两个键,可以选择需要编辑的参数,选中的参数会闪烁。 7、CARD---储存卡插入口,在这个插口插入MMC储存卡,利用PRESET(预设) 菜单下,可以对该储存卡进行写入、读出等操作。 8、ENTER---确认键,按此键可以对所选择的菜单或编辑的参数数值进行确认。 9、ESC---取消键,按此键可以对所选择的菜单或编辑的参数数值进行取消操作,返回上一级菜单。 10、输入电平指示表,实时指示A/B两个输入通道输入电平的强弱数值。 11、MUTE---静音按键,按下后将关闭相应输出通道的输出信号,相对应的 红色LED指示灯将点亮。 12、输出电平指示表,显示每个输出通道输出电平大小数值,这里显示的数 值不是绝对的输出电平数值,而是与该列LED指示灯中的LIMIT(限幅)指示为基础相比较的数值。

(完整版)中国著名科研院所名单

北方交通大学信息科学研究所 北京科技大学矿业研究所 北京林业大学林业研究所 北京师范大学北京市辐射中心 北京市计量科学研究所 北京市农林科学院 北京邮电大学 北京自动化系统工程研究设计院 大庆石油天然气地质研究所 大庆石油学院石油天然气钻采工程研究所 地质矿产部海洋地质研究所 地质矿产部沈阳地质矿产研究所 地质矿产部石油地质中心实验室 地质矿产部水文地质工程地质研究所 地质矿产部西安地质矿产研究所 地质矿产部岩溶地质研究所 地质矿产部郑州矿产综合利用研究所 电力工业部电力科学研究院 电力工业部武汉高压研究所 电子工业部蚌埠接插件继电器研究所 电子工业部长沙半导体设备研究所 电子工业部电视电声研究所 电子工业部东北微电子研究所 电子工业部杭州计算机外部设备研究所 电子工业部华北计算技术研究所 电子工业部华东电子工程研究所 电子工业部华东微电子技术研究所 电子工业部南京电子技术工程研究所 电子工业部平凉半导体专用设备研究所 电子工业部上海微电机研究所 电子工业部四川压电与声光技术研究所 电子工业部天津电子材料研究所 电子工业部西安导航技术研究所 电子工业部中国电波传播研究所 电子工业部中国西南电子设备研究所 电子工业部中原电子技术研究所 东北工学院干燥技术研究所 东北工学院金属塑性加工与型钢生产技术研究所东北工学院设备诊断技术研究所 东北工学院自动化所 东北工学院自动化仪表与过程控制研究所 东南大学电子学研究所 东南大学建筑研究所 东南大学无线电研究所

东南大学运输工程研究所 东南大学自动化研究所 福建省热带作物科学研究所 福建省三明市真菌研究所 福建省亚热带植物研究所 公安部第三研究所 公安部交通管理研究所 公安部上海消防科学研究所 公安部四川消防科学研究所 广播电影电视部广播科学研究所 广东省广州市医药工业研究所 广东省家禽科学研究所 广东省农业科学院 广西大学自动化研究所 广西壮族自治区中医药研究所 贵州省黔东南苗族侗族自治州农业科学研究所(简称黔东南州农科所)国家地震局地壳应力研究所 国家地震局地质研究所 国家地震局工程力学研究所 国家海洋局第二海洋研究所 国家海洋局第一海洋研究所 国家海洋局海洋技术研究所 国家建筑材料工业局北京玻璃钢研究设计院 国家建筑材料工业局南京玻璃纤维研究设计院 国家建筑材料工业局人工晶体研究所 国家建筑材料工业局咸阳非金属矿研究所 国家建筑材料工业局中国建筑防水材料公司苏州研究设计所 国家体育运动委员会昆明体育电子设备研究所 国家医药管理局天津药物研究院 国家重点化学工程联合实验室 国内贸易部(原商业部)杭州茶叶加工研究所 国内贸易部(原商业部)南京野生植物综合利用研究所 国内贸易部(原商业部)无锡粮食科学研究设计院 国内贸易部(原商业部)郑州粮食科学研究设计院 国内贸易部物资流通技术研究所 哈尔滨船舶工程学院 合肥工业大学工业自动化研究所 合肥工业大学计算机综合自动化研究所 合肥工业大学能源研究所 合肥工业大学预测与发展研究所 河北省廊坊市农业科学研究所 河北省水产研究所 河南省农业科学院 核工业北京地质研究院

