>n;coutwhile(n--){cin>>x;avl.Insert(x,x);}coutavl.InorderTraverse();coutdo{cout二叉树6.退出"cin>" />
文档库 最新最全的文档下载
当前位置:文档库 › 平衡二叉树的演示01

平衡二叉树的演示01

平衡二叉树的演示01
平衡二叉树的演示01

kk.cpp

#include

#include

using namespace std;

#include "kk.h"

int main()

{

cout << "---此程序实现平衡二叉树操作---" << endl << endl;

A VL avl;

int n,x,select;

bool flag = 0;

cout << "请输入要插入的元素个数:";

cin >> n;

cout << "请依次输入待插入的元素:";

while(n--){

cin >> x;

avl.Insert(x,x);

}

cout<

avl.InorderTraverse();

cout<

do{

cout << "请选择操作:1. 插入2. 删除3. 查找4. 显示树的深度5.中序遍历平衡

二叉树6.退出"<

cin >> select;

switch (select){

case 1:

cout << "请输入待插入元素:";

cin >> x;

if (!avl.Insert(x,x))

cout << " 结果:插入失败!";

else

cout << " 结果:插入成功!";

cout<

avl.InorderTraverse();

cout<

break;

case 2:

cout << "请输入待删除元素:";

cin >> x;

if (!avl.Delete(x))

cout <<" 结果:删除失败!";

else

cout <<" 结果:删除成功!";

cout<

avl.InorderTraverse();

cout<

break;

case 3:

cout<<"请输入待查找元素:";

cin>>x;

if (!avl.Search(x))

cout <<" 结果:查找失败!";

else

cout <<" 结果:查找成功!";

cout<

avl.InorderTraverse();

cout<

break;

case 4:

cout << "这棵平衡二叉树深度为:";

cout << avl.GetDepth();

cout << endl << endl;

cout<

avl.InorderTraverse();

cout<

break;

case 5:

cout<

avl.InorderTraverse();

cout<

break;

case 6:

flag = 1;

break;

default:

flag = 1;

break;

}

} while (flag == 0);

return 0;

}

数据结构:二叉树子系统

/* *题目:按屏幕提示用前序方法建立一棵二叉树,并能按凹入法显示二叉树结构。 * 编写前序遍历、中序遍历、后序遍历、层次遍历程序。 * 编写求二叉树的叶结点数、总结点数和深度的程序。 * 设计一个选择式菜单,以菜单方式选择下列操作。 * 二叉树子系统 * *************************** **** * * 1 -- 建二叉树* * * 2 -- 凹入显示* * * 3 -- 先序遍历* * * 4 -- 中序遍历* * * 5 -- 后序遍历* * * 6 -- 层次遍历* * *7 -- 求叶子数* * *8 -- 求结点数* * *9 -- 求树深度* * *0 -- 返回* * *************************** **** * 请选择菜单号(0--9) */ #include #include typedef struct bTree // 二叉树结点{ char data; // 值域 struct bTree *lchild; // 左孩子 struct bTree *rchild; // 右孩子 }BT; BT *createTree(); void showTree(BT *t); void preOrder(BT *t); void postOrder(BT *t); void inOrder(BT *t); void levelOrder(BT *t); int leafNum(BT *t); int nodeNum(BT *t); int treeDepth(BT *t); /************************************************* Function: main() Description: 主调函数 Calls: createTree() showTree() preOrder() postOrder() in Order() leafNum() levelOrder() no deNum() treeDepth() In put: NULL

数据结构程序报告(平衡二叉树的操作)

计算机科学学院数据结构课程设计报告 平衡二叉树操作 学生姓名: 学号: 班级: 指导老师: 报告日期:

1.需求分析 1.建立平衡二叉树并进行创建、查找、插入、删除等功能。 2.设计一个实现平衡二叉树的程序,可进行创建、查找、插入、删除等操作,实现动态的输入数据,实时的输出该树结构。 3.测试数据:自选数据 2.概要设计 1.抽象数据类型定义: typedef struct BSTNode { int data; int bf; //节点的平衡因子 struct BSTNode *lchild,*rchild; //左右孩子指针 }BSTNode,*BSTree; void CreatBST(BSTree &T); //创建平衡二叉树 void R_Rotate(BSTree &p); //对以*p为根的二叉排序树作左旋处理 void L_Rotate(BSTree &p); //对以*p为根的二叉排序树作左旋处理 void LeftBalance(BSTree &T); //对以指针T所指结点为根的二叉树作左平衡旋转处理void RightBalance(BSTree &T); //对以指针T所指结点为根的二叉树作右平衡旋转处理bool InsertAVL(BSTree &T,int e,bool &taller); //插入结点e bool SearchBST(BSTree &T,int key); //查找元素key是否在树T中 void LeftBalance_div(BSTree &p,int &shorter); //删除结点时左平衡旋转处理 void RightBalance_div(BSTree &p,int &shorter); //删除结点时右平衡旋转处理 void Delete(BSTree q,BSTree &r,int &shorter); //删除结点 int DeleteA VL(BSTree &p,int x,int &shorter); //平衡二叉树的删除操作 void PrintBST(BSTree T,int m); //按树状打印输出二叉树的元素 2.主程序的流程 3.各模块之间的层次调用

平衡二叉树的生成过程

二叉排序树变成平衡二叉树 对于二叉查找树,尽管查找、插入及删除操作的平均运行时间为O(logn),但是它们的最差运行时间都是O(n),原因在于对树的形状没有限制。 平衡二叉树又称为AVL树,它或者是一棵空树,或者是有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左右子树的深度之差的绝对值不超过1。二叉树的的平衡因子BF为:该结点的左子树的深度减去它的右子树的深度,则平衡二叉树的所有结点的平衡因子为只可能是:-1、0和1 一棵好的平衡二叉树的特征: (1)保证有n个结点的树的高度为O(logn) (2)容易维护,也就是说,在做数据项的插入或删除操作时,为平衡树所做的一些辅助操作时间开销为O(1) 一、平衡二叉树的构造 在一棵二叉查找树中插入结点后,调整其为平衡二叉树。若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树 1.调整方法 (1)插入点位置必须满足二叉查找树的性质,即任意一棵子树的左结点都小于根结点,右结点大于根结点 (2)找出插入结点后不平衡的最小二叉树进行调整,如果是整个树不平衡,才进行整个树的调整。 2.调整方式 (1)LL型 LL型:插入位置为左子树的左结点,进行向右旋转(LL表示的是在做子树的左结点进行插入) 由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1变为2,成为不平衡的最小二叉树根结点。此时A结点顺时针右旋转,旋转过程中遵循“旋转优先”的规则,A结点替换D结点成为B结点的右子树,D结点成为A结点的左孩子。 (2)RR型

基于matlab构造最优二叉树

摘要 Matlab是一种用于算法开发,数据可视化,数据分析以及数值计算的高级技术计算语言和交互式环境。MATLAB是当今最优秀的科技应用软件之一,利用MATLAB 对层次分析法的判断、分析和计算过程进行处理后,为决策者提供方便友好的对话界面。只要决策者在MATLAB软件中输入自己的层次结构方案和两两对比的判断矩阵后能迅速得出相应的结果,为解决实际问题提供一个快捷的方法。从而提高人们的决策效率,同时也为科技工作者使用层次分析法提供一种新思路。本文是利用matlab的强大功能来构造最优二叉树。二叉树是一种非常重要以及常见的数据结构,不仅在计算机系统中运用广泛,而且在日常生活中也有一定的应用。本文概述了二叉树的数据结构以及使用matlab来模拟出二叉树的数据结构,从而来实现二叉树的插入,删除,查询等常用功能。 关键词:Matlab;二叉树;数据结构;

ABSTRACT Matlab is used for algorithm development, data visualization, data analysis and numerical calculation of the senior technical computing language and interactive environment. Matlab is the most outstanding application of science and technology, using MATLAB to determine the right level of analysis, analysis and computation processing, in order to provide decision makers with convenient user-friendly dialog interface. When the decision-makers in MATLAB software, enter their own hierarchy of the program and judgment matrix to determine quickly after the corresponding results obtained, in order to solve practical problems to provide a quick method. Thereby enhancing the efficiency of people's decision-making, but also for the scientific and technological workers to use AHP to provide a new idea.This article is using matlab to construct optimal binary tree. Binary Tree is a very important and common data structures, it is widely used in the computer system. This article outlines the binary tree data structure and the use of matlab to simulate a binary tree data structure, in order to achieve the binary tree insertion, deletion, query and other commonly used functions. Key words:Matlab;binary tree;data struction;

大数据结构 平衡二叉树的操作演示

平衡二叉树操作的演示 1.需求分析 本程序是利用平衡二叉树,实现动态查找表的基本功能:创建表,查找、插入、删除。具体功能: (1)初始,平衡二叉树为空树,操作界面给出创建、查找、插入、删除、合并、分裂六种操作供选择。每种操作均提示输入关键字。每次插入或删除一个结点后,更 新平衡二叉树的显示。 (2)平衡二叉树的显示采用凹入表现形式。 (3)合并两棵平衡二叉树。 (4)把一棵二叉树分裂为两棵平衡二叉树,使得在一棵树中的所有关键字都小于或等于x,另一棵树中的任一关键字都大于x。 如下图: 2.概要设计 平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的关系,进行相应的旋转,使之成为新的平衡子树。