服务蓝图

服务蓝图 一、服务蓝图的概念 就像盖一所房子必须有建筑图纸一样,服务蓝图是详细描画服务系统的图片或地图,服务过程中涉及到的不同人员可以理解并客观使用它,而无论他的角色或个人观点如何。服务蓝图直观上同时从几个方面展示服务:描绘服务实施的过程、接待顾客的地点、顾客雇员的角色以及服务中的可见要素。它提供了一种把服务合理分块的方法,再逐一描述过程的步骤或任务、执行任务的方法和顾客能够感受到的有形展示。 制定蓝图在应用领域和技术上都有广泛的应用,包括后勤工业工程、决策理论和计算机系统分析等。 二、蓝图的构成:服务蓝图的主要构成 蓝图包括顾客行为、前台员工行为、后台员工行为和支持过程。绘制服务蓝图的常规并非一成不变,因此所有的特殊符号、蓝图中分界线的数量,以及蓝图中每一组成部分的名称都可以因其内容和复杂程度而有所不同。当你深刻理解蓝图的目的,并把它当成一个有用工具而不是什么设计服务的条条框框,所有问题就迎刃而解了。

顾客行为部分包括顾客在购买、消费和评价服务过程中的步骤、选择、行动和互动。例如,在法律服务中,顾客行为包括:决定找律师、给律师打电话、面谈、再打电话、收到文件和帐单。 与顾客行为平行的部分是服务人员行为。那些顾客能看到的服务人员表现出的行为和步骤是前台员工行为。例如,在法律服务中委托人(客户)可以看到的律师(服务人员)行为,是最初会面、中间会面和最终出具法律文件。 那些发生在幕后,支持前台行为的雇员行为称作后台员工行为。在上例中律师在幕后所做的任何准备,包括会面准备和最终文件交接准备都属于蓝图中的这一部分,还包括顾客和律师或其他一线员工的电话联系。 蓝图中的支持过程部分包括内部服务和支持服务人员履行的服务步骤和互动行为。在上例中,任何支持性的服务,诸如由受雇人员所进行的法律调查、准备文件的行为和秘书为会面做的准备工作都包括在蓝图中的支持过程的部分。 服务蓝图与其他流程图最为显著的区别是包括了顾客及其看待服务过程的观点。实际上,在设计有效的服务蓝图时,值得借鉴的一点是

BIAMP Nexia CS数字音频处理器

BIAMP Nexia CS数字音频处理器 [会议系统]适用于需要大量话筒的应用环境,诸如法庭,会议室,理事会等场合。 Nexia CS是一台数字信号处理器,配有10路话筒/线路输入和6路独立的混合输出,可满足会议室、法庭和理事会等场合的会议应用。Nexia的设计软件中提供了大量的路由选择、信号处理等模块,用户可以通过PC软件来对系统进行搭积木式的设计。通过控制软件的屏幕、RS-232接口或者其他兼容的遥控设备可以对Nexia CS进行控制。利用以太网和NexLink数字音频接口,多台Nexia 设备可以联机构成大系统工作。 特性: 10路平衡式话筒/线路输入,采用裸线接口端子。 6路平衡式输出,采用裸线接口端子。 以太网接口用于软件设置/控制。 串行接口用于第三方RS-232远程控制。 远程控制母线用于特制的控制面板。 NexLink接口用于多台设备联机工作。 NEXIA软件,可工作在WindowsNT4.0/2000/XP。 固定数量的输入输出接口,内部处理可自由设定。 具有混合、线路交换、组合、均衡、延时、控制等多种功能。 CE认证标志,通过CSA UL6500标准测试。 设计师和工程师用指标说明 数字会议系统应该具备10路配有裸线接口端子的平衡式话筒/线路输入和6路配有裸线接口端子的平衡式线路输出。输入输出都是模拟信号,设备内部采用24-bit量化、48kHz取样频率进行模拟/数字和数字/模拟转换。所有的内部处理都是数字处理。采用NexLink连接后,允许在多台设备间共享数字音频信