具体步骤: (1)每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值不超过1,则平衡二叉树没有失去平衡,继续插入结点; (2)若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点; (3)判断新插入的结点与最小不平衡子树的根结点个关系,确定是那种类型的调整;(4)如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或RL型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;(5)计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后平衡二叉树中是否存在平衡因子大于1的结点。 流程图 3.详细设计 二叉树类型定义: typedefint Status; typedefintElemType; typedefstructBSTNode{

平衡二叉树(AVL)的查找、插入和删除

平衡二叉树(AVL)查找、插入和删除 小组成员: 陈静101070009 陈丹璐101070006 陈娇101070008

目录 平衡二叉树(AVL) (1) 查找、插入和删除 (1) 问题描述 (2) 设计说明 (3) (一)ADT (3) (二)算法思想 (5) (三)数据结构 (12) (四)程序结构与流程 (13) 运行平台及开发工具 (15) I/O格式 (15) 算法复杂度分析 (18) 源代码 (18) 小结 (37) 问题描述 利用平衡二叉树实现一个动态查找表。

(1)实现动态查找表的三种基本功能:查找、插入和删除。 (2)初始时,平衡二叉树为空树,操作界面给出创建、查找、插入和删除和退出五种操作供选择。每种操作均要提示输入关键字。创建时,根据提示输入数据,以-1为输入数据的结束标志,若输入数据重复,则给出已存在相同关键字的提示,并不将其插入到二叉树中。在查找时,如果查找的关键字不存在,则显示不存在查找的关键字,若存在则显示存在要查找的关键字。插入时首先检验原二叉树中是否已存在相同第3 页共38 页- 3 -的关键字,若没有则进行插入并输出二叉树,若有则给出已有相同关键字的提醒。删除时首先检验原二叉树中是否存在要删除的关键字,若有则进行删除后并输出二叉树,若没有则给出不存在要删除的关键字的提醒。 (3)平衡二叉树的显示采用中序遍历的方法输出,还可以根据输出数据是否有序验证对平衡二叉树的操作是否正确。 设计说明 (一)ADT ADT BalancedBinaryTree{ 数据对象D:D是具有相同特性的数据元素的集合。各个数据元素均含有类型相同,可唯一标志的数据元素的关键字。 数据关系R:数据元素同属一个集合。 基本操作P: void R_Rotate(BSTree &p); 初始条件:二叉树存在,且关键字插入到以*p为根的二叉树的左子树的左孩子上; 操作结果:对以*p为根的二叉排序树作右旋处理

平衡二叉树操作演示

数据结构实习报告 题目:平衡二叉树的操作演示 班级:信息管理与信息系统11-1 姓名:崔佳 学号:201101050903 完成日期:2013.06.25

一、需求分析 1. 初始,平衡二叉树为空树,操作界面给出两棵平衡二叉树的显示、查找、插入、删除、销毁、合并两棵树,几种选择。其中查找、插入和删除操作均要提示用户输入关键字。每次插入或删除一个节点后都会更新平衡二叉树的显示。 2. 平衡二叉树的显示采用凹入表形式。 3.每次操作完毕后都会给出相应的操作结果,并进入下一次操作,知道用户选择退出 二、概要设计 1.平衡二叉树的抽象数据类型定义: ADT BalancedBinaryTree{ 数据对象D:D是具有相同特性的数据元素的集合。各个数据元素均含有类型相同,可唯一标志的数据元素的关键字。 数据关系R:数据元素同属一个集合。 基本操作P: InitAVL(BSTree& T) 操作结果:构造一个空的平衡二叉树T DestroyAVL(BSTree& T) 初始条件:平衡二叉树T存在 操作结果:销毁平衡二叉树T SearchAVL(BSTree T,int key) 初始条件:平衡二叉树T存在,key为和关键字相同类型的给定值 操作结果:若T中存在关键字和key相等的数据元素,则返回指向该元素的 指针,否则为空 InsertAVL(BSTree& T,int key,Status& taller) 初始条件:平衡二叉树T存在,key和关键字的类型相同 操作结果:若T中存在关键字等于key的数据元素则返回,若不存在则插入 一个关键字为key的元素 DeleteAVL(BSTree& T,int &key,Status& lower) 初始条件:平衡二叉树T存在,key和关键字的类型相同 操作结果:若T中存在关键字和key相同的数据元素则删除它}ADT BalancedBinaryTree

平衡二叉树 构造方法(绝妙)

平衡二叉树构造方法 平衡二叉树 对于二叉查找树,尽管查找、插入及删除操作的平均运行时间为O(logn),但是它们的最差运行时间都是O(n),原因在于对树的形状没有限制。 平衡二叉树又称为AVL树,它或者是一棵空树,或者是有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左右子树的深度之差的绝对值不超过1。二叉树的的平衡因子BF为:该结点的左子树的深度减去它的右子树的深度,则平衡二叉树的所有结点的平衡因子为只可能是:-1、0和1 一棵好的平衡二叉树的特征: (1)保证有n个结点的树的高度为O(logn) (2)容易维护,也就是说,在做数据项的插入或删除操作时,为平衡树所做的一些辅助操作时间开销为O(1) 一、平衡二叉树的构造 在一棵二叉查找树中插入结点后,调整其为平衡二叉树。若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树 1.调整方法 (1)插入点位置必须满足二叉查找树的性质,即任意一棵子树的左结点都小于根结点,右结点大于根结点 (2)找出插入结点后不平衡的最小二叉树进行调整,如果是整个树不平衡,才进行整个树的调整。 2.调整方式 (1)LL型 LL型:插入位置为左子树的左结点,进行向右旋转

由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1变为2,成为不平衡的最小二叉树根结点。此时A结点顺时针右旋转,旋转过程中遵循“旋转优先”的规则,A结点替换D结点成为B结点的右子树,D结点成为A结点的左孩子。 (2)RR型 RR型:插入位置为右子树的右孩子,进行向左旋转 由于在A的右子树C的右子树插入了结点F,A的平衡因子由-1变为-2,成为不平衡的最小二叉树根结点。此时,A结点逆时针左旋转,遵循“旋转优先”的规则,A结点替换D结点成为C的左子树,D结点成为A的右子树。 (3)LR型 LR型:插入位置为左子树的右孩子,要进行两次旋转,先左旋转,再右旋转;第一次最小不平衡子树的根结点先不动,调整插入结点所在的子树,第二次再调整最小不平衡子树。 由于在A的左子树B的右子树上插入了结点F,A的平衡因子由1变为了2,成为不平衡的最小二叉树根结点。第一次旋转A结点不动,先将B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。 (4)RL型 RL型:插入位置为右子树的左孩子,进行两次调整,先右旋转再左旋转;处理情况与LR 类似。

数据结构程序报告(平衡二叉树的操作)

数据结构程序报告(平衡二叉树的操作)

计算机科学学院数据结构课程设计报告 平衡二叉树操作 学生姓名: 学号: 班级: 指导老师: 报告日期:

1.需求分析 1.建立平衡二叉树并进行创建、查找、插入、删除等功能。 2.设计一个实现平衡二叉树的程序,可进行创建、查找、插入、删除等操作,实现动态的输入数据,实时的输出该树结构。 3.测试数据:自选数据 2.概要设计 1.抽象数据类型定义: typedef struct BSTNode { int data; int bf; //节点的平衡因子 struct BSTNode *lchild,*rchild; //左右孩子指针 }BSTNode,*BSTree; void CreatBST(BSTree &T); //创建平衡二叉树 void R_Rotate(BSTree &p); //对以*p 为根的二叉排序树作左旋处理 void L_Rotate(BSTree &p); //对以*p 为根的二叉排序树作左旋处理 void LeftBalance(BSTree &T); //对以指针T所指结点为根的二叉树作左平衡旋转处理void RightBalance(BSTree &T); //对以指针T所指结点为根的二叉树作右平衡旋转处理bool InsertA VL(BSTree &T,int e,bool &taller);

//插入结点e bool SearchBST(BSTree &T,int key); //查找元素key是否在树T中 void LeftBalance_div(BSTree &p,int &shorter); void RightBalance_div(BSTree &p,int &shorter);

数据结构——二叉树基本操作源代码

数据结构二叉树基本操作 (1). // 对二叉树的基本操作的类模板封装 //------------------------------------------------------------------------------------------------------------------------ #include using namespace std; //------------------------------------------------------------------------------------------------------------------------ //定义二叉树的结点类型BTNode,其中包含数据域、左孩子,右孩子结点。template struct BTNode { T data ; //数据域 BTNode* lchild; //指向左子树的指针 BTNode* rchild; //指向右子树的指针 }; //------------------------------------------------------------------------------------------------------------------------ //CBinary的类模板 template class BinaryTree { BTNode* BT; public: BinaryTree(){BT=NULL;} // 构造函数,将根结点置空 ~BinaryTree(){clear(BT);} // 调用Clear()函数将二叉树销毁 void ClearBiTree(){clear(BT);BT=NULL;}; // 销毁一棵二叉树 void CreateBiTree(T end); // 创建一棵二叉树,end为空指针域标志 bool IsEmpty(); // 判断二叉树是否为空 int BiTreeDepth(); // 计算二叉树的深度 bool RootValue(T &e); // 若二叉树不为空用e返回根结点的值,函数返回true,否则函数返回false BTNode*GetRoot(); // 二叉树不为空获取根结点指针,否则返回NULL bool Assign(T e,T value); // 找到二叉树中值为e的结点,并将其值修改为value。