号。 可以用软件来创建或者连接每一台硬件设备中数字信号处理组件。可选用的系统组件应该包括(并不限定于):调音台、均衡器、分频器、动态增益控制器,路由选择、延时器、远程控制器、电平表、信号发生器以及诊断器。软件设置和控制可通过以太网连接进行操作。设定完成之后,处理器可以通过软件显示屏进行控制。第三方RS-232控制系统和第三方遥控设备都可以用来控制本设备。软件可以在一台工作在Windows NT4.0/2000/XP下,配有网卡的个人电脑下运行。 Nexia CS就是满足以上要求的数字会议系统。 各模块界面: (1)输入/输出模块界面 输入/输出10进6出界面 (2)其它模块界面与Nexia SP相同。

射手座守护神——天神朱庇特(Jupiter)

射手座守护神——天神朱庇特(Jupiter) 众神之王,是奥林匹斯山的统治者,又被称为天神和凡人之父,希腊名为宙斯(Zeus)。他以雷电为武器,维持着天地间的秩序,公牛和鹰是他的标志。朱庇特和兄弟波塞冬、哈得斯三分天下,波塞冬主司海域,哈迪斯主司冥间,朱庇特主司天界。作为天界之神,他掌管着风雨等各种天象,霹雳、闪电等是他用来向人类表示自己意志的手段。他还掌控人间的一切事务,与命运之神等同,女神赫拉是他的正式妻子。 射手座守护神——天神朱庇特(Jupiter) 朱庇特的故事 【朱庇特与少女伊娥】 朱庇特的故事多数都是有关他的风流韵事,其中颇为著名的一个就是他和少女伊娥的故事。 传说彼拉斯齐人是古希腊最初的居民。他们的国王乃是伊那科斯。他有一个如花似玉的女儿,名叫伊娥。有一次,伊娥在草原上牧羊的时候被朱庇特看见,后者对她一见钟情,于是化身为一位英俊的男子上前向她表达爱意。但是单纯的伊娥并不领情,失去耐心的他只得显露原型,软硬兼施。伊娥被吓坏了,转身就向树林中跑去。朱庇特在林中寻找了很久,但是天太黑,朱庇特怎么也找不到她,焦急的朱庇特不得不用雷霆照亮树林上方的天空,但是阵阵闪电反而让伊娥更加恐惧。朱庇特的妻子-天后赫拉看到树林上方出现密集的闪电,觉得非常奇怪,但她马上猜到是自己的丈夫在搞鬼。于是她下到凡间,并在丈夫之前找到了伊娥,当她看到伊娥那簌簌发抖的样子时就明白了一切。妒火烧心的她施法将伊娥变成了一头雪白的小母牛,然后转身离去。而朱庇特四处找不到伊娥,也只得悻悻地回到天庭。可怜的伊娥只能和一群牛生活在一起。朱庇特回去以后对伊娥一直念念不忘,忍受不了相思之苦的他又回到草原上去寻找伊娥的影子,但化身为牛的伊娥却一直呆在尼罗河边上,静静地看着水中的倒影,怀念以前的容貌。有一天,失魂落魄的朱庇特无意中走到了河边,看到了这头美丽的小母牛。朱庇特顿时认出了她,那双美丽的眼睛正是自己日思夜想的。他走上前去,抚摸着母牛的额头,激动地说道:亲爱的伊娥,是我害了你,不过我一定会设法补救的,不会再让你受到一丝伤害。”说完,他就把伊娥变了回来,两个人喜极而泣,拥抱在一起。后来,伊娥为朱庇特生下了一个儿子,取名为厄帕福斯,意为“天神之子”,他辅助自己的母亲成为了埃及的统治者,而厄帕福斯的女儿莉比亚则建立了属于自己的王国,也就是现在的利比亚。 朱庇特的宝物 【雷霆】 传说朱庇特的雷霆是由独眼巨人塞克罗普斯(Cyclops)打造的,其威摄力连众神也为之胆寒。朱庇特的雷霆用以破除世间的邪恶势力,惩戒那些为非作歹之人,其雷霆一击的力量令敌人望而生畏、俯首称臣。 雷霆和宙斯盾 【宙斯盾】 众所周知,万神之王朱庇特(宙斯)手中拥有两件至尊武器,一件是无坚不摧的雷霆,另外一件就是牢不可破的宙斯盾。后者是匠神伏尔甘倾力为他度身定做的,因为上刻美杜沙头像,