数据结构程序设计报告(平衡二叉树)(内容清晰)

数学与计算机科学学院数据结构程序设计报告 平衡二叉树 学生姓名: 学号: 班级: 指导老师: 报告日期:

1.题目与要求 1). 问题的提出 编写已个平衡二叉树,主要是对插入一个元素导致树不平衡的情况进行平衡化处理以及相关的处理。 2)设计的知识点 队列的插入,删除,二叉树的建立于销毁,平衡树的平衡化,以及C语言中基础应用于结构等。 3)功能要求 (1).通过不断插入的方式创建一棵平衡二叉树,包括输入结点的关键字和相关信息。 (2)按要求输出创建的平衡二叉树结点,包括顺序(中序)输出和按层次输出。 (3)插入新增的结点,若结点不存在则插入平衡二叉树,并进行相关调整。 (4)销毁二叉树。 (5)退出 菜单界面如下:

2.功能设计 算法设计 选择创建平衡二叉树后,利用循环不断插入结点,并进行调整,当输入节点为0时停止进入菜单界面。 在平横二叉树排序树BSTree上插入一个新的数据元素e的递归算法可如下描述: (1)若BSTree为空树,则插入一个数据元素为e的新结点作为BSTree的根结点,树的深度增1; (2)若e的关键字和BSTree的根节点的关键字相等,则不进行插入; (3)若e的关键字小于BSTree的根结点的关键字,而且在其左子树中不存在和e形同的关键字的结点,则将e插入在其左子树 上,并且当插入之后的左子树的深度加1时,分别就下列不同 情况处理之: a.BSTree的跟结点的平衡因子为-1(右子树的深度大于左子树

的深度):则将跟结点的平衡因子更改为0,BBST的深度不 变; b.BBST的根结点的平衡因子为0(左,右子树的深度相等): 则将根结点的平衡因子更改为1,BBST的深度增1; c.BBST的根结点的平衡因子为1(左子树的深度大于右子树 的深度):若BBST的左子树根结点的平衡因子为1,则需进 行向左旋平衡处理,并且在右旋之后,将根节点和其右子树 根节点的平衡因子更改为0,树的深度不变; 若BBST的左子树根结点的平衡因子为-1,则需进行向左,向 右的双向旋转平衡处理,并且在旋转处理之后,修改根结点 和其左右子树的平衡因子,数的深度不变; (4)若e的关键字大于BBST的根结点的关键字,而且在BBST的右子树中不存在和e有相同的关键字的的节点,则将e插入在 BBST的右子树上,并且当插入之后的右子树深度增加(+1) 时,分别就不同情况处理之。 3.详细设计 1)结点类型定义: typedef struct ElemType{ KeyType Key; //键值类型 char info[20]; }ElemType; Typedef struct BSTNode{ ElemType data; int bf ; //结点的平衡因子

数据结构-二叉树的建

数据结构-二叉树的建立与遍历

《数据结构》实验报告 ◎实验题目:二叉树的建立与遍历 ◎实验目的:1、掌握使用Visual C++6.0上机调试程序的基本方法; 2、掌握二叉树的存储结构和非递归遍 历操作的实现方法。 3、提高自己分析问题和解决问题的能 力,在实践中理解教材上的理论。 ◎实验内容:利用链式存储结构建立二叉树,然后先序输出该二叉树的结点序列,在在本实验中不使用递归的方法,而是用一个栈存储结点的指针,以此完成实验要求。 一、需求分析 1、输入的形式和输入值的范围:根据提示,输入二叉树的括号表示形式,按回车结束。 2、输出的形式:输出结果为先序遍历二叉树所得到的结点序列。 3、程序所能达到的功能:输入二叉树后,该程序可以建立二叉树的链式存储结构,之后按照一定的顺序访问结点并输出相应的值,从而完成二叉树的先序遍历。 4、测试数据:

输入二叉树的括号表示形式:A(B(D(,G)),C(E,F)) 先序遍历结果为:ABDGCEF 是否继续?(是,输入1;否,输入0):1 输入二叉树的括号表示形式: 二叉树未建立 是否继续?(是,输入1;否,输入0):0 Press any key to continu e 二概要设计 1、二叉树的链式存储结构是用一个链表来存储一棵二叉树,二叉树中每一个结点用链表中的一个链结点来存储。 每个结点的形式如下图所示。 其中data表示值域,用于存储对应的数据元素,lchild和rchild分别表示左指针域和右指针域,用于分别存储左孩子结点和右孩子结点的存储位置。 2、二叉树的建立

本程序中利用数组存储所输入的二叉树,然后从头到尾扫描数组中的每一个字符根据字符的不同分别执行不同的操作,并用一个存储结点指针的栈辅助完成。在扫描前先申请一个结点作为根结点,也是当前指针所指结点,在二叉树的建立的过程中,每次申请一个新结点,需对其进行初始化,即令lchild域和rchild域为空。按照本程序的思路,二叉树A(B(D(,G)),C(E,F))的链式存储结构如下图所示。二叉树建立的具体过程见详细设计部分。 3、二叉树的先序遍历 在二叉树的先序遍历过程中也需利用一个存储结点指针的栈辅助完成,初始时栈为空,二叉树遍历结束后栈也为空,所以在开始时将头结点入栈,之后根据当前指针所指结点的特性的不同执行不同的操作,以栈空作为二叉树遍历的结束条件。二叉树先序遍历的具体过程见详细设计部分。

数据结构练习(二叉树)

数据结构练习(二叉树) 学号31301374 姓名张一博班级软件工程1301 . 一、选择题 1.按照二叉树定义,具有3个结点的二叉树共有 C 种形态。 (A) 3 (B) 4 (C) 5 (D) 6 2.具有五层结点的完全二叉树至少有 D 个结点。 (A) 9 (B) 15 (C) 31 (D) 16 3.以下有关二叉树的说法正确的是 B 。 (A) 二叉树的度为2 (B)一棵二叉树的度可以小于2 (C) 至少有一个结点的度为2 (D)任一结点的度均为2 4.已知二叉树的后序遍历是dabec,中序遍历是debac,则其前序遍历是 D 。 (A)acbed (B)decab (C) deabc (D) cedba 5.将一棵有1000个结点的完全二叉树从上到下,从左到右依次进行编号,根结点的编号为1,则编号为49的结点的右孩子编号为 B 。 (A) 98 (B) 99 (C) 50 (D) 没有右孩子 6.对具有100个结点的二叉树,若有二叉链表存储,则其指针域共有 D 为空。 (A) 50 (B) 99 (C) 100 (D) 101 7.设二叉树的深度为h,且只有度为1和0的结点,则此二叉树的结点总数为 C 。 (A) 2h (B) 2h-1 (C) h (D) h+1 8.对一棵满二叉树,m个树叶,n个结点,深度为h,则 D 。 (A) n=h+m (B) h+m=2n (C)m=h-1 (D)n=2h-1 9.某二叉树的先序序列和后序序列正好相反,则下列说法错误的是 A 。 (A) 二叉树不存在 (B) 若二叉树不为空,则二叉树的深度等于结点数 (C) 若二叉树不为空,则任一结点不能同时拥有左孩子和右孩子 (D) 若二叉树不为空,则任一结点的度均为1 10.对二叉树的结点从1开始进行编号,要求每个结点的编号大于其左右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用 A 遍历实现编号。 (A) 先序(B)中序(C)后序(D)层序 11.一个具有1025个结点的二叉树的高h为 C 。 (A) 10 (B)11 (C)11~1025 (D)10~1024 12.设n,m为一棵二叉树上的两个结点,在中序遍历时,n在m前的条件是 C 。 ( A) n在m右方(B)n是m祖先 (C) n在m左方(D) n是m子孙 13.实现对任意二叉树的后序遍历的非递归算法而不使用栈结构,最佳方案是二叉树采用 C 存储结构。 (A) 二叉链表(B) 广义表(C)三叉链表(D)顺序 14. 一棵树可转换成为与其对应的二叉树,则下面叙述正确的是 A 。 (A) 树的先根遍历序列与其对应的二叉树的先序遍历相同 (B) 树的后根遍历序列与其对应的二叉树的后序遍历相同 (C) 树的先根遍历序列与其对应的二叉树的中序遍历相同 (D) 以上都不对 二、填空题 1.对一棵具有n个结点的二叉树,当它为一棵完全二叉树时具有最小高度;当它为单分支二叉树时,具有最大高度。