教你怎样使用数字音频处理器

怎样使用数字音频处理器现在数字音频处理器越来越多地运用到工程当中了,对于有基础有经验的人来说,处理器是一个很好用的工具,但是,对于一些经验比较欠缺的朋友来说,看着一台处理器,又是一大堆英文,不免有点无从下手。其实不用慌,我来介绍一下处理器使用步骤,以一个2进4出的处理器控制全频音箱+超低音音箱的系统为例 1、首先是用处理器连接系统,先确定好哪个输出通道用来控制全频音箱,哪个输出通道用来控制超低音音箱,比如你用输出1、2通道控制超低音,用输出3、4通道控制全频。接好线了,就首先进入处理器的编辑(EDIT)界面来进行设置,进入编辑界面不同的产品的方法不同,具体怎么进入,去看说明书。 2、利用处理器的路由(ROUNT)功能来确定输出通道的信号来自哪个输入通道,比如你用立体声方式扩声形式,你可以选择输出通道1、3的信号来自输入A,输出通道的2、4的信号来自输入B。信号分配功能不同的产品所处的位置不同,有些是在分频模块里,有些是在增益控制模块里,这个根据说明书的指示去找。 3、根据音箱的技术特性或实际要求来对音箱的工作频段进行设置,也就是设置分频点。处理器上的分频模块一般用CROSSOVER或X-OVER表示,进入后有下限频率选择(HPF)和上限频率选择(LPF),还要滤波器模式和斜率的选择。首先先确定工作频段,比如超低音的频段是40-120赫兹,你就把超低音通道的HPF设置为40,LPF设置为120。全频音箱如果你要控制下限,就根据它的低音单元口径,设置它的HPF大约在50-100Hz,。处理器滤波器形式选择一般有三种,bessel,butterworth和linky-raily,我以前有帖子专门说明过三种滤波器的不同之处,这里不赘述。常用的是butterworth和linky-raily两种,然后是分频斜率的选择,一般你选24dB/oct就可以满足大部分的用途了。 4、这个时候你需要检查一下每个通道的初始电平是不是都在0dB位置,如果有不是0的,先把它们都调到0位置上,这个电平控制一般在GAIN功能里,DBX的处理器电平是在分频器里面的,用G表示。 5、现在就可以接通信号让系统先发出声音了,然后用极性相位仪检查一下音箱的极性是否统一,有不统一的,先检查一下线路有没有接反。如果线路没接反,而全频音箱和超低音的极性相反了,可以利用处理器输出通道的极性翻转功能(polarity或pol)把信号的极性反转,一般用Nomal或“+”表示正极性,用INV或“-”表示负极性。 6、接下来就要借助SIA这类工具测量一下全频音箱和超低音的传输时间,一般来说是会有差异的,比如测到全频的传输时间是10ms,超低音是18ms,这个时候就要利用处理器的延时功能对全频进行延时,让全频和低音的传输时间相同。处理器的延时用DELAY或DLY表示,有些用m(米)有些用MS(毫秒)来显示延时量,SIA软件也同时提供了时间和距离的量,你可以选择你需要的数据值来进行延时 7、接下来就该进行均衡的调节了,可以配合测试工具也可以用耳朵来调,处理器的均衡用EQ来表示,一般都是参量均衡(PEQ),参量均衡有3个调节量,频率(F),带宽(Q 或OCT),增益(GAIN或G)。具体怎么调,就根据产品特性、房间特性和主观听觉来调了,这个就自己去想了。 8、均衡调好后,就要进行限幅器的设置了,处理器的限幅器用LIMIT来表示,进去以后一般有限幅电平(THRESHOLD),压缩比(RA TIO)的选项,你要做限幅就要先把压缩比RA TIO设置为无穷大(INF),然后配合功放来设置限幅电平,变成限幅器后,启动时间A TTACK和恢复时间RELEASE就不用去理了。DBX处理器的限幅器用PEAKSTOP来表示,启动后,直接设置限幅电平就可以了,至于怎么调限幅器,我有专门的帖子,自己去看。 9、都调好了就要保存数据,处理器的保存一般用STORE或SA VE表示,怎么存,就看产品说明书了。