平衡二叉树

二叉树: 左子树都小于根节点,右子树都大于根节点。可以动态维护这棵树(因为是树结构,可以有限步完成插入),所以是动态查找算法。时间复杂度为O(logn)在46.5%的情况下,需要把二叉树平衡化成“平衡二叉树”。 平衡二叉树:定义:平衡二叉树或为空树,或为如下性质的二叉排序树: (1)左右子树深度之差的绝对值不超过1; (2)左右子树仍然为平衡二叉树. 平衡因子:平衡因子bf=左子树深度-右子树深度, 每个结点的平衡因子只能是1,0,-1。若其绝对值超过1,则该二叉排序树就是不平衡的。增加一个元素后,平衡二叉树有可能变成不平衡了,所以需要旋转平衡调整。 平衡二叉树算法思想: 若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于1的结点作为根的子树。假设用A表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况:(可以断定插入一个节点一定是在叶子节点上) (1)LL型平衡旋转法 由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行一次顺时针旋转操作。即将A的左孩子B向右上旋转代替A作为根结点,A向右下旋转成为B 的右子树的根结点。而原来B的右子树则变成A的左子树。 (2)RR型平衡旋转法 由于在A的右孩子C 的右子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。故需进行一次逆时针旋转操作。即将A的右孩子C向左上旋转代替A作为根结点,A向左下旋转成为C 的左子树的根结点。而原来C的左子树则变成A的右子树。

数据结构课程设计-_平衡二叉树操作

课程设计报告 课程名称数据结构课程设计 题目平衡二叉树操作 指导教师 设计起止日 2010-5-16 学院计算机学院 专业软件工程 学生姓名 班级/学号------------ 成绩_________________

一.需求分析 1、建立平衡二叉树并进行创建、增加、删除、调平等操作。 2、设计一个实现平衡二叉树的程序,可进行创建、增加、删除、调平等操作,实现动态的输入数据,实时的输出该树结构。 3、测试数据:自选数据 二.概要设计 平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是,则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。具体步骤如下: ⑴每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值均不超过1,则平衡二叉树没有失去平衡,继续插入结点; ⑵若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点; ⑶判断新插入的结点与最小不平衡子树的根结点的关系,确定是哪种类型的调整; ⑷如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或RL型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突; ⑸计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后的平衡二叉树中是否存在平衡因子大于1的结点。 三.详细设计 树的内部变量 typedef struct BTNode {

数据结构—— 树和二叉树知识点归纳

第6章树和二叉树 6.1 知识点概述 树(Tree)形结构是一种很重要的非线性结构,它反映了数据元素之间的层次关系和分支关系。在计算机科学中具有广泛的应用。 1、树的定义 树(Tree)是n(n≥0)个数据元素的有限集合。当n=0时,称这棵树为空树。在一棵非空树T中: (1)有一个特殊的数据元素称为树的根结点,根结点没有前驱结点。 (2)若n>1,除根结点之外的其余数据元素被分成m(m>0)个互不相交的集合T1,T2,…,Tm,其中每一个集合Ti(1≤i≤m)本身又是一棵树。树T1,T2,…,Tm称为这个根结点的子树。 2、树的基本存储结构 (1)双亲表示法 由于树中的每一个结点都有一个唯一确定的双亲结点,所以我们可用一组连续的 存储空间(即一维数组)存储树中的结点。每个结点有两个域:一个是data域,存放结点信息,另一个是parent域,用来存放双亲的位置(指针)。 (2)孩子表示法 将一个结点所有孩子链接成一个单链表形,而树中有若干个结点,故有若干个单 链表,每个单链表有一个表头结点,所有表头结点用一个数组来描述这种方法通常是把每个结点的孩子结点排列起来,构成一个单链表,称为孩子链表。 (3)双亲孩子表示法 双亲表示法是将双亲表示法和孩子表示法相结合的结果。其仍将各结点的孩子结点分别组成单链表,同时用一维数组顺序存储树中的各结点,数组元素除了包括结点本身的信息和该结点的孩子结点链表的头指针之外,还增设一个域,存储该结点双亲结点在数组中的序号。 (4)孩子兄弟表示法 这种表示法又称为树的二叉表示法,或者二叉链表表示法,即以二叉链表作为树的存储结构。链表中每个结点设有两个链域,分别指向该结点的第一个孩子结点和下一个兄弟(右兄弟)结点。 3、二叉树的定义 二叉树(Binary Tree)是个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成。当集合为空时,称该二叉树为空二叉树。在二叉树中,一个元素也称作一个结点。 4、满二叉树 定义:在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上,这样的一棵二叉树称作满二叉树。 5、完全二叉树 定义:一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。完全二叉树的特点是:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。 6、二叉树的性质

平衡二叉树调整算法

平衡二叉树调整算法 在平衡二叉树中插入一个结点后造成不平衡,设最低的不平衡结点为A,并已知A的左孩子平衡因子为0,右孩子平衡因子为1,则应该做(C)型调整以使其平衡 A LL B LR C RL D RR 若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。 失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于 1 的结点作为根的子树。假设用 A 表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况。 (1)LL型平衡旋转法 由于在 A 的左孩子 B 的左子树上插入结点 F ,使 A 的平衡因子由 1 增至2 而失去平衡。故需进行一次顺时针旋转操作。即将 A 的左孩子 B 向右上旋转代替 A 作为根结点, A 向右下旋转成为 B 的右子树的根结点。而原来B 的右子树则变成 A 的左子树。 (2)RR型平衡旋转法 由于在 A 的右孩子 C 的右子树上插入结点 F ,使 A 的平衡因子由-1 减至-2 而失去平衡。故需进行一次逆时针旋转操作。即将 A 的右孩子 C 向