研究机构和本课题研究团队简介

第一部分:研究机构和本课题研究团队简介 一、上海易居房地产研究院简介 上海易居房地产研究院成立于2005年9月,是由上海市社会科学界联合会主管,并经上海市社会团体管理局登记注册,具有法人实体地位的专业房地产研究机构。院内汇聚了著名高校及科研院所、知名企业等数十位学者和上百位业界精英,形成了不同知识结构相辅相成、优势互补的团队结构。研究院致力于不断加强房地产业领域的重大理论和应用问题研究,持续推动房地产产学研一体化的发展,建立完善房地产研究的良性运作机制,切实促进房地产业持续健康发展。依托企业的丰富实战经验和相关高校齐备的学科体系,在研究、培训、咨询等方面拥有雄厚的专业实力。经常性的为各级政府相关部门、行业协会、大型房企、金融机构等提借项目咨询和课题研究服务,并于2009年7月荣获“上海市优秀民办社会科学研究机构”称号。目前已成为国内公认的一流的房地产研究机构。 二、专家简介 (1)领军人物:张永岳教授上海易居房地产研究院院长、华东师范大学商学院院长 主持或主要参与过《关于加快建立健全上海市民住房保障体系的研究》、《上海市政策性商品住房制度及其运行机制研究》、《房地产二三级市场联动》、《住宅服务市场体系研究》等课题50余个。撰写或主编出版过:《商品经济学入门》、《房地产经济学》、《国际房地产概述》等著作教材10余

部。发表过《关于社会主义市场经济问题思考》、《上海住宅问题研究》等论文100余篇。曾获得过上海市科学技术进步奖、上海市哲学社会科学优秀成果奖、国家建设部、上海房地局科技进步奖、全国房地产优秀课题、优秀论文奖等。 近年承担省级以上社科研究项目例举 近年相关课题项目例举

古希腊罗马神话-中英互译

古希腊罗马神话 Prometheus and Man In the conflict between Cronus and Jupiter, Prometheus had adopted the cause of the Olympian deities神明,神灵. To him and his brother Epimetheus was now committed the office of making man and providing him and all other animals with the faculties necessary for their preservation. Epimetheus proceeded to bestow授予 upon the different animals the various gifts of courage, strength, swiftness迅速,敏捷, and sagacity睿智,聪敏. Taking some earth and kneading捏合,捏炼 it with water. Prometheus made man in the image of the gods. He gave him an upright stature身高,身材. Then since Epimetheus had been so prodigal浪子,挥霍者 of his gifts to other animals that no blessing was left worth conferring upon the noblest of creatures, Prometheus ascended to heaven, lighted his torch 火炬,火把at the chariot 二轮战车 of the sun, and brought down fire. But it was only rather grudgingly 勉强地that Jupiter granted mortals人类,凡人 the use of fire. Then there came the occasion that when gods and men were in dispute辩论,争吵 at Sicyon concerning the prerogatives特权 of each, Prometheus, by an ingenious有独创性的 trick, attempted to settle the question in favor of man. Dividing into two portions a sacrificial牺牲的,献祭的 bull, he wrapped all the eatable parts in the skin, cunningly surmounted with uninviting entrails; but the bones he garnished with a plausible mass of fat. He then offered Jupiter his choice. The king of Heaven, although he perceived the intended fraud欺骗,骗子, took the heap of bones and fat, and forthwith立刻,立即 availing himself of this insult as an excuse for punishing mankind, deprived 使丧失,剥夺the race of fire. But Prometheus regained the treasure, stealing it from heaven in a hollow tube. By Jove's order Prometheus was chained to a rock on Mount Caucasus, and subjected to the attack of an eagle which, for ages, preyed upon his liver, yet succeeded not in consuming it. In his steadfastness to withstand the torment痛苦,苦恼,折磨 the Titan was supported by the knowledge that in the thirteenth generation there should arrive a hero, - sprung from Jove himself, - to release him. And in fullness of time the hero did arrive: none other than the mighty Hercules. No higher service, thinks this radiant 辐射的,光芒四射的 and masterful专横的,傲慢的 personage, remains to be performed than to free the champion of mankind. Hercules utters these words to the Titan -- The soul of man can never be enslaved束缚,征服 Save by its own infirmities, nor freed Save by its very strength and own resolve And constant vision and supreme最高的,至高的 endeavor! You will be free? Then, courage, O my brother! O let the soul stand in the open door Of life and death and knowledge and desire And see the peaks of thought kindle点燃,激起 with sunrise!

国内著名高校科研院所

研究所名称 所在省(或直辖市) 北方交通大学信息科学研究所 北京科技大学矿业研究所 北京林业大学林业研究所 北京师范大学北京市辐射中心 北京市计量科学研究所 北京市农林科学院 北京邮电大学 北京自动化系统工程研究设计院 大庆石油天然气地质研究所 大庆石油学院石油天然气钻采工程研究所 地质矿产部海洋地质研究所 地质矿产部沈阳地质矿产研究所 地质矿产部石油地质中心实验室 地质矿产部水文地质工程地质研究所 地质矿产部西安地质矿产研究所 地质矿产部岩溶地质研究所 地质矿产部郑州矿产综合利用研究所 电力工业部电力科学研究院 电力工业部武汉高压研究所 电子工业部蚌埠接插件继电器研究所 电子工业部长沙半导体设备研究所 电子工业部电视电声研究所 电子工业部东北微电子研究所 电子工业部杭州计算机外部设备研究所 电子工业部华北计算技术研究所 电子工业部华东电子工程研究所 电子工业部华东微电子技术研究所 电子工业部南京电子技术工程研究所 电子工业部平凉半导体专用设备研究所 电子工业部上海微电机研究所 电子工业部四川压电与声光技术研究所 电子工业部天津电子材料研究所 电子工业部西安导航技术研究所 电子工业部中国电波传播研究所
研究所名称 所在省(或直辖市) 煤炭科学研究总院太原分院 内蒙古自治区中蒙医研究所 南京大学配位化学研究所 南京大学天体物理研究室 南开大学分子生物学研究所 南开大学现代光学研究所 农业部环境保护科研监测所 青海省新能源研究所 清华大学微电子学研究院 山东省海洋水产研究所 山东省科学院 山东省农业科学院蔬菜研究所 山西省农业科学院果树研究所 陕西省农业科学院 陕西省西安高压电器研究所 上海交通大学大规模集成电路研究所 上海交通大学光纤技术研究所 上海交通大学水下工程研究所 上海市计算技术研究所 上海市农业科学院 上海医科大学肝癌研究所 上海医科大学手外科研究所 首都钢铁总公司冶金研究所 水利部长春机械研究所 水利部牧区水利科学研究所 水利部南京水文水资源研究所 水利部西北水利科学研究所 四川大学激光物理与化学研究所 四川大学生物技术研究中心 四川大学植物研究所 四川省农业科学院 天津大学信息与控制研究所 天津市农业科学院 铁道部上海铁路局科学技术研究所

跟我学Java代码检测Jupiter工具——如何应用Jupiter插件审查Java程序代码规范和质量

1.1跟我学Java代码检测Jupiter工具——如何应用Jupiter插件审查Java 程序代码规范和质量 1.1.1评审和度量软件系统项目中程序代码的编程质量 1、软件质量的保证不仅要着眼于“最终的结果”、也要着重于“开发的过程” 软件开发的基本流程为需求分析(Requirements Capture)阶段、系统分析与设计(System Analysis and Design)、系统实现(Implementation)和测试(Testing)及维护(Maintenance)等过程,因此相应的软件开发过程方面的质量要求可以定义为: 1)需求质量 2)设计质量 3)实现质量 4)发布和维护质量 “细节决定成败、过程决定结果!”没有开发过程中的每个阶段的质量监控和保证,那怎么可能又有最后的软件系统项目及软件系统产品结果的最终质量?因此,如何在软件系统的开发过程中,开发人员能够真正保证和控制开发过程中每个阶段的质量? 很显然的最基本手段是在软件系统每个开发阶段中都设置一个“里程碑”作为“质量的控制点”,而对于“质量的控制点”的把控,一般是以“评审”或“审查”为主要的考核手段,在程序代码的编程过程中的质量控制则主要是应用“单元测试”和“代码审查”等技术手段。 2、软件质量的保证不仅要着眼于“事后的测试”,也要着重于“开发中的预防” 由于早期的软件系统开发过程的不规范和开发人员缺少对软件系统的功能单元和整体测试的意识,对于软件系统产品和软件系统项目的最终质量的保证,基本上是依赖于软件系统的设计人员和程序代码编写者(程序员)的技术水平和工作态度及开发的效果,但“小作坊”式的软件系统开发方式是很难持续地保证软件系统产品的质量及质量的稳定性。 为此,国内有许多软件企业在2000年左右开始建立企业内部的专业化的软件测试小组,对本企业所开发的软件系统进行专门的测试和评估,这在一定的程度上提高了软件系统产品和软件系统项目的整体质量。但软件测试小组所实施的“系统功能”和“系统性能”等方面的各种测试,其实只能起到“事后检测”的效果。 而且这种“事后检测”的质量保证手段其实也是高成本的,因为软件系统的测试人员