左上旋转代替 A 作为根结点, A 向左下旋转成为 C 的左子树的根结点。而原来C 的左子树则变成 A 的右子树。 (3)LR型平衡旋转法 由于在 A 的左孩子 B 的右子数上插入结点 F ,使 A 的平衡因子由 1 增至2 而失去平衡。故需进行两次旋转操作(先逆时针,后顺时针)。即先将A 结点的左孩子B 的右子树的根结点 D 向左上旋转提升到 B 结点的位置,然后再把该D 结点向右上旋转提升到 A 结点的位置。即先使之成为LL型,再按LL型处理。 如图中所示,即先将圆圈部分先调整为平衡树,然后将其以根结点接到 A 的左子树上,此时成为LL 型,再按LL 型处理成平衡型。 (4)RL型平衡旋转法 由于在 A 的右孩子 C 的左子树上插入结点 F ,使 A 的平衡因子由-1 减至-2 而失去平衡。故需进行两次旋转操作(先顺时针,后逆时针),即先将A 结点的右孩子C 的左子树的根结点D 向右上旋转提升到C 结点的位置,然后再把该D 结点向左上旋转提升到 A 结点的位置。即先使之成为RR型,

构造二叉树.doc

#include /* EOF(=^Z或F6),NULL */ #include /* floor(),ceil(),abs() */ #include #include #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等*/ typedef char TElemType; TElemType Nil=' '; /* 以空格符为空*/ #define MAX_TREE_SIZE 100 typedef struct { TElemType data; int parent; /* 双亲位置域*/ } PTNode; typedef struct { PTNode nodes[MAX_TREE_SIZE]; int n; /* 结点数*/ } PTree; Status InitTree(PTree *T) { /* 操作结果: 构造空树T */ (*T).n=0; return OK; } void DestroyTree() { /* 由于PTree是定长类型,无法销毁*/ } typedef struct { int num; TElemType name; }QElemType; /* 定义队列元素类型*/ typedef struct QNode { QElemType data; struct QNode *next; }QNode,*QueuePtr; typedef struct { QueuePtr front,rear; /* 队头、队尾指针*/ }LinkQueue;

实验报告平衡二叉树

实习报告 一、需求分析 1、问题描述 利用平衡二叉树实现一个动态查找表。 (1)实现动态查找表的三种基本功能:查找、插入和删除。 (2)初始时,平衡二叉树为空树,操作界面给出查找、插入和删除三种操作供选择。每种操作均要提示输入关键字。在查找时,如果查找的关键字不存在,则把其插入到平衡二叉树中。每次插入或删除一个结点后,应更新平衡二叉树的显示。 (3)每次操作的关键字都要从文件中读取,并且关键字的集合限定为短整型数字{1,2,3······},关键字出现的顺序没有限制,允许出现重复的关键字,并对其进行相应的提示。 (4)平衡二叉树的显示采用图形界面画出图形。 2、系统功能 打开数据文件,用文件中的关键字来演示平衡二叉树操作的过程。 3、程序中执行的命令包括: (1)(L)oad from data file //在平衡的二叉树中插入关键字; (2)(A)ppend new record //在平衡的二叉树中查找关键字; (3)(U)pate special record //显示调整过的平衡二叉树; (4)(D)elete special record //删除平衡二叉树中的关键字; (5)(Q)uit //结束。 4、测试数据: 平衡二叉树为: 图 1 插入关键字10之前的平衡二叉树 插入关键字:10; 调整后: 图 2 插入关键字10之后的平衡二叉树 删除关键字:14; 调整后:

图 3 删除关键字14后的平衡二叉树 查找关键字:11; 输出:The data is here! 图 3 查找关键字11后的平衡二叉树 二、概要设计 本次实验目的是为了实现动态查找表的三种基本功能:查找、插入和删除。动态查找表可有不同的表示方法,在此次实验中主要是以平衡二叉树的结构来表示实现的,所以需要两个抽象数据类型:动态查找表和二叉树。 1、动态查找表的抽象数据类型定义为: ADT DynamicSearchTable {数据对象D :D是具有相同特性的数据元素的集合。各个数据元素均含 有类型相同,可唯一标识数据元素的关键字。 数据关系R :数据元素同属于一个集合。 基本操作P : InitDSTable(&ST); 操作结果:构造一个空的动态查找表DT。 DestroyDSTable(&DT);

相关文档
相关文档 最新文档