服务蓝图.doc

服务蓝图 服务蓝图的主要构成 蓝图包括顾客行为、前台员工行为、后台员工行为和支持过程。绘制服务蓝图的常规并非一成不变,因此所有的特殊符号、蓝图中分界线的数量,以及蓝图中每一组成部分的名称都可以因其内容和复杂程度而有所不同。当你深刻理解蓝图的目的,并把它当成一个有用工具而不是什么设计服务的条条框框,所有问题就迎刃而解了。 顾客行为部分包括顾客在购买、消费和评价服务过程中的步骤、选择、行动和互动。这一部分紧紧围绕着顾客在采购、消费和评价服务过程中所采用的技术和评价准展开。 与顾客行为平行的部分是服务人员行为。那些顾客能看到的服务人员表现出的行为和步骤是前台员工行为。这部分则紧围绕前台员工与顾客的相互关系展开。 那些发生在幕后,支持前台行为的雇员行为称作后台员工行为。它围绕支持前台员工的活动展开。 蓝图中的支持过程部分包括内部服务和支持服务人员履行的服务步骤和互动行为。这一部分覆盖了在传递服务过程中所发生的支持接触员工的各种内部服务、步骤和各种相互作用。 服务蓝图与其他流程图最为显著的区别是包括了顾客及其看待服务过程的观点。实际上,在设计有效的服务蓝图时,值得借鉴的一点是从顾客对过程的观点出发,逆向工作导入实施系统。每个行为部分中的方框图表示出相应水平上执行服务的人员执行或经历服务的步骤。 4个主要的行为部分由3条分界线分开。 第1条是互动分界线,表示顾客与组织间直接的互动。一旦有一条垂直线穿过互动分界线,即表明顾客与组织间直接发生接触或一个服务接触产生。 下一条分界线是极关键的可视分界线,这条线把顾客能看到的服务行为与看不到的分开。看蓝图时,从分析多少服务在可视线以上发生、多少在以下发生入手,可以很轻松地得出顾客是否被提供了很多可视服务。这条线还把服务人员在前台与后台所做的工作分开。比如,在医疗诊断时,医生既进行诊断和回答病人问题的可视或前台工作,也进行事先阅读病历、事后记录病情的不可视或后台工作。 第3条线是内部互动线,用以区分服务人员的工作和其他支持服务的工作和工作人员。垂直线穿过内部互动线代表发生内部服务接触。 蓝图的最上面是服务的有形展示。最典型的方法是在每一个接触点上方都列出服务的有形展示。

Biamp_Nexia数字音频处理器介绍

B i a m p N e x i a音频处理器介绍 编者案:传统扩音都是由调音台、音频处理、功放和音箱组成,设备众多,总投资不菲。而非专业音频的用户往往不会操作,刚调好的一个声场,几个月后已经是惨不忍睹。在数字化的今天,我们迎来 更加符合现代数字音视频集成工程应用的需要。 1.?前言 Biamp Nexia 于1976年在美国俄勒冈州注册,最早是生产高品质的音乐器材,紧随着专业音频技术的发展,逐步转型生产专业音频处理设备。1996年生产出第一台Audia数字媒体矩阵,2003年推出智能话筒混音器、单声道/立体声线路混音器,功率放大器系列,同年推出专门针对中小型多媒体会议系统的NEXIA系列小型媒体矩阵(PM CS SP)。当远程会议走入人们视线时,Biamp也在2006年生产了专门针对远程会议的Nexia TC&VC.基于他们生产音乐器材的背景和对声音的热爱,他们对声音有很高的要求,同时也把这样的要求应用到所有产品中,而且把高品质声音作为产品生产的第一位。应用范围很广,涉及政府、学校、公交、以及视频会议系统、体育场馆扩声工程,并享有很高的赞誉。在国际信息化产业联盟ICIA公布的最佳系统集成固定安装类产品大奖中,BIAMP公司的产品被权威期刊评为“最佳DSP处理大奖”。2003年进入中国市场,市场份额逐年上升; 你的远见可以成为现实 Nexia系列产品根据工程中遇到的现实问题而量身定做的。很多客户往往预算紧张,但对声音质量的要求却毫不妥协,并且希望联网遥控。通过创新的数字信号处理技术,Nexia以小巧的外形提供了远胜于模拟系统的解决方案。 通过标配的Nexlink接口,最多可以4台Nexia设备级联成系统,彼此交换数字音频信号,并共享DSP资源。再配合VS8这样人性化的线控面板,一个灵活而实用的数字音频系统就展现在你的面前。高雅、简洁而且功能强大,在每天的日常实用中稳定地发挥效能。 Nexia软件:易于使用、精于设计。 界面直观、操作简单、功能强大,Nexia软件允许您以搭积木的方式进行系统设计。所有的设计操作都在同一个界面下完成,无需反复在不同页面间切换。令设计、修改,甚至推翻重来这一切工作都变 为使工程项目进展更快,所有Nexia产品出厂时都包含了标准的音频系统设计,通电就能使用!如果您有特殊需求,也可以对工厂内置的系统设计进行修改,实现您的梦想! 线控组件:人性外观,简洁有效。

广西地区调查研究咨询市场十大知名机构公司

1、中为咨询(zwzyzx)(中国) 深圳中为智研咨询有限公司(简称“中为咨询”)是中国领先的产业与市场研究服务供应商。公司围绕客户的需求持续努力,与客户真诚合作,在调查报告、研究报告、市场调查分析报告、商业计划书、可行性研究、IPO咨询等领域构筑了全面专业优势。中为咨询致力于为企业、投资者和政府等提供有竞争力的调查研究解决方案和服务,持续提升客户体验,为客户创造价值。目前,中为咨询的研究成果和解决方案已经应用于3万多家企业,涉及机械设备、工控电子、信息通讯、食品餐饮、旅游酒店、批发零售、建筑装饰、家电家居、文化传媒、汽车与交通、化工化学、医疗医药、能源环保、公共事务等领域,并向海外市场拓展。中为咨询是以自己的知识和智慧,帮助企业、事业成功、推动社会文明的建设发展,中为咨询的生命在市场,中为咨询的成功就在于帮助别人出主意获得成功;帮助别人成功的业绩越多,深圳中为智研咨询有限公司自身的社会信誉不断提高,在市场上占有的份额也变大。目前集团包括深圳中为慧数信息咨询有限公司与深圳万海格华管理咨询有限公司等多个子公司与办事处。 中为咨询注重竞争,更注重合作,注重竞争中的合作。为了向客户提供更多的有价值的咨询产品(好的计划、方案),中为咨询人不断改进咨询的工作方式,不仅在观察、分析问题后,以提交建议或咨询报告,更重要的是长期合作。中为咨询向客户提高咨询服务有特定的工作流程。中为咨询是通过“知识产品”提高企业经营效益。中为咨询服务工作重要一环不是取得报告,而是实施改进方案,把实施方案作为中为咨询服务的重要步骤。中为咨询始终把引进优秀的研究投资人才作为公司的核心目标之一,中为咨询员工拥有多种专业学历背景:统计学、金融学、产业经济学、市场营销学、国际贸易学、经济学、社会学、数学等数十个专业。中为咨询现有350名员工中本科以上学历占90%,65%具有双学位、硕士及博士学位。企业大多数员工曾在国内多家知名产业研究所与证券研究机构有过丰富的从业经验。高素质的专业人才是中为咨询的核心财富,也是中为咨询提供优质服务及践行客户价值的保证。 2、Ipsos益普索(法国) 益普索(Ipsos)是全球领先的市场研究集团,于1975年成立于法国巴黎,1999年在巴黎上市,是全球唯一由研究专业人士拥有并管理的市场研究集团。益普索是全球第三大研究集团,2014年集团全球营业额22.184亿美元,在全球87个国家设有办公室。益普索在六大研究领域为客户提供专业的洞察和服务:广告与品牌研究,客户满意度与忠诚度研究,营销研究,媒介研究,公共事务研究,以及调研管理服务。益普索于2000年进入中国,已成为中国较大的市场研究公司,在上海、北京、广州、成都、武汉等5个城市设有办公室。企业拥有丰富的专业研究产品线和行业专长,研究领域覆盖广告和品牌研究、营销研究、媒介研究、公众事务与社会研究、满意度与忠诚度研究、数据采集与处理,汽车研究以及金融与服务研究。服务范围覆盖了快消、金融、汽车、IT/电信、医药保健等众多行业。益普索洞察市场潜力,预测市场趋势,助力您品牌的健康发展,并协助您建立长期良好的客户关系。企业将研究数据和大数据进行智慧的结合,企业预测市场、测试广告、研究数字时代的多媒

相关文档
相关文档 最新文档